
- 1 -BF - ES

Embedded Systems 12

- 2 -BF - ES

REVIEW: Embedded System Hardware

Embedded system hardware is frequently used in a loop

(„hardware in a loop“):

actuators

- 3 -BF - ES

REVIEW: Standard layout of sensor systems

 Sensor: detects/measures entity and converts it to
electrical domain
 May entail ES-controllable actuation: e.g. charge transfer in

CCD

 Amplifier: adjusts signal to the dynamic range of the A/D
conversion
 Often dynamically adjustable gain: e.g. ISO settings at digital

cameras, input gain for microphones (sound or ultrasound),
extremely wide dynamic ranges in seismic data logging

 Sample + hold: samples signal at discrete time instants

 A/D conversion: converts samples to digital domain

Sensor Amplifier
Sample

and hold

A/D

conversion

- 4 -BF - ES

Discretization of time

Vx is a sequence of values or a mapping ℤ ℝ

Discrete time: sample and hold-devices.

Ideally: width of clock pulse -> 0

Ve is a mapping ℝ ℝ

- 5 -BF - ES

Sample and Hold

Input

Output

Clock

- 6 -BF - ES

Discretization of values: A/D-converters

1. Flash A/D converter (1)

 Basic element: analog comparator

 Output = ´1´ if voltage at input + exceeds that at input -.

 Output = ´0´ if voltage at input - exceeds that at input +.

 Idea:

 Generate n different voltages by voltage divider (resistors),

e.g. Vref, ¾ Vref, ½ Vref, ¼ Vref.

 Use n comparators for parallel comparison of input voltage Vx to these

voltages.

 Encoder to compute digital output.

- 7 -BF - ES

Discretization of values: A/D-converters

1. Flash A/D converter (2)

Parallel comparison with

reference voltage

Applications: e.g. in video

processing

- 8 -BF - ES

Discretization of values

2. Successive approximation

Key idea: binary search:

 Set MSB='1'

 if too large: reset MSB

 Set MSB-1='1'

 if too large: reset MSB-1

- 9 -BF - ES

Successive approximation (2)

1100

1000

1010

1011

t

V

Vx

V-

- 10 -BF - ES

Digital-to-Analog (D/A) Converters

 Convert digital value to conductivity proportional to the

digital value

x3

x2

x1

x0

R

2 R

4 R

8 R
I0

I1

I2

I3

- 11 -BF - ES

Operational amplifier

• Use operational amplifier to convert conductivity to

voltage: V = - Vref R2 / R1

-

+

R1

R2

Vref V

I

- 12 -BF - ES

Digital-to-Analog (D/A) Converters (3)

-

+

R2

Vref
V

x3

x2

x1

x0

R

2 R

4 R

8 R

- 13 -BF - ES

Design Issues with Sensors

 Calibration
 Relating measurements to the physical phenomenon

 Can dramatically increase manufacturing costs

 Nonlinearity
 Measurements may not be proportional to physical phenomenon

 Correction may be required

 Feedback can be used to keep operating point in the linear
region

 Sampling
 Aliasing

 Missed events

 Noise
 Analog signal conditioning

 Digital filtering

 Introduces latency

- 14 -BF - ES

Aliasing

 Periods of p=8,4,1

 Indistinguishable if sampled at integer times, ps=1



























1

 2
sin5.0

4

 2
sin5.0

8

 2
sin)(4

ttt
te





















4

 2
sin5.0

8

 2
sin)(3

tt
te



- 15 -BF - ES

Aliasing

Nyquist criterion (sampling theory):

Aliasing can be avoided if we restrict the frequencies of

the incoming signal to less than half of the sampling

rate.

ps < ½ pN where pN is the period of the “fastest” sine wave

or fs > 2 fN where fN is the frequency of the “fastest” sine wave

fN is called the Nyquist frequency, fs is the sampling rate.

See e.g. [Oppenheim/Schafer, 2009]

- 16 -BF - ES

Graphics

(Wikimedia Commons)

- 17 -BF - ES

Anti-aliasing filter

A filter is needed to remove high frequencies

fs

)(

)(

te

tg Ideal filter

fs /2

e4(t) changed into e3(t)

Realizable

filter

- 18 -BF - ES

Possible to reconstruct input signal?

 Assuming Nyquist criterion met

 Let {ts}, s = ...,−1,0,1,2, ... be times at which we sample g(t)

 Assume a constant sampling rate of 1/ps (∀s: ps = ts+1−ts).

 According to sampling theory, we can approximate the input signal

using the Shannon-Whittaker interpolation:

[Oppenheim, Schafer, 2009]

Weighting factor

for influence of

y(ts) at time t

- 19 -BF - ES

Weighting factor for influence of y(ts)

at time t

No influence at ts+n

- 20 -BF - ES

Contributions from the various sampling

instances

- 21 -BF - ES

(Attempted) reconstruction of input signal

*

* Assuming 0-

order hold

- 22 -BF - ES

How to compute the sinc() function?

 Filter theory: The required interpolation is performed by an

ideal low-pass filter (sinc is the Fourier transform of the low-

pass filter transfer function)

fs

)(

)(

ty

tz

fs /2

Filter removes high frequencies present in y(t)

- 23 -BF - ES

How precisely are we reconstructing the input?

 Sampling theory:

• Reconstruction using sinc () is precise

 However, it may be impossible to really compute z(t)

- 24 -BF - ES

Limitations

 Actual filters do not compute sinc()

In practice, filters are used as an approximation.

Computing good filters is an art itself!

 All samples must be known to reconstruct e(t) or g(t).

 Waiting indefinitely before we can generate output!

In practice, only a finite set of samples is available.

 Actual signals are never perfectly bandwidth limited.

 Quantization noise cannot be removed.

- 25 -BF - ES

Actuators and output

 Huge variety of actuators and outputs

 Two base types:

• analogue drive
(requires D/A conversion, unless on/off sufficient)

• CRTs, speakers, electrical motors with collector

• electromagnetic (e.g., coils) or electrostatic drives

• piezo drives

• digital drive (requires amplification only)

• LEDs

• stepper motors

• relais, electromagnetic valve (if actuation slope irrelevant)

- 26 -BF - ES

Micromotors

(© MCNC) (TU Berlin)

- 27 -BF - ES

Interfaces

- 28 -BF - ES

Interfaces

 Pulse width modulation (PWM)

 General-Purpose Digital I/O (GPIO)

 Parallel

 Multiple data lines transmitting data

 Ex: PCI, ATA, CF cards, Bus

 Serial

 Single data line transmitting data

 Ex: USB, SATA, SD cards,

- 29 -BF - ES

Example Using a Serial Interface

In an Atmel AVR 8-bit microcontroller, to send a byte over

a serial port, the following C code will do:

while(!(UCSR0A & 0x20));

UDR0 = x;

• x is a variable of type uint8.

• UCSR0A and UDR0 are variables defined in header.

• They refer to memory-mapped registers.

- 30 -BF - ES

Send a Sequence of Bytes

for(i = 0; i < 8; i++) {

while(!(UCSR0A & 0x20));

UDR0 = x[i];

}

How long will this take to execute? Assume:

• 57600 baud serial speed.

• 8/57600 =139 microseconds.

• Processor operates at 18 MHz.

Each while loop will consume 2500 cycles.

- 31 -BF - ES

Input Mechanisms in Software

 Polling

 Main loop checks each

I/O device periodically.

 If input is ready,

processor initiates

communication.

 Interrupts

 External hardware alerts

the processor that input is

ready.

 Processor suspends what

it is doing, invokes an

interrupt service routine

(ISR).
Processor Setup Code

Processor checks I/O control register

for status of peripheral 1
Processor services I/O 1

Processor checks I/O control register

for status of peripheral 2

Processor checks I/O control register

for status of peripheral 3

Processor services I/O 2

Processor services I/O 3

Ready

Ready

Ready

Not Ready

Not Ready

Not Ready

Processor Setup Code

Register the Interrupt Service Routine

Processor executes task code Run Interrupt Service Routine

Interrupt!

Context switch

Resume

- 32 -BF - ES

Timed Interrupt

Timer

Update Tick / Sample

When timer expires,

interrupt processor

Reset timer

Processor jumps to ISR

Resumes

Processor Setup

Register Interrupt Service Routine

Initialize Timer

Execute Task Code

- 33 -BF - ES

volatile uint timer_count = 0;

void ISR(void) {

if(timer_count != 0) {

timer_count--;

}

}

int main(void) {

// initialization code

SysTickIntRegister(&ISR);

... // other init

timer_count = 2000;

while(timer_count != 0) {

... code to run for 2 seconds

}

}

Example:

Do something for 2 seconds then stop

volatile: C keyword to tell the

compiler that this variable may

change at any time, not (entirely)

under the control of this program.

static variable: declared outside

main() puts them in statically

allocated memory (not on the

stack)

Interrupt service routine

Registering the ISR to be invoked

on every SysTick interrupt

- 34 -BF - ES

Example

