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Overview: computational models 

Communication/ 

local computations 

Shared memory Asynchronous message 

passing 

Communicating 

finite state 

machines 

Statecharts, 

hybrid automata, 

synchronous 

composition  

 

Data flow Petri nets, 

Kahn process networks, 

SDF 

Discrete event (DE) 

model 

Simulink, VHDL Distributed DE 
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REVIEW: SDF Scheduling Algorithm 

Lee/Messerschmitt 1987 

1. Establish relative execution rates  

 Generate balance equations 

 Solve for smallest positive integer vector c 

2. Determine periodic schedule  

 Form an arbitrarily ordered list of all nodes in the system 

 Repeat: 

• For each node in the list, schedule it if it is runnable,  

trying each node once 

• If each node has been scheduled cn times, stop. 

• If no node can be scheduled, indicate deadlock. 

 

Source: Lee/Messerschmitt, Synchronous Data Flow (1987) 
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REVIEW: An inconsistent system 

C 

1 

3 

A 

B 

1 

1 

2 

1 

• No way to execute without an unbounded 

accumulation of tokens 

• Only consistent solution is „do nothing“ 

a - c  = 0 

a – 2b = 0 

3b – c = 0 

 

3a – 2c = 0  
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REVIEW: PASS example: 1) firing rates 

B 

D 

1 

2 
3 

2 

C 

A 

3 

4 1 

3 

2 

1 

d(AB)=6 

Smallest solution: a=2; b=3; d=4; c=1 
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REVIEW: example: 2) Simulation 

B 

D 

1 

2 
3 

2 

C 

A 

3 

4 1 

3 

2 

1 

d(AB)=6 

Possible schedules: 

BBBCDDDDAA 

BDBDBCADDA 

BBDDBDDCAA 

(and many more) 

 

BC... not valid 

 

Smallest solution:  

a=2; b=3; d=4; c=1 
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CD-to-DAT rate converter 

1 1 2 3 2 7 8 7 5 1 

A B A B C A B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C D E 

A F F F F F B C A B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C 

D E A F F F F F B A B C A B C A B A B C A B C D E A F F F F F B A B C A B C A 

B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F F F F F E B C A 

F F F F F B A B C A B C D E A F F F F F B A B C A B C A B A B C A B C D E A F 

F F F F B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C A B A B C 

D E A F F F F F B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C A 

B C D E A F F F F F B A B C A B C A B A B C D E A F F F F F E B C A F F F F F B 

A B C A B C A B A B C D E A F F F F F B C A B A B C A B C D E A F F F F F B A 

B C A B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C D E A F F F 

F F B C A B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C D E A F 

F F F F B A B C A B C A B A B C A B C D E A F F F F F E B A F F F F F B C A B C 

A B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F F F F F B C A 

B A B C A B C D E A F F F F F B A B C A B C A B A B C A B C D E A F F F F F B 

A B C A B C A B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F 

F F F F B C A B A B C A B C D E F F F F F E F F F F F 

 
Source: Shuvra Bhattacharyya 
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CD-to-DAT rate converter 

1 1 2 3 2 7 8 7 5 1 

Source: Shuvra Bhattacharyya 

Scheduling strategy Code Data 

Minimum buffer schedule, no looping 13735  32 

Minimum buffer schedule, with looping 9400  32 

Worst minimum code size schedule  170 1021 

Best minimum code size schedule 170 264 
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Periodic admissible parallel schedules (PAPS) 
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Periodic admissible parallel schedules (PAPS) 
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Periodic admissible parallel schedules (PAPS) 
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Variations of SDF: Structured Dataflow 

 

LabVIEW (National Instruments) uses homogeneous SDF 

augmented with syntactically constrained forms of feedback 

and rate changes: while loops, conditionals,… 

 

Such structured dataflow models are decidable. 
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Variations of SDF:  

Data-dependent communication  

H.263 video codec 

 Wiggers/Bekooj/Smit:  Buffer Capacity Computation for Throughput Constrained 

Streaming Applications with Data-Dependent Inter-Task Communication, 2008 

Read VLD DQ IDCT MC DAC 
1 1 

1[n] 

2048           m 1 1 n 1 1 n 

1[n] 

Variable-Length 

Decoder  

Motion 

Compensator  
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Summary dataflow 

 Communcation exclusively through FIFOs 

 Kahn process networks 

 Blocking read, nonblocking write 

 Deterministic 

 Schedulability undecidable 

 SDF 

 Useful for DSP  

 Fixed token consumption/production 

 Compile-time scheduling: balance equations 

 Decidable extensions of SDF 

 Structured Dataflow 
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Discrete-event systems 

Dynamical systems whose evolution is governed by the 

occurrence of events at discrete time points, at possibly 

irregularly-spaced intervals    

 

Many cyber-physical systems are modeled as discrete-

event systems: 

  Communication networks 

  Microprocessors 

  Manufacturing facilities 

  Communicating robots 
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Example: Communicating Robots/Sensor Nodes 

Network can  

fwd, corrupt, drop  

packets 

send 

recv 
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Simulating the System with an Event Queue 

 Simulation Timer, T = 0 

 Repeat while there are events in the event queue: 
1. Dequeue event at head of queue (“imminent event”) 

2. Advance simulation timer to time of imminent event  

3. Execute imminent event: update system state 

4. Generate future events and enqueue them  

. . . 

Event queue 

t1 

e1 

t2 

e2 

t3 

e3 

timestamp 

event record t1 < t2 < t3 <  … 
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VHDL 

 HDL = hardware description language 

 VHDL = VHSIC hardware description language 

 VHSIC = very high speed integrated circuit 

 

 Initiated by US Department of Defense 

 1987 IEEE Standard 1076 

 Reviews of standard: 1993, 2000, 2002, 2008 

 

 Standard in (European) industry 

 

 Extension: VHDL-AMS, includes analog modeling 
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Goals 

 Two goals: simulation and synthesis  

 Synthesis: compilation into an implementation technology  

such as ASIC or FPGA 

 Not all constructs in VHDL are suitable to synthesis 

 Modelling at various levels of abstraction 

 Technology-independent 

   Re-Usability of specifications 

 Standard 

   Portability (different synthesis and analysis tools possible) 

 Validation of designs based on the same description 

language for different levels of abstraction 

 

Here: Only some aspects of VHDL, not complete language. 
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Entities and architectures 

 Each design unit is called an entity. 

 Entities are comprised of entity declarations and one or 

several architectures.  

Each architecture includes a model of the entity. By default, 

the most recently analyzed architecture is used. The use of 

another architecture can be requested in a configuration. 



11 

 -  21 - BF - ES 

Example: full adder 

- Entity declaration - 

 Entity declaration: 

 

 entity full_adder is 

  port(a, b, carry_in: in Bit;  -- input ports 

       sum,carry_out: out Bit); -- output ports 

 end full_adder; 
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Example: full adder  

- Architecture with behavioural body 

architecture behavior of full_adder is 

 begin 

  sum         <= (a xor b) xor carry_in after 10 Ns; 

  carry_out <= (a and b) or (a and carry_in) or 

                       (b and carry_in)         after 10 Ns; 

 end behavior; 
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Example: full adder 

- structural body 

architecture structure of full_adder is 
component half_adder 

     port (in1,in2:in Bit; carry:out Bit; sum:out Bit); 
   end component; 

component or_gate 
     port (in1, in2:in Bit; o:out Bit); 
  end component; 
 signal x, y, z: Bit;      -- local signals 
  begin                        -- port map section 
    i1: half_adder port map (a, b, x, y); 
    i2: half_adder port map (y, carry_in, z, sum); 
    i3: or_gate      port map (x, z, carry_out); 
  end structure; 
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Example: full adder 

- Architectures 

 Architectures describe implementations of entities. 

 

 For component half_adder we need 

 An entity, e.g. 

 entity half_adder 
         port (in1,in2:in Bit; carry:out Bit; sum:out Bit); 
     end half_adder; 

 
 (At least) one architecture 

• This architecture may contain components, too. 

 
 Architectures and their components can define a 

hierarchy of arbitrary depth. 
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Structural and behavioural descriptions 

 Structural descriptions use component instances. 

 Behavioural descriptions describe behaviour without 
defining the structure of the system. 

 

 Mixtures are possible. 

 Mixtures are needed,  
at least for the leaves in structural hierarchy. 

 

 Structural hierarchy is essential for a compact and clear 
modelling of large (hardware) systems. 

 To define semantics of VHDL, we can assume that the 
structural hierarchy is „flattened“, i.e., we can assume 
w.l.o.g. that we have just an behavioural description. 
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Processes 

 Behavioural descriptions consist of a set of concurrently 

executed processes. 

 

 Syntax: 
  [label:]              
  process[(sensitivity list)] 
     declarations  
  begin 
     statements    
  end process [label]  
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Processes – Examples (1) 

signal clk : std_logic; 

 

… 

 

clk_gen : process 

begin 

 clk <= 0; 

 wait for 5 ns; 

 clk <= 1; 

 wait for 5 ns; 

end process clk_gen; 
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Processes – Examples (2) 

architecture RTL of DFF is 

begin 

 p : process 

 begin 

  if (clk‘event) and (clk=`1`) then 

     Q <= D; 

  end if; 

  wait on clk; 

 end process p; 

end RTL; 
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Processes – Examples (3) 

architecture RTL of NANDXOR is 

begin 

 process  

 begin 

  if (C='0') then 

     D <= A nand B after 5 ns; 

  else 

     D <= A and B after 10 ns; 

  end if; 

  wait on A, B, C;  

 end process; 

end RTL; 
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Processes - Execution 

 Processes are not allowed to have subprocesses  

(no hierarchy of processes). 

 

 Processes are executed sequentially until a wait 

statement is encountered. 

 Processes are reactivated according to conditions of 

wait-statements. 

 Different types of wait-statements 
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Wait-statements 

Four possible types of  wait-statements: 

 wait on signal list; 
 wait until at least one of the signals in signal list changes; 

 Example: wait on a; 

 wait until condition; 
 wait until condition is met; 

 Example: wait until c='1'; 

 wait for duration; 
 wait for specified amount of time; 

 Example: wait for 10 ns; 

 wait; 
 suspend indefinitely 

 -  32 - BF - ES 

Processes - Sensitivity lists 

 Sensitivity lists are a shorthand for a single wait on-
statement at the end of the process body: 

 process (x, y) 
 begin 
  prod <= x  and y ;  
 end process; 

is equivalent to 

 process 
 begin 
  prod <= x  and y ; 
  wait on x,y; 
 end process; 
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Signal assignments 

 Signal assignments outside processes can be viewed as 

implicit processes: 

 
  a <= b and c after 10 ns 

 
 is equivalent to 
 
  process(b, c) 
   begin 
      a <= b and c after 10 ns 
    end 
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Variables and signals 

 Variables 
 Variables are declared locally in processes (and procedures / functions) 

and are only visible in this scope. 

 Signals 
 Can be viewed as a wire 

 Signals cannot be declared in processes (procedures / functions), but in 
architectures (outside processes). 

 Syntax: 
 variable_assignment ::=      

  target := expression 

• Example: 

Sum := 0 
 

  signal_assignment ::=  
   target <= [ delay_mechanism ] waveform_element  
                     { , waveform_element } 
  waveform_element ::=  
   value_expression [ after  time_expression ] 

• Example: 
Inpsig <= ´0´, ´1´after 5 ns, ´0´ after 10 ns, ´1´ after 20 ns; 
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Variable versus signal assigment 

 Variable assignments are performed sequentially and directly after 

their occurence, 

 Signal assignments are performed concurrently, i.e. they are 

(sequentially) collected until the process is stopped and are 

performed in parallel after all processes are stopped. 

signal a : std_logic := `0`; 

signal b : std_logic := `1`; 

… 

swap : process 

variable c : std_logic := `1`; 

variable d : std_logic := `0`; 

begin 

 a <= b; b <= a; 

 c := d; d := c; 

 wait on a, b; 

end process swap; 
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Semantics of VHDL: 

Basic concepts 

 „Discrete event driven simulation“ 

 

 Step-based semantics as in StateCharts: 

 Computation as a series of basic steps 

 Time does not necessarily proceed between two steps 

 Like superstep semantics of StateCharts 

 

 Concurrent assignments (of signals) like concurrent 

assignments in StateCharts. 

 

 Steps consist of two stages. 
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Overview of simulation 

Initialization 

End of simulation 

Assign new values 

to signals 

Update 

current time 

Evaluate processes 

Resume processes 
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Transaction list and process activation list 

 Transaction list 

 For signal assignments 

 Entries of form (s, v, t) meaning 

„signal s is set to value v at time t“ 

 Example: (clock, ´1´, 10 ns) 

 

 Process activation list 

 For reactivating processes 

 Entries of form (pi, t) meaning 

„process pi resumes at time t“. 
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Initialization 

 At the beginning of initialization, the current time, tcurr,  
is assumed to be 0 ns.  

 An initial value is assigned to each signal.  
 Taken from declaration, if specified there, e.g., 

• signal s : std_ulogic := `0`; 

 Otherwise: First value in enumeration for enumeration based data types, e.g. 

• signal s : std_ulogic  
with 
type std_ulogic is (`U`, `X`, `0`, `1`, `Z`, `W`, `L`, `H`, `-`); 
initial value is `Ù` 

 This value is assumed  to have been the value of the signal for an infinite length 
of time prior to the start of the simulation. 

 Initialization phase executes each process exactly once (until it suspends).  

 During execution of processes: Signal assignments are collected in 
transaction list (not executed immediately!) – more details later. 

 If process stops at „wait for“-statement, then update process activation list – 
more details later. 

 After initialization the time of the next simulation cycle (which in this case is 
the first simulation cycle), tnext is calculated: 
 Time tnext of the next simulation cycle = earliest of 

1. time’high (end of simulation time). 
2. Earliest time in transaction list (if not empty) 
3. Earliest time in process activation list (if not empty). 
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Example 

architecture behaviour of example is 

 signal a : std_logic := `0`; 

 signal b : std_logic := `1`; 

 signal c : std_logic := `1`; 

 signal d : std_logic := `0`; 

begin 

 swap1: process(a, b) 

 begin 

  a <= b after 10 ns; 

  b <= a after 10 ns; 

 end process; 

 

 swap2: process 

 begin 

  c <= d; 

  d <= c; 

  wait for 15 ns; 

 end process; 

 

end architecture; 
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Signal assignment phase – first part of step 

 Each simulation cycle starts with setting the current time 
to the next time at which changes must be considered: 

 tcurr = tnext 

 This time tnext was either computed during the 
initialization or during the last execution of the simulation 
cycle. Simulation terminates when the current time 
would exceed its maximum, time’high.  

 For all (s, v, tcurr) in transaction list: 
 Remove (s, v, tcurr) from transaction list. 

 s is set to v. 

 For all processes pi which wait on signal s: 
 Insert (pi, tcurr) in process activation list. 

 Similarly, if condition of „wait until“-expression changes 
value. 
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Example 

architecture behaviour of example is 

 signal a : std_logic := `0`; 

 signal b : std_logic := `1`; 

 signal c : std_logic := `1`; 

 signal d : std_logic := `0`; 

begin 

 swap1: process(a, b) 

 begin 

  a <= b after 10 ns; 

  b <= a after 10 ns; 

 end process; 

 

 swap2: process 

 begin 

  c <= d; 

  d <= c; 

  wait for 15 ns; 

 end process; 

 

end architecture; 
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Process execution phase – second part of step (1) 

 Resume all processes pi with entries (pi, tcurr)  
in process activation list. 

 Execute all activated processes „in parallel“ (in fact: in arbitrary 
order). 

 Signal assignments  
 are collected in transaction list (not executed immediately!). 

 Examples: 

• s <= a and b; 

– Let v be the conjunction of current value of a and current value 
of b. 

– Insert (s, v, tcurr) in transaction list. 

• s <= ´1´ after 10 ns; 

– Insert (s, ´1´, tcurr + 10 ns) into transaction list. 

 Processes are executed until wait statement is encountered. 

 If process pi stops at „wait for“-statement, then update process 
activation list: 
 Example:  

• pi stops at „wait for 20 ns;“ 

• Insert (pi, tcurr + 20 ns) into process activation list 
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Process execution phase – second part of step (2) 

If some process reaches last statement and  
 does not have a sensitivity list and  

 last statement is not a wait statement,  

then it continues with first statement and runs until wait 
statement is reached. 

 

 When all processes have stopped, the time of the next 
simulation cycle tnext is calculated: 
 Time tnext of the next simulation cycle = earliest of 

1.time’high (end of simulation time). 
2.Earliest time in transaction list (if not empty) 
3.Earliest time in process activation list (if not empty). 

 

 Stop if tnext = time’high and transaction list and process 
activation list are empty. 
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Example 

architecture behaviour of example is 

 signal a : std_logic := `0`; 

 signal b : std_logic := `1`; 

 signal c : std_logic := `1`; 

 signal d : std_logic := `0`; 

begin 

 swap1: process(a, b) 

 begin 

  a <= b after 10 ns; 

  b <= a after 10 ns; 

 end process; 

 

 swap2: process 

 begin 

  c <= d; 

  d <= c; 

  wait for 15 ns; 

 end process; 

 

end architecture; 
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Delta delay 

 As for StateCharts (super step semantics!) time does not 

necessarily proceed between two steps. 

 Several (potentially an infinite number of) steps can take place at 

the same time tcurr. 

 

 Notion: Signal assignments which take place at the same time in 

two consecutive steps are separated by one „delta delay“. 
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Current time Delta delay Event 

0 ns 1 -- evaluation of inverter 

-- (A, 1, 0 ns) 

2 -- evaluation of AND and   

NAND 

-- (B, 0, 0ns), (C, 1, 0ns) 

3 -- evaluation of AND 

-- (C, 0, 0ns) 

 Simulation time does not 

proceed due to delta delays! 

 

  X 

1 

A 

B 

C 
= 1 = 0 

= 1 

= 0 
1→0 

… erklärt an einem kleinen Beispiel 

Delta delay - Example 
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Current time Delta delay Event 

0 ns 1 -- evaluation of inverter 

-- (A, 1, 0 ns) 

2 -- evaluation of AND and   

NAND 

-- (B, 0, 0ns), (C, 1, 0ns) 

3 -- evaluation of AND 

-- (C, 0, 0ns) 

 Simulation time does not 

proceed due to delta delays! 

 

  X 

1 

A 

B 

C 
= 1 = 0 

= 1 

= 0 
1→0 

… erklärt an einem kleinen Beispiel 

Delta delay - Example 



25 

 -  49 - BF - ES 

Delta delay - 

Simulation of an RS-Flipflop 

entitiy RS_Flipflop is 
 port (R, S : in std_logic; 
        Q, nQ : inout std_logic); 
end RS_FlipFlop; 
 
architecture one of RS_Flipflop is 
 begin 
 process (R,S,Q,nQ) 
 begin 
  Q := R nor nQ; 
       nQ := S nor Q; 
     end process; 
end one; 

  0ns 0ns+ 0ns+2 

R  1    1     1 

S  0    0     0 

Q  1    0     0 

nQ 0    0     1 

0001 

1100 

0000 

0111 

1st   

2nd   

 cycles reflect the fact that no 

real gate comes with zero delay. 


