
- 1 -BF - ES

Embedded Systems 10

- 2 -BF - ES

REVIEW: VHDL

 HDL = hardware description language

 VHDL = VHSIC hardware description language

 VHSIC = very high speed integrated circuit

 Initiated by US Department of Defense

 1987 IEEE Standard 1076

 Reviews of standard: 1993, 2000, 2002, 2008

 Standard in (European) industry

 Extension: VHDL-AMS, includes analog modeling

- 3 -BF - ES

REVIEW: Semantics of VHDL:

Basic concepts

 „Discrete event driven simulation“

 Step-based semantics as in StateCharts:

 Computation as a series of basic steps

 Time does not necessarily proceed between two steps

 Like superstep semantics of StateCharts

 Concurrent assignments (of signals) like concurrent

assignments in StateCharts.

Steps consist of two stages.

- 4 -BF - ES

REVIEW: Overview of simulation

Initialization

End of simulation

Assign new values

to signals

Update

current time

Evaluate processes

Resume processes

- 5 -BF - ES

Transaction list and process activation list

 Transaction list

 For signal assignments

 Entries of form (s, v, t) meaning

„signal s is set to value v at time t“

 Example: (clock, ´1´, 10 ns)

 Process activation list

 For reactivating processes

 Entries of form (pi, t) meaning

„process pi resumes at time t“.

- 6 -BF - ES

Initialization

 At the beginning of initialization, the current time, tcurr,
is assumed to be 0 ns.

 An initial value is assigned to each signal.
 Taken from declaration, if specified there, e.g.,

• signal s : std_ulogic := `0`;

 Otherwise: First value in enumeration for enumeration based data types, e.g.

• signal s : std_ulogic
with
type std_ulogic is (`U`, `X`, `0`, `1`, `Z`, `W`, `L`, `H`, `-`);
initial value is `Ù`

 This value is assumed to have been the value of the signal for an infinite length
of time prior to the start of the simulation.

 Initialization phase executes each process exactly once (until it suspends).

 During execution of processes: Signal assignments are collected in
transaction list (not executed immediately!) – more details later.

 If process stops at „wait for“-statement, then update process activation list –
more details later.

 After initialization the time of the next simulation cycle (which in this case is
the first simulation cycle), tnext is calculated:
 Time tnext of the next simulation cycle = earliest of

1. time’high (end of simulation time).
2. Earliest time in transaction list (if not empty)
3. Earliest time in process activation list (if not empty).

- 7 -BF - ES

Example

architecture behaviour of example is

signal a : std_logic := `0`;

signal b : std_logic := `1`;

signal c : std_logic := `1`;

signal d : std_logic := `0`;

begin

swap1: process(a, b)

begin

a <= b after 10 ns;

b <= a after 10 ns;

end process;

swap2: process

begin

c <= d;

d <= c;

wait for 15 ns;

end process;

end architecture;

- 8 -BF - ES

Signal assignment phase – first part of step

 Each simulation cycle starts with setting the current time
to the next time at which changes must be considered:

 tcurr = tnext

 This time tnext was either computed during the
initialization or during the last execution of the simulation
cycle. Simulation terminates when the current time
would exceed its maximum, time’high.

 For all (s, v, tcurr) in transaction list:
 Remove (s, v, tcurr) from transaction list.

 s is set to v.

 For all processes pi which wait on signal s:
 Insert (pi, tcurr) in process activation list.

 Similarly, if condition of „wait until“-expression changes
value.

- 9 -BF - ES

Example

architecture behaviour of example is

signal a : std_logic := `0`;

signal b : std_logic := `1`;

signal c : std_logic := `1`;

signal d : std_logic := `0`;

begin

swap1: process(a, b)

begin

a <= b after 10 ns;

b <= a after 10 ns;

end process;

swap2: process

begin

c <= d;

d <= c;

wait for 15 ns;

end process;

end architecture;

- 10 -BF - ES

Process execution phase – second part of step (1)

 Resume all processes pi with entries (pi, tcurr)
in process activation list.

 Execute all activated processes „in parallel“ (in fact: in arbitrary
order).

 Signal assignments
 are collected in transaction list (not executed immediately!).

 Examples:

• s <= a and b;

– Let v be the conjunction of current value of a and current value
of b.

– Insert (s, v, tcurr) in transaction list.

• s <= ´1´ after 10 ns;

– Insert (s, ´1´, tcurr + 10 ns) into transaction list.

 Processes are executed until wait statement is encountered.

 If process pi stops at „wait for“-statement, then update process
activation list:
 Example:

• pi stops at „wait for 20 ns;“

• Insert (pi, tcurr + 20 ns) into process activation list

- 11 -BF - ES

Process execution phase – second part of step (2)

If some process reaches last statement and
 does not have a sensitivity list and

 last statement is not a wait statement,

then it continues with first statement and runs until wait
statement is reached.

 When all processes have stopped, the time of the next
simulation cycle tnext is calculated:
 Time tnext of the next simulation cycle = earliest of

1.time’high (end of simulation time).
2.Earliest time in transaction list (if not empty)
3.Earliest time in process activation list (if not empty).

 Stop if tnext = time’high and transaction list and process
activation list are empty.

- 12 -BF - ES

Example

architecture behaviour of example is

signal a : std_logic := `0`;

signal b : std_logic := `1`;

signal c : std_logic := `1`;

signal d : std_logic := `0`;

begin

swap1: process(a, b)

begin

a <= b after 10 ns;

b <= a after 10 ns;

end process;

swap2: process

begin

c <= d;

d <= c;

wait for 15 ns;

end process;

end architecture;

- 13 -BF - ES

Delta delay

 As for StateCharts (super step semantics!) time does not

necessarily proceed between two steps.

 Several (potentially an infinite number of) steps can take place at

the same time tcurr.

 Notion: Signal assignments which take place at the same time in

two consecutive steps are separated by one „delta delay“.

- 14 -BF - ES

Delta delay -

Simulation of an RS-Flipflop

entitiy RS_Flipflop is
port (R, S : in std_logic;

Q, nQ : inout std_logic);
end RS_FlipFlop;

architecture one of RS_Flipflop is
begin
process (R,S,Q,nQ)
begin

Q := R nor nQ;
nQ := S nor Q;

end process;
end one;

0ns 0ns+ 0ns+2

R 1 1 1

S 0 0 0

Q 1 0 0

nQ 0 0 1

0001

1100

0000

0111

1st 

2nd 

 cycles reflect the fact that no

real gate comes with zero delay.

- 15 -BF - ES

„Write-write-conflicts“

 Case 1:

Write-write-conflicts are restricted to

the same process

(i.e. they occur inside the same

process)

 Then the second signal assignment

overwrites the first one.

 This is the only case of „non-concurrency“

of signal assignments

 Note that writing to different signals

occurs concurrently, however!

signal s : bit;

…

p : process

begin

…

s <= `0`;

…

s <= `1`;

wait for 5 ns;

end process p;

- 16 -BF - ES

„Write-write-conflicts“

 Case 2:

Write-write-conflicts between different

processes

 If there is no „resolution function“ for

the data type dt, then writing the same

signal by different processes in the same

step is forbidden.

 If there is a resolution function, then the

resolution function computes the value of s

at time tcurr:

• Value for s in the current step is computed

for each process separately,

• resolution function is used to compute final

result.

signal s : dt;

…

s<= v1;

…

p : process

begin

…

s <= v2;

…

end process p;

q : process

begin

…

s <= v3;

…

end process q;

- 17 -BF - ES

Abstraction of electrical signals

 Complete analog simulation at the circuit level would be

time-consuming

We try to use digital values and DE simulation as long as possible

However, using just 2 digital values would be too restrictive

  We introduce the distinction between:

 the logic level (as an abstraction of the voltage) and

 the strength (as an abstraction of the current drive capability) of a

signal.

 The two are encoded in logic values.

- 18 -BF - ES

1 signal strength

 Logic values '0' and '1'.

 Both of the same strength.

 Encoding false and true, respectively.

- 19 -BF - ES

2 signal strengths

 Many subcircuits

can effectively

disconnect

themselves from

the rest of the

circuit (they

provide “high

impedance“ values

to the rest of the

circuit).

 Example:

subcircuits with

open collector

- 20 -BF - ES

TriState circuits

 We introduce signal value 'Z', meaning “high impedance“

- 21 -BF - ES

2 signal strengths (cont’ed)

 We introduce an operation #, which generates the effective

signal value whenever two signals are connected by a wire.

 #('0','Z')='0'; #('1','Z')='1'; '0' and '1' are “stronger“ than 'Z'

1 strength

According to the partial order in

the diagram, # returns the

smallest element at least as large

as the two arguments (“Sup”).

In order to define #('0','1'), we

introduce 'X', denoting an

undefined signal level.

'X' has the same strength as '0'

and '1'.
Hasse diagram

- 22 -BF - ES

Application example

signal value on bus = #(value from left subcircuit, value from right subcircuit)

#('Z', value from right subcircuit) = value from right subcircuit

“as if left circuit were not there“.

- 23 -BF - ES

3 signal strengths

Depletion transistor contributes a weak value to be

considered in the #-operation for signal A

 Introduction of 'H',

denoting a weak signal of the same level as '1'.

#('H', '0')='0'; #('H','Z') = 'H'

- 24 -BF - ES

3 signal strengths

 There may also be weak signals

of the same level as '0'

  Introduction of 'L', denoting a

weak signal of the same level as

'0': #('L', '1')=‘1'; #('L','Z') = 'L';

  Introduction of 'W', denoting a

weak signal of undefined level 'X':

#('L', 'H')='W'; #('L','W') = 'W';

 # reflected by the partial order

shown.

- 25 -BF - ES

4 signal strengths (1)

 pre-charging:

Pre-charged '1'-levels weaker than any of the values

considered so far, except 'Z'.

 Introduction of 'h', denoting a very weak signal of the

same level as '1'.

#('h', '0')='0'; #('h','Z') = 'h'

- 26 -BF - ES

4 signal strengths (2)

 There may also be weak signals

of the same level as '0'

  Introduction of 'l', denoting a

very weak signal of the same level

as '0': #('l', '0')='0'; #('l,'Z') = 'l';

  Introduction of 'w', denoting a

very weak signal of the same level

as 'W': #('l', 'h')='w'; #('h','w') =

'w'; ...

 # reflected by the partial order

shown.

- 27 -BF - ES

IEEE 1164

 VHDL allows user-defined value sets.

 Each model could use different value sets (unpractical)

 Definition of standard value set according to standard

IEEE 1164:

{'0', '1', 'Z', 'X', 'H', 'L', 'W', 'U', '-'}

 First seven values as discussed previously.

 'U': un-initialized signal; used by simulator to initialize all

not explicitly initialized signals:

type std_ulogic is (`U`, `X`, `0`, `1`, `Z`, `W`, `L`, `H`, `-`);

 '-': is used to specify don’t cares:

 Example: if a /= ‘1’ or b/=‘1’ then f <= a exor b; else f <= ‘-’;

 ‘-’ may be replaced by arbitrary value by synthesis tools.

- 28 -BF - ES

Outputs tied together

In hardware, connected outputs can be used:

bus
'Z' 'Z' 'h''0'

resolved signal

unresolved

signals

Modeling in VHDL: resolution functions

type std_ulogic is ('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', '-');

subtype std_logic is resolved std_ulogic;

outputs

- 29 -BF - ES

Resolution function for IEEE 1164

type std_ulogic_vector is array(natural range<>)of std_ulogic;

function resolved (s:std_ulogic_vector) return std_logic is

variable result: std_ulogic:='Z'; --weakest value is default

begin

if (s'length=1) then return s(s'low) --no resolution

else for i in s'range loop

result:=resolution_table(result,s(i))

end loop

end if;

return result;

end resolved;

- 30 -BF - ES

Resolution function for IEEE 1164

constant resolution_table : stdlogic_table := (

--U X 0 1 Z W L H –

('U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U'), --| U |

('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X'), --| X |

('U', 'X', '0', 'X', '0', '0', '0', '0', 'X'), --| 0 |

('U', 'X', 'X', '1', '1', '1', '1', '1', 'X'), --| 1 |

('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', 'X'), --| Z |

('U', 'X', '0', '1', 'W', 'W', 'W', 'H', 'X'), --| W |

('U', 'X', '0', '1', 'L', 'W', 'L', 'W', 'X'), --| L |

('U', 'X', '0', '1', 'H', 'W', 'W', 'H', 'X'), --| H |

('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X') --| - |

);

- 31 -BF - ES

Inertial and transport delay model

 Signal assignment:

 signal_assignment ::=
target <= [delay_mechanism] waveform_element

{ , waveform_element }
 waveform_element ::=

value_expression [after time_expression]

 delay_mechanism ::=
transport | [reject time_expression] inertial

 Example:
 Inpsig <= ´0´, ´1´after 5 ns, ´0´ after 10 ns, ´1´ after 20 ns;

- 32 -BF - ES

Inertial and transport delay model

 Example for signal assignment:

outp <= not inp after 10 ns;

outp??

inp

5 10 15 20 25 30 35

outp??

- 33 -BF - ES

Two delay models in VHDL:

 Inertial delay („träge Verzögerung“)

 Transport delay („nichtträge Verzögerung“)

Inverter
Input Output

Inertial and transport delay model

 Inertial delay model is motivated by the fact that physical

gates absorb short pulses (spikes) at their inputs (due to

internal capacities)

- 34 -BF - ES

 … is the default model

 Absorbs pulses at the

inputs which are shorter

than the delay specified

for the gate / operation

Inverter
Input Output

-- INERTIAL is the default

Output <= NOT input AFTER 10 ns;

Output

Input

5 10 15 20 25 30 35

Inertial delay model

- 35 -BF - ES

Inverter
Input Output

-- TRANSPORT must be specified

Output <= TRANSPORT NOT input AFTER 10 ns;

Output

Input

5 10 15 20 25 30 35

Transport delay model

 Transmits all pulses at the

inputs ideally

- 36 -BF - ES

entity DELAY is

end DELAY;

architecture RTL of DELAY is

signal A, B, X, Y: bit;

begin

p0: process (A, B)

begin

Y <= A nand B after 10 ns;

X <= transport A nand B after 10 ns;

end process;

p1: process

begin

A <= '0', '1' after 20 ns, '0'

after 40 ns, '1' after 60 ns;

B <= '0', '1' after 30 ns, '0'

after 35 ns, '1' after 50 ns;

wait for 80 ns;

end process

end RTL;

0 100 200

A

B

X

Y

[ns]

Inertial and transport delay model

- 37 -BF - ES

Semantics of transport delay model

Signal assignments change transaction list.

 Before transaction (s, t1, v1) is inserted into transaction

list, all transactions in the transaction list (s, t2, v2)

with t2  t1 are removed from transaction list.

- 38 -BF - ES

Example for transport delay model

 Transaction list:

 At 5ns:

(outp, 25ns, `0`)

 At 10 ns:

(outp, 22.5ns, `1`), (outp, 25ns, `0`)

Remove (outp, 25ns, `0`)!

 (outp, 22.5ns, `1`)

Inverter
inp outp

inv : process(inp)

begin

if inp=`1` then

outp <= transport `0` after 20 ns;

elsif inp=`0` then

outp <= transport `1` after 12.5 ns

end if;

end process inv;

outp

inp

5 10 15 20 25 30 35

- 39 -BF - ES

Semantics of inertial delay model

 Semantics for more general version of inertial delay

statement:

 Inertial delay absorbs pulses at the inputs which are shorter than

the delay specified for the gate / operation.

 Key word reject permits absorbing only pulses which are shorter

than specified delay:

• Example:

– outp <= reject 3 ns inertial not inp after 10 ns;

– Only pulses smaller than 3 ns are absorbed.

– outp <= reject 10 ns inertial not inp after 10 ns;

and

outp <= not inp after 10 ns;

are equivalent.

- 40 -BF - ES

Semantics of inertial delay model

 Rule 1 as for transport delay model:
Before transaction (s, t1, v1) is inserted into transaction list, all
transactions in the transaction list (s, t2, v2) with t2  t1 are removed
from transaction list.

 Rule 2 removes also some transactions with times < t1:

 Suppose the time limit for reject is rt.

 Transactions for signal s with time stamp in the intervall (t1 – rt, t1) are
removed.

 Exception:
If there is in (t1 – rt, t1) a subsequence of transactions for s immediately
before (s, t1, v1) which also assign value v1 to s, then these transactions
are preserved.

