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Petri net plan coordination for robocup teams 

G. Kontes and M.G. Lagoudakis 
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Passing  

Maneuver 

 

 
Teamwork Design Based on Petri Net Plan 

P. F. Palamara, V. A. Ziparo, L. Iocchi, D. Nardi, and P. Lima 
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Team strategy 

Petri net plan coordination for robocup teams 

G. Kontes and M.G. Lagoudakis 
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Attacker role  

in the pressing defense tactic 

Petri net plan coordination for robocup teams 

G. Kontes and M.G. Lagoudakis 
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Midfielder role  

in the pressing defense tactic 

Petri net plan coordination for robocup teams 

G. Kontes and M.G. Lagoudakis 
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Defender role  

in the pressing defense tactic 

Petri net plan coordination for robocup teams 

G. Kontes and M.G. Lagoudakis 
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Production system 

 

A modelbased realtime faultdiagnosis  

system for technical processes 

Ch. Steger, R. Weiss 
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Sprout Counter Flow Pipeline-Processor 

 Based on a stream of data packages 

and a stream of instructions 

compute 

 Data and instructions arrive asynchronously 

 Execution times of instructions vary 

 Data flows from left to right 

 Instructions flow from right to left 

Wolfgang Reisig: Petrinetze, Springer 2010 
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Module 
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pass instr 
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Analysis 

Place invariants: 

 

A + H + E + D = 2 

B + D = 1 

 

Hence, if A and H are marked, 

B must also be marked. 

 

The edges between B and c can be removed. 

(Analogously for C and f.) 
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Composition of modules 
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REVIEW: Place/transition nets 

Def.: (P, T, F, K, W, M0) is called a place/transition net (P/T net) iff 

1. N=(P,T,F) is a net with places P and transitions T 

2. K: P  (N0  {}) \{0} denotes the capacity of places 

( symbolizes infinite capacity) 

3. W: F (N0 \{0}) denotes the weight of graph edges 

4. M0: P  N0 {} represents the initial marking of places 

W 

M0 

(Segment of some net) 
default: 

K =   

W = 1 

multiple tokens per place 
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REVIEW: Reachability 
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REVIEW: Liveness  

 A transition is live if in every reachable marking there 

exists a firing sequence such that the transition 

becomes enabled 

 A net is live if all its transitions are live 

 

   



9 

 -  17 - BF - ES 

REVIEW: Deadlock 

 A dead marking (deadlock) is a marking where no 

transition can fire 

 A net is deadlock-free if no dead marking is reachable 
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Reachability, 

Liveness, 

Deadlock 

are graph problems 

on reachability graph 
 

 

 

Reachability graph: 
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Reachability graph is in general infinite 

 

Example from Wolfgang Reisig: Petrinetze, Springer 2010 

 -  20 - BF - ES 

Coverability graph 

 

Example from Wolfgang Reisig: Petrinetze, Springer 2010 
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Coverability graph 

 

Example from Wolfgang Reisig: Petrinetze, Springer 2010 

 indicates that arbitrarily 

high values can be reached: 

for every bound n there is a 

reachable marking M with 

M(p) > n 
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Constructing the coverability graph 

 The initial graph consists of the initial marking M0 

 Extend the graph as long as there exists a node M 

such that  

 a transition t can fire from M leading to some marking M’ 

 but there is no outgoing edge from M labeled with t 

 

Create a t-labeled edge from M to M’’, where M” is defined as 

follows: 

 

M’’(p) =  if there exists a path from M0 to M through some node L 

  with L  M‘ and L(p) < M‘(p)  

M’’(p) = M’(p) otherwise 
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Coverability graph is not unique 

 

Example from Wolfgang Reisig: Petrinetze, Springer 2010 
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Finiteness of the coverability graph 

Theorem 2: Every P/T net has a finite coverability graph. 

 

 

Lemma 1: Every infinite sequence of markings (Mi) 

contains a weakly monotonically growing infinite 

subsequence (M`i), i.e., for j<k, M`j  M`k. 

 

 

 

(proof on blackboard) 
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Coverability theorem 
 

A marking M covers a marking M’ iff, for all places p, 

 M(p) = M’(p)  or  M(p) = . 

 

A computation of a P/T net is a sequence  

 

where M0 is the initial marking and Mi+1 is the result of firing 

transition ti in marking Mi 

 

Theorem 3: For every computation 

     of a P/T net there exists, in 

every coverability graph, a path      

                                             such that M’i covers Mi for all i. 
 

 

...
210

210
   

ttt

MMM

...
210

210


ttt

MMM

...'''
210

210
   

ttt

MMM
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The converse does not hold 

 

Example from Wolfgang Reisig: Petrinetze, Springer 2010 
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Simultaneous unboundedness 

A set Q of places is simultaneously unbounded iff, for 

every natural number i, there exists a reachable marking Mi 

where, for all q  Q, Mi(q)  i. 

 

 

 

 

 

Theorem 4: For every node M in a coverability graph of 

some P/T net, it holds that the places in M, where  pM 

iff M(p) = , are simultaneously unbounded. 

 

D and E are 

unbounded but not 

simultaneously 

unbounded 

(proof on blackboard) 
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Petri nets - summary 

 Petri nets: focus on causal dependencies 

 Condition/event nets 

 Single token per place 

 Place/transition nets 

 Multiple tokens per place 

 Predicate/transition nets 

 Tokens become individuals 

 Advanced theory for analyzing properties 
(In general expensive. Reachability is EXPSPACE-hard.) 


