Embedded Systems

BF -ES

Overview: computational models

Communication/

Shared memory

Asynchronous message

local computations passing
Communicating Statecharts,
finite state hybrid automata,
machines synchronous

composition
Data flow Petri nets,

Kahn process networks,
SDF

Discrete event (DE) | Simulink, VHDL Distributed DE

model

BF - ES

REVIEW: SDF Scheduling Algorithm
Lee/Messerschmitt 1987

1. Establish relative execution rates
= Generate balance equations
= Solve for smallest positive integer vector ¢
2. Determine periodic schedule
= Form an arbitrarily ordered list of all nodes in the system
= Repeat:
* For each node in the list, schedule it if it is runnable,
trying each node once
+ If each node has been scheduled c,,times, stop.
» If no node can be scheduled, indicate deadlock.

Source: Lee/Messerschmitt, Synchronous Data Flow (1987)

BF -ES

REVIEW: An inconsistent system

A 1 1 C a-c =0
1 a—-2b=0
1 3b—c=0
2 3
B 3a—2c=0

* No way to execute without an unbounded
accumulation of tokens
» Only consistent solution is ,,do nothing*

BF -ES

REVIEW: PASS example: 1) firing rates

3a—-2b=0
4b-3d=0

Mg 14 b—3c=0
2c—a =0
d-2a=0

1 Solution:
1 2 a=2c

BF -ES

b=3c
d=4c

d(AB)=6
Smallest solution: a=2; b=3; d=4; c=1

- 5-

REVIEW: example: 2) Simulation

Smallest solution:

1 5 4 a=2; b=3;d=4; c=1
3 2 3
C D Possible schedules:
2 1 BBBCDDDDAA
1 3 > BDBDBCADDA
A BBDDBDDCAA

BF -ES

(and many more)

d(AB)=6 BC... not valid

CD-to-DAT rate converter

11 23 2 7 8 7 5 1

ABABCABCABABCABCDEAFFFFFBABCABCABABCDE
AFFFFFBCABABCABCABABCDEAFFFFFBCABABCABC
DEAFFFFFBABCABCABABCABCDEAFFFFFBABCABCA
BABCDEAFFFFFBCABABCABCABABCDEAFFFFFEBCA
FFFFFBABCABCDEAFFFFFBABCABCABABCABCDEAF
FFFFBABCABCABABCDEAFFFFFBCABABCABCABABC
DEAFFFFFBCABABCABCDEAFFFFFBABCABCABABCA
BCDEAFFFFFBABCABCABABCDEAFFFFFEBCAFFFFFB
ABCABCABABCDEAFFFFFBCABABCABCDEAFFFFFBA
BCABCABABCABCDEAFFFFFBABCABCABABCDEAFFF
FFBCABABCABCABABCDEAFFFFFBCABABCABCDEAF
FFFFBABCABCABABCABCDEAFFFFFEBAFFFFFBCABC
ABABCDEAFFFFFBCABABCABCABABCDEAFFFFFBCA
BABCABCDEAFFFFFBABCABCABABCABCDEAFFFFFB
ABCABCABABCDEAFFFFFBCABABCABCABABCDEAF
FFFFBCABABCABCDEFFFFFEFFFFF

BF -ES Source: Shuvra Bhattacharyya

CD-to-DAT rate converter

11 2 3 2 7 8 7 5 1

Scheduling strategy Code Data
Minimum buffer schedule, no looping 13735 |32
Minimum buffer schedule, with looping 9400 32
Worst minimum code size schedule 170 1021
Best minimum code size schedule 170 264

BF -ES Source: Shuvra Bhattacharyya

Periodic admissible parallel schedules (PAPS)

2D
1 2
/'i\; X
=/
1

Assumption: Block 1 : 1 time unit
Block 2 : 2 time units
Block 3 : 3 time units

@)) —= Time

L
@ [bhd 2] 3]

)— 0123 4567

Trivial Case - All computations are scheduled on same processor

BF - ES -9-

Periodic admissible parallel schedules (PAPS)

2D

The performance can be improved, if a schedule is constructed that exploits
the potential parallelism in the SDF-graph. Here the schedule covers one
single period.

@
~ N —= Time
\2/
(1 4 Processor 1 | 1 I 1 l 2
) o
- Processor 2 3]_ﬁj—i;»
(‘3) 01 2 3 4

Single Period Schedule

BF - ES - 10 -

Periodic admissible parallel schedules (PAPS)

2D

The performance can be further improved, if the schedule is constructed over
two periods.

a - - — Time
> Processar 1 [21] 27 |
1) Processor 2 3-2

S 012 3 456 7

Double Period Schedule

BF -ES 11 -

Variations of SDF: Structured Dataflow

nnnnnnnnnnnn

]

OOO00000DoooD

LabVIEW (National Instruments) uses homogeneous SDF
augmented with syntactically constrained forms of feedback
and rate changes: while loops, conditionals,...

Such structured dataflow models are decidable.

BF - ES - 12-

Variations of SDF:
Data-dependent communication
H.263 video codec

Variable-Length Motion
Decoder Compensator

Wiggers/Bekooj/Smit: Buffer Capacity Computation for Throughput Constrained
Streaming Applications with Data-Dependent Inter-Task Communication, 2008

BF -ES - 13-

Summary dataflow

= Communcation exclusively through FIFOs

Kahn process networks

= Blocking read, nonblocking write

= Deterministic

= Schedulability undecidable

= SDF

= Useful for DSP

= Fixed token consumption/production

= Compile-time scheduling: balance equations
Decidable extensions of SDF

= Structured Dataflow

BF - ES - 14 -

Discrete-event systems

Dynamical systems whose evolution is governed by the
occurrence of events at discrete time points, at possibly
irregularly-spaced intervals

Many cyber-physical systems are modeled as discrete-
event systems:

= Communication networks
* Microprocessors

» Manufacturing facilities

= Communicating robots

BF -ES - 15-

Example: Communicating Robots/Sensor Nodes

A A

Son
s

<
send \
recv

<

BF - ES - 16 -

Simulating the System with an Event Queue

timestamp Event queue
t3
2
event record L <t<ty< ..

Simulation Timer, T=0
Repeat while there are events in the event queue:

1. Dequeue event at head of queue (“imminent event”)
2. Advance simulation timer to time of imminent event
3. Execute imminent event: update system state
4. Generate future events and enqueue them
BF - ES .17 -

HDL = hardware description language
VHDL = VHSIC hardware description language
VHSIC = very high speed integrated circuit

Initiated by US Department of Defense
1987 IEEE Standard 1076
Reviews of standard: 1993, 2000, 2002, 2008

Standard in (European) industry

Extension: VHDL-AMS, includes analog modeling

BF - ES - 18-

Goals

= Two goals: simulation and synthesis

= Synthesis: compilation into an implementation technology
such as ASIC or FPGA

= Not all constructs in VHDL are suitable to synthesis
= Modelling at various levels of abstraction
= Technology-independent
— Re-Usability of specifications
= Standard
— Portability (different synthesis and analysis tools possible)
= Validation of designs based on the same description

language for different levels of abstraction

Here: Only some aspects of VHDL, not complete language.

BF -ES -19-

Entities and architectures

= Each design unit is called an entity.

= Entities are comprised of entity declarations and one or
several architectures.

‘ Entity declaration ‘

Architecture 1 ‘ Architecture 2 | | Architecture 3 |

Each architecture includes a model of the entity. By default,
the most recently analyzed architecture is used. The use of
another architecture can be requested in a configuration.

BF - ES - 20-

10

Example: full adder
- Entity declaration -

a ——=
———= Sum

b — = full_adder

. ——= carry_out
carry_in ——

= Entity declaration:

entity full_adder is

port(a, b, carry_in: in Bit; -- input ports
sum,carry_out: out Bit); -- output ports

end full_adder;

BF -ES

- 21-

Example: full adder
- Architecture with behavioural body

architecture behavior of full_adder is
begin
sum <= (a xor b) xor carry_in after 10 Ns;
carry_out <= (a and b) or (a and carry_in) or
(b and carry_in) after 10 Ns;
end behavior;

BF -ES

- 22 -

11

Example: full adder
- structural body

full_adder

a —r—>

b

— X
i1: or_ carry_out
half_adder | Y., > 1z | gate T

. i2:

carry_In half_adder sum

architecture structure of full_adder is
component half_adder
port (in1,in2:in Bit; carry:out Bit; sum:out Bit);
end component;
component or_gate
port (inl, in2:in Bit; o:out Bit);
end component;
signal x, y, z: Bit; -- local signals
begin -- port map section
i1: half_adder port map (a, b, X, y);
i2: half_adder port map (y, carry_in, z, sum);
i3: or_gate port map (x, z, carry_out);
end structure;

BF -ES - 23-

Example: full adder
- Architectures

= Architectures describe implementations of entities.

= For component half_adder we need
= An entity, e.g.

entity half_adder
port (inl,in2:in Bit; carry:out Bit; sum:out Bit);
end half_adder;

= (At least) one architecture
» This architecture may contain components, too.

= Architectures and their components can define a
hierarchy of arbitrary depth.

BF - ES - 24-

12

Structural and behavioural descriptions

= Structural descriptions use component instances.

= Behavioural descriptions describe behaviour without
defining the structure of the system.

= Mixtures are possible.

= Mixtures are needed,
at least for the leaves in structural hierarchy.

= Structural hierarchy is essential for a compact and clear
modelling of large (hardware) systems.

» To define semantics of VHDL, we can assume that the
structural hierarchy is ,flattened®, i.e., we can assume
w.l.0.g. that we have just an behavioural description.

BF -ES - 25-

Processes

= Behavioural descriptions consist of a set of concurrently
executed processes.

= Syntax:
[label:]
process[(sensitivity list)]
declarations
begin
statements
end process [label]

BF - ES - 26 -

Processes — Examples (1)

BF - ES - 27-

Processes — Examples (2)

BF - ES - 28-

14

Processes — Examples (3)

BF - ES - 29-

Processes - Execution

* Processes are not allowed to have subprocesses
(no hierarchy of processes).

* Processes are executed sequentially until a wait
statement is encountered.

* Processes are reactivated according to conditions of
wait-statements.

= Different types of wait-statements

BF - ES - 30-

15

Wait-statements

Four possible types of wait-statements:

= wait on signal list;
= wait until at least one of the signals in signal list changes;
= Example: wait on a;
= wait until condition;
= wait until condition is met;
= Example: wait until c="1";
= wait for duration;
= wait for specified amount of time;
= Example: wait for 10 ns;
» wait;
= suspend indefinitely

BF -ES

- 31-

Processes - Sensitivity lists

= Sensitivity lists are a shorthand for a single wait on-
statement at the end of the process body:

» process (%, V)
begin
prod<=x andy;
end process;

is equivalent to

* process
begin
prod<=x andy;
wait on Xx,y;
end process;

BF -ES

- 32-

16

Signal assignments

= Signal assignments outside processes can be viewed as
implicit processes:

a <= b and c after 10 ns
is equivalent to

process(b, c)

begin

a <=b and c after 10 ns
end

BF -ES - 33-

Variables and signals

= Variables
= Variables are declared locally in processes (and procedures / functions)
and are only visible in this scope.
= Signals
= Can be viewed as a wire
= Signals cannot be declared in processes (procedures / functions), but in
architectures (outside processes).
= Syntax:
= variable_assignment ::=
target := expression
+ Example:
Sum:=0

= signal_assignment ::=
target <= [delay_mechanism | waveform_element
{, waveform_element }
= waveform_element ::=
value_expression [after time_expression |
» Example:
Inpsig <= "0", "1"after 5 ns, 0" after 10 ns, "1” after 20 ns;

BF - ES - 34-

17

Variable versus signal assigment

= Variable assignments are performed sequentially and directly after
their occurence,

= Signal assignments are performed concurrently, i.e. they are
(sequentially) collected until the process is stopped and are
performed in parallel after all processes are stopped.

signal a : std_logic :
signal b : std_logic :

swap : process
variable c : std_logic :

variable d : std_logic :
begin
a<=b;b<=g;
c:=d;d:=c;
wait on a, b;
end process swap;

1
s
o
2

BF -ES - 35-

Semantics of VHDL.:
Basic concepts

= Discrete event driven simulation®

» Step-based semantics as in StateCharts:
= Computation as a series of basic steps
= Time does not necessarily proceed between two steps
= Like superstep semantics of StateCharts

= Concurrent assignments (of signals) like concurrent
assignments in StateCharts.

Steps consist of two stages.

BF - ES - 36-

18

Overview of simulation

Initialization

Update
current time

Assign new values

. Evaluate processes
to signals

Resume processes

End of simulation

BF -ES

- 37-
Transaction list and process activation list
» Transaction list
= For signal assignments
= Entries of form (s, v, t) meaning
»signal s is set to value v at time t*
= Example: (clock, 17, 10 ns)
» Process activation list
= For reactivating processes
= Entries of form (p; t) meaning
,process p; resumes at time t*.
BF - ES - 38-

19

Initialization

= At the beginning of initialization, the current time, t,,,
is assumed to be O ns.
= Aninitial value is assigned to each signal.
= Taken from declaration, if specified there, e.g.,
« signal s : std_ulogic := "07;
= Otherwise: First value in enumeration for enumeration based data types, e.g.
» signal s : std_ulogic
with
type std_ulogicis (U, °X’, 0%, 1%, °Z°, "W, 'L, "HY, LY,
initial value is "U°
= This value is assumed to have been the value of the signal for an infinite length
of time prior to the start of the simulation.
= |[nitialization phase executes each process exactly once (until it suspends).
= During execution of processes: Signal assignments are collected in
transaction list (not executed immediately!) — more details later.
= If process stops at ,wait for“-statement, then update process activation list —
more details later.
= After initialization the time of the next simulation cycle (which in this case is
the first simulation cycle), t,., is calculated:
= Time t,q, of the next simulation cycle = earliest of
1. time’high (end of simulation time).
2. Earliest time in transaction list (if not empty)

. Earli ime in pr ivation list (if n m .
BF - ES 3. Earliest time in process activation list (if not empty) a9

Example

architecture behaviour of example is
signal a : std_logic :="
signal b : std_logic :
signal c : std_logic :
signal d : std_logic :

begin
swapl: process(a, b)
begin

SHEKG

a <= b after 10 ns;
b <= a after 10 ns;
end process;

swap2: process
begin

c<=d;

d<=c;

wait for 15 ns;
end process;

end architecture;

BF - ES - 40 -

20

Signal assighment phase — first part of step

= Each simulation cycle starts with setting the current time
to the next time at which changes must be considered:

tCUI’I’ = tnext
* This time t,,, was either computed during the
initialization or during the last execution of the simulation
cycle. Simulation terminates when the current time
would exceed its maximum, time’high.
* Forall (s, v, t.,,) in transaction list:
= Remove (s, v, ty,,) from transaction list.
" sissettov.
= For all processes p; which wait on signal s:
= Insert (p;, to,) iN process activation list.
= Similarly, if condition of ,wait until“-expression changes
value.

BF - ES .41 -

Example

architecture behaviour of example is
signal a : std_logic :="07;
signal b : std_logic : 5
signal c : std_logic :
signal d : std_logic :
begin
swapl: process(a, b)
begin
a <= b after 10 ns;
b <= a after 10 ns;
end process;

1
1
o

swap2: process
begin

c<=d;

d<=c;

wait for 15 ns;
end process;

end architecture;

BF - ES - 42 -

21

Process execution phase — second part of step (1)

* Resume all processes p; with entries (p;, t.,)
in process activation list.
= Execute all activated processes ,in parallel (in fact: in arbitrary
order).
= Signal assignments
= are collected in transaction list (not executed immediately!).
= Examples:
* s<=aandb;

— Let v be the conjunction of current value of a and current value
of b.

— Insert (s, v, t) in transaction list.
* s<="1" after 10 ns;
— Insert (s, "1, t,,; + 10 ns) into transaction list.
= Processes are executed until wait statement is encountered.
= If process p, stops at ,wait for“-statement, then update process
activation list:
= Example:
+ p; stops at ,wait for 20 ns;*
* Insert (p;, t.,r + 20 NS) into process activation list

BF -ES - 43-

Process execution phase — second part of step (2)

If some process reaches last statement and
= does not have a sensitivity list and
» |ast statement is not a wait statement,

then it continues with first statement and runs until wait
statement is reached.

= When all processes have stopped, the time of the next
simulation cycle t,., is calculated:

= Time t,. Of the next simulation cycle = earliest of
1.time’high (end of simulation time).
2.Earliest time in transaction list (if not empty)
3.Earliest time in process activation list (if not empty).

= Stop if t,.,; = time’high and transaction list and process
activation list are empty.

BF - ES - 44 -

22

Example

architecture behaviour of example is
signal a : std_logic := "07;
signal b : std_logic :
signal c : std_logic :
signal d : std_logic :
begin
swapl: process(a, b)
begin
a <= b after 10 ns;
b <= a after 10 ns;
end process;

SHHS

swap2: process
begin

c<=d;

d<=c;

wait for 15 ns;
end process;

end architecture;

BF -ES

- 45 -

Delta delay

= As for StateCharts (super step semantics!) time does not
necessarily proceed between two steps.

= Several (potentially an infinite number of) steps can take place at

the same time t ;.

= Notion: Signal assignments which take place at the same time in
two consecutive steps are separated by one ,delta delay“.

T T+1 T+2

1 INERERMNERE SEEER NN ||||\\||||||||\a|| | .
(K SN SN N

BF -ES

- 46 -

23

Delta delay - Example

Simulation time does not
proceed due to delta delays!

Current time
Ons

Delta delay
1

Event

-- evaluation of inverter
- (A, 1,0ns)

BF -ES

- 47 -

Delta delay - Example

Simulation time does not
proceed due to delta delays!

Current time

Delta delay Event
Ons 1 -- evaluation of inverter
- (A, 1,0ns)
2 -- evaluation of AND and
NAND
-- (B, 0, Ons), (C, 1, Ons)
3 -- evaluation of AND

--(C, 0, Ons)

BF -ES

- 48 -

24

Delta delay -
Simulation of an RS-Flipflop

entitiy RS_Flipflop is
port (R, S : in std_logic;
Q, nQ : inout std_logic);
end RS_FlipFlop;

architecture one of RS_Flipflop is
begin
process (R,S,Q,nQ)
begin
Q :=R nor nQ;
nQ := S nor Q;
end process;
end one;

d cycles reflect the fact that no
real gate comes with zero delay.

2nd §
0000
S 0001
1st
\
1100
0111 Q
Ons Ons+d Ons+26
R 1 1 1
0 0 0
Q 1 0 0
nQ 0 0 1
BF - ES

- 49 -

25

