
1

 - 1 - BF - ES

Embedded Systems 9

 - 2 - BF - ES

Overview: computational models

Communication/

local computations

Shared memory Asynchronous message

passing

Communicating

finite state

machines

Statecharts,

hybrid automata,

synchronous

composition

Data flow Petri nets,

Kahn process networks,

SDF

Discrete event (DE)

model

Simulink, VHDL Distributed DE

2

 - 3 - BF - ES

REVIEW: SDF Scheduling Algorithm

Lee/Messerschmitt 1987

1. Establish relative execution rates

 Generate balance equations

 Solve for smallest positive integer vector c

2. Determine periodic schedule

 Form an arbitrarily ordered list of all nodes in the system

 Repeat:

• For each node in the list, schedule it if it is runnable,

trying each node once

• If each node has been scheduled cn times, stop.

• If no node can be scheduled, indicate deadlock.

Source: Lee/Messerschmitt, Synchronous Data Flow (1987)

 - 4 - BF - ES

REVIEW: An inconsistent system

C

1

3

A

B

1

1

2

1

• No way to execute without an unbounded

accumulation of tokens

• Only consistent solution is „do nothing“

a - c = 0

a – 2b = 0

3b – c = 0

3a – 2c = 0

3

 - 5 - BF - ES

REVIEW: PASS example: 1) firing rates

B

D

1

2
3

2

C

A

3

4 1

3

2

1

d(AB)=6

Smallest solution: a=2; b=3; d=4; c=1

 - 6 - BF - ES

REVIEW: example: 2) Simulation

B

D

1

2
3

2

C

A

3

4 1

3

2

1

d(AB)=6

Possible schedules:

BBBCDDDDAA

BDBDBCADDA

BBDDBDDCAA

(and many more)

BC... not valid

Smallest solution:

a=2; b=3; d=4; c=1

4

 - 7 - BF - ES

CD-to-DAT rate converter

1 1 2 3 2 7 8 7 5 1

A B A B C A B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C D E

A F F F F F B C A B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C

D E A F F F F F B A B C A B C A B A B C A B C D E A F F F F F B A B C A B C A

B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F F F F F E B C A

F F F F F B A B C A B C D E A F F F F F B A B C A B C A B A B C A B C D E A F

F F F F B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C A B A B C

D E A F F F F F B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C A

B C D E A F F F F F B A B C A B C A B A B C D E A F F F F F E B C A F F F F F B

A B C A B C A B A B C D E A F F F F F B C A B A B C A B C D E A F F F F F B A

B C A B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C D E A F F F

F F B C A B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C D E A F

F F F F B A B C A B C A B A B C A B C D E A F F F F F E B A F F F F F B C A B C

A B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F F F F F B C A

B A B C A B C D E A F F F F F B A B C A B C A B A B C A B C D E A F F F F F B

A B C A B C A B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F

F F F F B C A B A B C A B C D E F F F F F E F F F F F

Source: Shuvra Bhattacharyya

 - 8 - BF - ES

CD-to-DAT rate converter

1 1 2 3 2 7 8 7 5 1

Source: Shuvra Bhattacharyya

Scheduling strategy Code Data

Minimum buffer schedule, no looping 13735 32

Minimum buffer schedule, with looping 9400 32

Worst minimum code size schedule 170 1021

Best minimum code size schedule 170 264

5

 - 9 - BF - ES

Periodic admissible parallel schedules (PAPS)

 - 10 - BF - ES

Periodic admissible parallel schedules (PAPS)

6

 - 11 - BF - ES

Periodic admissible parallel schedules (PAPS)

 - 12 - BF - ES

Variations of SDF: Structured Dataflow

LabVIEW (National Instruments) uses homogeneous SDF

augmented with syntactically constrained forms of feedback

and rate changes: while loops, conditionals,…

Such structured dataflow models are decidable.

7

 - 13 - BF - ES

Variations of SDF:

Data-dependent communication

H.263 video codec

 Wiggers/Bekooj/Smit: Buffer Capacity Computation for Throughput Constrained

Streaming Applications with Data-Dependent Inter-Task Communication, 2008

Read VLD DQ IDCT MC DAC
1 1

1[n]

2048 m 1 1 n 1 1 n

1[n]

Variable-Length

Decoder

Motion

Compensator

 - 14 - BF - ES

Summary dataflow

 Communcation exclusively through FIFOs

 Kahn process networks

 Blocking read, nonblocking write

 Deterministic

 Schedulability undecidable

 SDF

 Useful for DSP

 Fixed token consumption/production

 Compile-time scheduling: balance equations

 Decidable extensions of SDF

 Structured Dataflow

8

 - 15 - BF - ES

Discrete-event systems

Dynamical systems whose evolution is governed by the

occurrence of events at discrete time points, at possibly

irregularly-spaced intervals

Many cyber-physical systems are modeled as discrete-

event systems:

 Communication networks

 Microprocessors

 Manufacturing facilities

 Communicating robots

 - 16 - BF - ES

Example: Communicating Robots/Sensor Nodes

Network can

fwd, corrupt, drop

packets

send

recv

9

 - 17 - BF - ES

Simulating the System with an Event Queue

 Simulation Timer, T = 0

 Repeat while there are events in the event queue:
1. Dequeue event at head of queue (“imminent event”)

2. Advance simulation timer to time of imminent event

3. Execute imminent event: update system state

4. Generate future events and enqueue them

. . .

Event queue

t1

e1

t2

e2

t3

e3

timestamp

event record t1 < t2 < t3 < …

 - 18 - BF - ES

VHDL

 HDL = hardware description language

 VHDL = VHSIC hardware description language

 VHSIC = very high speed integrated circuit

 Initiated by US Department of Defense

 1987 IEEE Standard 1076

 Reviews of standard: 1993, 2000, 2002, 2008

 Standard in (European) industry

 Extension: VHDL-AMS, includes analog modeling

10

 - 19 - BF - ES

Goals

 Two goals: simulation and synthesis

 Synthesis: compilation into an implementation technology

such as ASIC or FPGA

 Not all constructs in VHDL are suitable to synthesis

 Modelling at various levels of abstraction

 Technology-independent

 Re-Usability of specifications

 Standard

 Portability (different synthesis and analysis tools possible)

 Validation of designs based on the same description

language for different levels of abstraction

Here: Only some aspects of VHDL, not complete language.

 - 20 - BF - ES

Entities and architectures

 Each design unit is called an entity.

 Entities are comprised of entity declarations and one or

several architectures.

Each architecture includes a model of the entity. By default,

the most recently analyzed architecture is used. The use of

another architecture can be requested in a configuration.

11

 - 21 - BF - ES

Example: full adder

- Entity declaration -

 Entity declaration:

 entity full_adder is

 port(a, b, carry_in: in Bit; -- input ports

 sum,carry_out: out Bit); -- output ports

 end full_adder;

 - 22 - BF - ES

Example: full adder

- Architecture with behavioural body

architecture behavior of full_adder is

 begin

 sum <= (a xor b) xor carry_in after 10 Ns;

 carry_out <= (a and b) or (a and carry_in) or

 (b and carry_in) after 10 Ns;

 end behavior;

12

 - 23 - BF - ES

Example: full adder

- structural body

architecture structure of full_adder is
component half_adder

 port (in1,in2:in Bit; carry:out Bit; sum:out Bit);
 end component;

component or_gate
 port (in1, in2:in Bit; o:out Bit);
 end component;
 signal x, y, z: Bit; -- local signals
 begin -- port map section
 i1: half_adder port map (a, b, x, y);
 i2: half_adder port map (y, carry_in, z, sum);
 i3: or_gate port map (x, z, carry_out);
 end structure;

 - 24 - BF - ES

Example: full adder

- Architectures

 Architectures describe implementations of entities.

 For component half_adder we need

 An entity, e.g.

 entity half_adder
 port (in1,in2:in Bit; carry:out Bit; sum:out Bit);
 end half_adder;

 (At least) one architecture

• This architecture may contain components, too.

 Architectures and their components can define a

hierarchy of arbitrary depth.

13

 - 25 - BF - ES

Structural and behavioural descriptions

 Structural descriptions use component instances.

 Behavioural descriptions describe behaviour without
defining the structure of the system.

 Mixtures are possible.

 Mixtures are needed,
at least for the leaves in structural hierarchy.

 Structural hierarchy is essential for a compact and clear
modelling of large (hardware) systems.

 To define semantics of VHDL, we can assume that the
structural hierarchy is „flattened“, i.e., we can assume
w.l.o.g. that we have just an behavioural description.

 - 26 - BF - ES

Processes

 Behavioural descriptions consist of a set of concurrently

executed processes.

 Syntax:
 [label:]
 process[(sensitivity list)]
 declarations
 begin
 statements
 end process [label]

14

 - 27 - BF - ES

Processes – Examples (1)

signal clk : std_logic;

…

clk_gen : process

begin

 clk <= 0;

 wait for 5 ns;

 clk <= 1;

 wait for 5 ns;

end process clk_gen;

 - 28 - BF - ES

Processes – Examples (2)

architecture RTL of DFF is

begin

 p : process

 begin

 if (clk‘event) and (clk=`1`) then

 Q <= D;

 end if;

 wait on clk;

 end process p;

end RTL;

15

 - 29 - BF - ES

Processes – Examples (3)

architecture RTL of NANDXOR is

begin

 process

 begin

 if (C='0') then

 D <= A nand B after 5 ns;

 else

 D <= A and B after 10 ns;

 end if;

 wait on A, B, C;

 end process;

end RTL;

 - 30 - BF - ES

Processes - Execution

 Processes are not allowed to have subprocesses

(no hierarchy of processes).

 Processes are executed sequentially until a wait

statement is encountered.

 Processes are reactivated according to conditions of

wait-statements.

 Different types of wait-statements

16

 - 31 - BF - ES

Wait-statements

Four possible types of wait-statements:

 wait on signal list;
 wait until at least one of the signals in signal list changes;

 Example: wait on a;

 wait until condition;
 wait until condition is met;

 Example: wait until c='1';

 wait for duration;
 wait for specified amount of time;

 Example: wait for 10 ns;

 wait;
 suspend indefinitely

 - 32 - BF - ES

Processes - Sensitivity lists

 Sensitivity lists are a shorthand for a single wait on-
statement at the end of the process body:

 process (x, y)
 begin
 prod <= x and y ;
 end process;

is equivalent to

 process
 begin
 prod <= x and y ;
 wait on x,y;
 end process;

17

 - 33 - BF - ES

Signal assignments

 Signal assignments outside processes can be viewed as

implicit processes:

 a <= b and c after 10 ns

 is equivalent to

 process(b, c)
 begin
 a <= b and c after 10 ns
 end

 - 34 - BF - ES

Variables and signals

 Variables
 Variables are declared locally in processes (and procedures / functions)

and are only visible in this scope.

 Signals
 Can be viewed as a wire

 Signals cannot be declared in processes (procedures / functions), but in
architectures (outside processes).

 Syntax:
 variable_assignment ::=

 target := expression

• Example:

Sum := 0

 signal_assignment ::=
 target <= [delay_mechanism] waveform_element
 { , waveform_element }
 waveform_element ::=
 value_expression [after time_expression]

• Example:
Inpsig <= ´0´, ´1´after 5 ns, ´0´ after 10 ns, ´1´ after 20 ns;

18

 - 35 - BF - ES

Variable versus signal assigment

 Variable assignments are performed sequentially and directly after

their occurence,

 Signal assignments are performed concurrently, i.e. they are

(sequentially) collected until the process is stopped and are

performed in parallel after all processes are stopped.

signal a : std_logic := `0`;

signal b : std_logic := `1`;

…

swap : process

variable c : std_logic := `1`;

variable d : std_logic := `0`;

begin

 a <= b; b <= a;

 c := d; d := c;

 wait on a, b;

end process swap;

 - 36 - BF - ES

Semantics of VHDL:

Basic concepts

 „Discrete event driven simulation“

 Step-based semantics as in StateCharts:

 Computation as a series of basic steps

 Time does not necessarily proceed between two steps

 Like superstep semantics of StateCharts

 Concurrent assignments (of signals) like concurrent

assignments in StateCharts.

 Steps consist of two stages.

19

 - 37 - BF - ES

Overview of simulation

Initialization

End of simulation

Assign new values

to signals

Update

current time

Evaluate processes

Resume processes

 - 38 - BF - ES

Transaction list and process activation list

 Transaction list

 For signal assignments

 Entries of form (s, v, t) meaning

„signal s is set to value v at time t“

 Example: (clock, ´1´, 10 ns)

 Process activation list

 For reactivating processes

 Entries of form (pi, t) meaning

„process pi resumes at time t“.

20

 - 39 - BF - ES

Initialization

 At the beginning of initialization, the current time, tcurr,
is assumed to be 0 ns.

 An initial value is assigned to each signal.
 Taken from declaration, if specified there, e.g.,

• signal s : std_ulogic := `0`;

 Otherwise: First value in enumeration for enumeration based data types, e.g.

• signal s : std_ulogic
with
type std_ulogic is (`U`, `X`, `0`, `1`, `Z`, `W`, `L`, `H`, `-`);
initial value is `Ù`

 This value is assumed to have been the value of the signal for an infinite length
of time prior to the start of the simulation.

 Initialization phase executes each process exactly once (until it suspends).

 During execution of processes: Signal assignments are collected in
transaction list (not executed immediately!) – more details later.

 If process stops at „wait for“-statement, then update process activation list –
more details later.

 After initialization the time of the next simulation cycle (which in this case is
the first simulation cycle), tnext is calculated:
 Time tnext of the next simulation cycle = earliest of

1. time’high (end of simulation time).
2. Earliest time in transaction list (if not empty)
3. Earliest time in process activation list (if not empty).

 - 40 - BF - ES

Example

architecture behaviour of example is

 signal a : std_logic := `0`;

 signal b : std_logic := `1`;

 signal c : std_logic := `1`;

 signal d : std_logic := `0`;

begin

 swap1: process(a, b)

 begin

 a <= b after 10 ns;

 b <= a after 10 ns;

 end process;

 swap2: process

 begin

 c <= d;

 d <= c;

 wait for 15 ns;

 end process;

end architecture;

21

 - 41 - BF - ES

Signal assignment phase – first part of step

 Each simulation cycle starts with setting the current time
to the next time at which changes must be considered:

 tcurr = tnext

 This time tnext was either computed during the
initialization or during the last execution of the simulation
cycle. Simulation terminates when the current time
would exceed its maximum, time’high.

 For all (s, v, tcurr) in transaction list:
 Remove (s, v, tcurr) from transaction list.

 s is set to v.

 For all processes pi which wait on signal s:
 Insert (pi, tcurr) in process activation list.

 Similarly, if condition of „wait until“-expression changes
value.

 - 42 - BF - ES

Example

architecture behaviour of example is

 signal a : std_logic := `0`;

 signal b : std_logic := `1`;

 signal c : std_logic := `1`;

 signal d : std_logic := `0`;

begin

 swap1: process(a, b)

 begin

 a <= b after 10 ns;

 b <= a after 10 ns;

 end process;

 swap2: process

 begin

 c <= d;

 d <= c;

 wait for 15 ns;

 end process;

end architecture;

22

 - 43 - BF - ES

Process execution phase – second part of step (1)

 Resume all processes pi with entries (pi, tcurr)
in process activation list.

 Execute all activated processes „in parallel“ (in fact: in arbitrary
order).

 Signal assignments
 are collected in transaction list (not executed immediately!).

 Examples:

• s <= a and b;

– Let v be the conjunction of current value of a and current value
of b.

– Insert (s, v, tcurr) in transaction list.

• s <= ´1´ after 10 ns;

– Insert (s, ´1´, tcurr + 10 ns) into transaction list.

 Processes are executed until wait statement is encountered.

 If process pi stops at „wait for“-statement, then update process
activation list:
 Example:

• pi stops at „wait for 20 ns;“

• Insert (pi, tcurr + 20 ns) into process activation list

 - 44 - BF - ES

Process execution phase – second part of step (2)

If some process reaches last statement and
 does not have a sensitivity list and

 last statement is not a wait statement,

then it continues with first statement and runs until wait
statement is reached.

 When all processes have stopped, the time of the next
simulation cycle tnext is calculated:
 Time tnext of the next simulation cycle = earliest of

1.time’high (end of simulation time).
2.Earliest time in transaction list (if not empty)
3.Earliest time in process activation list (if not empty).

 Stop if tnext = time’high and transaction list and process
activation list are empty.

23

 - 45 - BF - ES

Example

architecture behaviour of example is

 signal a : std_logic := `0`;

 signal b : std_logic := `1`;

 signal c : std_logic := `1`;

 signal d : std_logic := `0`;

begin

 swap1: process(a, b)

 begin

 a <= b after 10 ns;

 b <= a after 10 ns;

 end process;

 swap2: process

 begin

 c <= d;

 d <= c;

 wait for 15 ns;

 end process;

end architecture;

 - 46 - BF - ES

Delta delay

 As for StateCharts (super step semantics!) time does not

necessarily proceed between two steps.

 Several (potentially an infinite number of) steps can take place at

the same time tcurr.

 Notion: Signal assignments which take place at the same time in

two consecutive steps are separated by one „delta delay“.

24

 - 47 - BF - ES

Current time Delta delay Event

0 ns 1 -- evaluation of inverter

-- (A, 1, 0 ns)

2 -- evaluation of AND and

NAND

-- (B, 0, 0ns), (C, 1, 0ns)

3 -- evaluation of AND

-- (C, 0, 0ns)

 Simulation time does not

proceed due to delta delays!

 X

1

A

B

C
= 1 = 0

= 1

= 0
1→0

… erklärt an einem kleinen Beispiel

Delta delay - Example

 - 48 - BF - ES

Current time Delta delay Event

0 ns 1 -- evaluation of inverter

-- (A, 1, 0 ns)

2 -- evaluation of AND and

NAND

-- (B, 0, 0ns), (C, 1, 0ns)

3 -- evaluation of AND

-- (C, 0, 0ns)

 Simulation time does not

proceed due to delta delays!

 X

1

A

B

C
= 1 = 0

= 1

= 0
1→0

… erklärt an einem kleinen Beispiel

Delta delay - Example

25

 - 49 - BF - ES

Delta delay -

Simulation of an RS-Flipflop

entitiy RS_Flipflop is
 port (R, S : in std_logic;
 Q, nQ : inout std_logic);
end RS_FlipFlop;

architecture one of RS_Flipflop is
 begin
 process (R,S,Q,nQ)
 begin
 Q := R nor nQ;
 nQ := S nor Q;
 end process;
end one;

 0ns 0ns+ 0ns+2

R 1 1 1

S 0 0 0

Q 1 0 0

nQ 0 0 1

0001

1100

0000

0111

1st

2nd

 cycles reflect the fact that no

real gate comes with zero delay.

