Embedded Systems

{po1iigy ¢

e e by

.........

BF - ES

100110

043

10

REVIEW: VHDL

= HDL = hardware description language

= VHDL = VHSIC hardware description language
= VHSIC = very high speed integrated circuit

» [nitiated by US Department of Defense

= 1987 IEEE Standard 1076

= Reviews of standard: 1993, 2000, 2002, 2008
= Standard in (European) industry

= Extension: VHDL-AMS, includes analog modeling

BF - ES

REVIEW: Semantics of VHDL.:
Basic concepts

= Discrete event driven simulation”

= Step-based semantics as in StateCharts:
= Computation as a series of basic steps
* Time does not necessarily proceed between two steps
= Like superstep semantics of StateCharts

= Concurrent assignments (of signals) like concurrent
assignments in StateCharts.

Steps consist of two stages.

BF - ES

REVIEW: Overview of simulation

BF - ES

Initialization

Update
current time

A 4

Assign new values
to signals

Evaluate processes

S

Resume processes

_

A 4

End of simulation

Transaction list and process activation list

* Transaction list
= For signal assighments

= Entries of form (s, v, t) meaning
,signal s is set to value v at time t*

= Example: (clock, "1", 10 ns)

= Process activation list

= [For reactivating processes

= Entries of form (p;, t) meaning
,process p; resumes at time t".

BF - ES

Initialization

= At the beginning of initialization, the current time, t_,,
Is assumed to be 0 ns.

= Aninitial value is assigned to each signal.
= Taken from declaration, if specified there, e.qg.,
« signal s : std_ulogic := 07
= Otherwise: First value in enumeration for enumeration based data types, e.g.
« signal s : std_ulogic
with
type std_ulogicis (U°, X', '0°, "1, ' Z", W, 'L, H, -);
initial value is "U"
= This value is assumed to have been the value of the signal for an infinite length
of time prior to the start of the simulation.
Initialization phase executes each process exactly once (until it suspends).

During execution of processes: Signal assignments are collected in
transaction list (not executed immediately!) — more details later.

If process stops at ,wait for”-statement, then update process activation list —
more details later.

After initialization the time of the next simulation cycle (which in this case is
the first simulation cycle), t,..,; is calculated:

* Time t,, of the next simulation cycle = earliest of
1. time’high (end of simulation time).
2. Earliest time in transaction list (if not empty)

3. Earliest time in process activation list (if not empty).
BF - ES - 6-

Example

architecture behaviour of example is
signal a : std_logic := 0
signal b : std_logic :
signal c : std_logic :
signal d : std_logic :
begin
swapl: process(a, b)
begin
a <= b after 10 ns;
b <= a after 10 ns;
end process;

/ / /
OkFRELrO
".l’u-’u-

swap2: process
begin

c <=d;

d <=c¢;

wait for 15 ns;
end process;

end architecture;

BF - ES

Signal assighment phase —first part of step

Each simulation cycle starts with setting the current time
to the next time at which changes must be considered:

tCUI’I‘ = tnext

This time t,; was either computed during the
Initialization or during the last execution of the simulation
cycle. Simulation terminates when the current time
would exceed its maximum, time’high.

For all (s, v, t) In transaction list:
= Remove (s, v, t.,) from transaction list.
= Sissettov.

For all processes p; which wait on signal s:
= Insert (p;, t.,,) IN process activation list.

Similarly, if condition of ,walit until®-expression changes
value.

BF - ES - 8-

Example

architecture behaviour of example is
signal a : std_logic := 0
signal b : std_logic :
signal c : std_logic :
signal d : std_logic :
begin
swapl: process(a, b)
begin
a <= b after 10 ns;
b <= a after 10 ns;
end process;

/ / /
OkFRELrO
".l’u-’u-

swap2: process
begin

c <=d;

d <=c¢;

wait for 15 ns;
end process;

end architecture;

BF - ES

Process execution phase — second part of step (1)

= Resume all processes p; with entries (p;, t.,)
In process activation list.

= Execute all activated processes ,in parallel” (in fact: in arbitrary
order).
= Signal assignments
= are collected in transaction list (not executed immediately!).
= Examples:
* sS<=aand b;

— Let v be the conjunction of current value of a and current value
of b.

— Insert (s, v, t.,,) In transaction list.
*« s<="1" after 10 ns;
— Insert (s, "1, t.,,, + 10 ns) into transaction list.
= Processes are executed until wait statement is encountered.
= |f process p, stops at ,wait for*-statement, then update process
activation list:
= Example:
* p; stops at ,wait for 20 ns;"
* Insert (p;, t;,, + 20 nS) into process activation list

BF - ES - 10-

Process execution phase — second part of step (2)

If some process reaches last statement and
= does not have a sensitivity list and
» |ast statement is not a wait statement,

then it continues with first statement and runs until wait
statement Is reached.

= When all processes have stopped, the time of the next
simulation cycle t..,, Is calculated:

= Time t, of the next simulation cycle = earliest of
1.time’high (end of simulation time).
2.Earliest time in transaction list (if not empty)
3.Earliest time in process activation list (if not empty).

= Stop if ., = time’high and transaction list and process
activation list are empty.

BF -ES - 11-

Example

architecture behaviour of example is
signal a : std_logic := 0
signal b : std_logic :
signal c : std_logic :
signal d : std_logic :
begin
swapl: process(a, b)
begin
a <= b after 10 ns;
b <= a after 10 ns;
end process;

/ / /
OkFRELrO
".l’u-’u-

swap2: process
begin

c <=d;

d <=c¢;

wait for 15 ns;
end process;

end architecture;

BF - ES _12.-

Delta delay

» As for StateCharts (super step semantics!) time does not
necessarily proceed between two steps.

= Several (potentially an infinite number of) steps can take place at
the same time t

curr*

= Notion: Signal assignments which take place at the same time in
two consecutive steps are separated by one ,delta delay”.

T T+1 T+2 T+3

1 TEEER NI SRR N RN SRR NN FEENR Y ENE AN
(X (C ({ ({

BF - ES

- 13-

Delta delay -
Simulation of an RS-Flipflop

2”?& entitiy RS_Flipflop is
g 9000 ™~ (901 port (R, S : in std_logic;
b———= nQ Q, nQ :inout std_logic);
7 end RS_FlipFlop;
1st
> N architecture one of RS_Flipflop is
™ | 1100 begin
0111 P Q process (R,S,Q,nQ)
R % begin
Q := R nor nQ;
nQ := S nor Q;
Ons Ons+d Ons+25 end process;
end one;
R 1 1 1

0
1
0

0
0 o cycles reflect the fact that no
1 real gate comes with zero delay.

- 14 -

, Write-write-conflicts*

signal s : bit;

p . process
begin

s<=0};

s<="1";

wait for 5 ns;

end process p;

BF - ES

Case 1.

Write-write-conflicts are restricted to
the same process

(i.e. they occur inside the same
process)

* Then the second signal assignment
overwrites the first one.

* This is the only case of ,non-concurrency’
of signal assignments

» Note that writing to signals
occurs concurrently, however!

- 15 -

, Write-write-conflicts*

signal s : dt;
S<=Vy;

p : process
begin

S <= V,;

end process p;

g : process
begin

S <= vy;

end process q;

BF - ES

Case 2:
Write-write-conflicts between different
processes

If there is no for
the data type dt, then writing the same
signal by different processes in the same
step is forbidden.

If there is a resolution function, then the
resolution function computes the value of s
at time t_,:

» Value for s in the current step is computed

for each process separately,

* resolution function is used to compute final
result.

- 16 -

Abstraction of electrical signals

= Complete analog simulation at the circuit level would be
time-consuming

& We try to use digital values and DE simulation as long as possible
% However, using just 2 digital values would be too restrictive

= & \We introduce the distinction between:
* the logic level (as an abstraction of the voltage) and

» the strength (as an abstraction of the current drive capability) of a
signal.

= The two are encoded in logic values.

BF - ES - 17 -

1 signal strength

* Logic values '0' and '1".
= Both of the same strength.
* Encoding false and true, respectively.

BF - ES

- 18 -

2 signal strengths

= Many subcircuits
can effectively

disconnect VDD
themselves from
the rest of the

circuit (they —— Output A

provide “high Inbut

impedance” values "= Pp

to the rest of the '

circuit). GROUND
= Example: Input ="0" —> A disconnected

subcircuits with
open collector

BF - ES

TriState circuits

VDD ’
eI
enable_. — A
7 lal po

GR.OUND

enable ='0’ —> A disconnected

< We introduce signal value 'Z', meaning “high impedance”

BF - ES - 20-

2 signal strengths (cont’ed)

= We introduce an operation #, which generates the effective
signal value whenever two signals are connected by a wire.

= #('0',"ZY)="'0"; #('1','Z)="1"; '0" and '"1" are “stronger” than 'Z'

\

o
¥/ '\ | 1strength
. "

N/
S

Hasse diagram

BF - ES

According to the partial order Iin
the diagram, # returns the
smallest element at least as large
as the two arguments (“Sup”).

In order to define #('0','1"), we
Introduce 'X', denoting an
undefined signal level.

'X' has the same strength as 'O
and '1'.

- 21 -

Application example

VDD

e S e

enable="0’ 7 => bus enable’="1’

9 »—
—

}_&—{% PD PD’ ;}7&_]7

signal value on bus = #(value from left subcircuit, value from right subcircuit)

GROUND

#('Z', value from right subcircuit) = value from right subcircuit
“as if left circuit were not there”.

BF -ES - 22-

3 signal strengths

VDD
[T depletion
transistor
A
f | [PD
GROUND o

Depletion transistor contributes a weak value to be
considered in the #-operation for signal A

< Introduction of 'H',
denoting a weak signal of the same level as '1'.

#('H', '0"="0"; #('H','Z") ='H’

BF - ES

- 23-

3 signal strengths

There may also be weak signals X

of the same level as '0' YZ2ERN strongest

< Introduction of 'L', denoting a 0 1

weak signal of the same level as "\

IOl: #(lLl, I1I)=‘1I; #(lLI,IZI) — ILI; ,W,

= |ntroduction of 'W', denoting a y 4 medium strength
weak signal of undefined level "X 'L 'H’

#('L', 'H)="W'"; #('L','W') ='W/, \ Vs

reflected by the partial order 7 weakest

shown.

BF - ES - 24 -

4 signal strengths (1)

VDD *

o—[

GROUND
Pre-charged '1'-levels weaker than any of the values
considered so far, except 'Z'.
< Introduction of 'h', denoting a very weak signal of the
same level as '1'.
#('h', '0N="0"; #('h','Z") ="'’

BF -ES - 25-

* pre-charging:

4 signal strengths (2)

There may also be weak signals
of the same level as '0’

< Introduction of 'l', denoting a
very weak signal of the same level
as 'O #(I''0H='0 #(l,)Z)="I;
< Introduction of 'w', denoting a
very weak signal of the same level
as'W': #(I','h")='w'; #(h',)'w') =
W' ...

reflected by the partial order
shown.

BF - ES

¥\

101

N ¥
4\
N K/
4\

!
N ¥

N

lLl lHl

%

strongest

medium strength

pre—charged

weakest

- 26 -

IEEE 1164

= VHDL allows user-defined value sets.
— Each model could use different value sets (unpractical)

— Definition of standard value set according to standard
IEEE 1164:

{IOI, Ill’ IZI, IXI’ IHI’ ILI, IWI, IUI, l_l}
= First seven values as discussed previously.

= 'U": un-initialized signal; used by simulator to initialize all
not explicitly initialized signals:
type std ulogicis (U, X, 0,1, Z, W, L, H, -);
= " s used to specify don’t cares:
» Example: if a/='1" or b/="1" then f <= a exor b; else f <="-;
= ‘" may be replaced by arbitrary value by synthesis tools.

BF - ES . o7

Outputs tied together

In hardware, connected outputs can be used:

resolved signal .

Modeling in VHDL.: resolution functions
type std_ulogic is (‘U', 'X', 'O, '1", 'Z','"W', 'L', 'H', '-);
subtype std_logic is resolved std_ulogic;

BF - ES

- 28 -

Resolution function for IEEE 1164

type std _ulogic_vector is array(natural range<>)of std_ulogic;

function resolved (s:stdlulogic_vector) return std logic is

variable result: std_ulogic:='Z"; --weakest value is default
begin

If (s'length=1) then return s(s'low) --no resolution

else for 1 in s'range loop

result:=resolution table(result,s(i))

end loop

end if,

return result;
end resolved,

BF - ES - 29-

Resolution function for IEEE 1164

gic_table :=(

H

ZW

constant resolution table : stdlo

L

--UXOl

uwv1rwtw%

UXOlZWLHX
.UwAwA.1_.1_.1_.1_.1_WA

DxoxXxboboX
HX KK KX XXX

UUUUUUUUU _

- 30 -

BF - ES

Inertial and transport delay model

= Signal assignment:

= signal_assignment ::=
target <= [delay mechanism | waveform_element
{, waveform_element }
= waveform_element ::=
value_expression [after time expression |

= delay_mechanism ::=
transport | [reject time_expression] inertial

= Example:
= |npsig <="0", "1"after 5 ns, "0” after 10 ns, "1" after 20 ns;

BF - ES

- 31-

Inertial and transport delay model

= Example for signal assignment:
outp <= not inp after 10 ns;

inp
outp?? ____J_

outp??

BF - ES

- 32-

Inertial and transport delay model

Two delay models in VHDL.:

= |nertial delay (,trdge Verzégerung®)
= Transport delay (,nichttrage Verzégerung®)

Input Output
- Inverter

» [nertial delay model is motivated by the fact that physical
gates absorb short pulses (spikes) at their inputs (due to
Internal capacities)

BF - ES - 33-

Inertial delay model

Input Output
— Inverter

... 1s the default model

INERTIAL is the default
Output <= NOT input AFTER 10 ns;

= Absorbs pulses at the
Inputs which are shorter
than the delay speci_fied Output

for the gate / operation

nput 1| |

BF - ES . 34-

Transport delay model

Transmits all pulses at the

inputs ideally

BF - ES

Input

-- TRANSPORT must be specified

Output <= TRANSPORT NOT input AFTER 10 ns;

Output

Input —\—I

Inverter

Output

- 35-

Inertial and transport delay model

entity DELAY is
end DELAY;

architecture RTL of DELAY is
signal A, B, X, Y: bit;

begin
p0: process (A, B)
begin

Y <= A nand B after 10 ns;
X <=transport A nand B after 10 ns;

end process;

pl: process
begin
A <="0', 'l after 20 ns, 'O’
after 40 ns, '1' after 60 ns;
B <='0", '1' after 30 ns, '0’
after 35 ns, '1' after 50 ns;
wait for 80 ns;
end process
end RTL;

I ——r b I

-

< X ® >

BF - ES

-

- 36 -

Semantics of transport delay model

Signal assignments change transaction list.

= Before transaction (s, t;, v,) Is inserted into transaction
list, all transactions in the transaction list (s, t,, V,)
with t, > t; are removed from transaction list.

BF - ES - 37-

Example for transport delay model

inp outp

= Transaction list;

= Atbns: outp
(outp, 25ns, "07)

= At10ns:
(outp, 22.5ns, 1), (outp, 25ns, "0°) inp —‘—, |
Remove (outp, 25ns, 0°)!
— (outp, 22.5ns, 1) | | | |

BF - ES - 38-

Semantics of inertial delay model

= Semantics for more general version of inertial delay

statement:
* |nertial delay absorbs pulses at the inputs which are shorter than
the delay specified for the gate / operation.
= Key word reject permits absorbing only pulses which are shorter
than specified delay:
« Example:
— outp <=reject 3 nsinertial not inp after 10 ns;
— Only pulses smaller than 3 ns are absorbed.
— outp <=reject 10 ns inertial not inp after 10 ns;

and
outp <= not inp after 10 ns;
are equivalent.

BF - ES - 39-

Semantics of inertial delay model

* Rule 1 as for transport delay model:
Before transaction (s, t;, v,) is inserted into transaction list, all
transactions in the transaction list (s, t,, v,) with t, > t;, are removed
from transaction list.

* Rule 2 removes also some transactions with times <t;:

= Suppose the time limit for reject is rt.

= Transactions for signal s with time stamp in the intervall (t, —rt, t,) are
removed.

= EXxception:
If there is in (t; — rt, t;) a subsequence of transactions for s immediately
before (s, t;, v;) which also assign value v, to s, then these transactions
are preserved.

BF - ES - 40 -

