Embedded Systems

{po1iigy ¢

e e by

.........

BF - ES

100110

043

12

REVIEW: Embedded System Hardware

Embedded system hardware is frequently used in a loop

(,,hardware in a loop*®):

A/D converter

sample-and-hold

information
processing

y

!

SEeNnsors |

'

BF - ES

D/A converter

v

actuators

'l\

REVIEW: Standard layout of sensor systems

- Sample A/D
Sensor = Amplifier —p»

and hold conversion

= Sensor: detects/measures entity and converts it to
electrical domain

= May entail ES-controllable actuation: e.g. charge transfer in
CCD

= Amplifier: adjusts signal to the dynamic range of the A/D
conversion

= Often dynamically adjustable gain: e.g. ISO settings at digital
cameras, input gain for microphones (sound or ultrasound),
extremely wide dynamic ranges in seismic data logging

= Sample + hold: samples signal at discrete time instants
= A/D conversion: converts samples to digital domain

BF - ES - 3-

Discretization of time

V,isa mappingR -> R I

4‘

V, Is a sequence of values or a mapping Z -» R

Discrete time: sample and hold-devices.
Ideally: width of clock pulse -> 0

BF - ES 4.

Sample and Hold

41

Clock

BF - ES . 5.

Discretization of values: A/D-converters
1. Flash A/D converter (1)

= Basic element: analog comparator

—={ >
—| —

= Qutput ="1" if voltage at input + exceeds that at input -.
= Qutput =0 if voltage at input - exceeds that at input +.

= |dea:

» Generate n different voltages by voltage divider (resistors),
€.g. Vref’ Ya Vref’ Y2 Vref’ Ya Vref'

= Use n comparators for parallel comparison of input voltage V, to these
voltages.

» Encoder to compute digital output.

BF - ES

Discretization of values: A/D-converters

1. Flash A/D converter (2)

Encoding

YYYY

—
—= Digital
- outputs

R Comparators

L

BF - ES

» Parallel comparison with
reference voltage

= Applications: e.g. in video
processing

Discretization of values
2. Successive approximation

Vy—=+

+_

control logic

successive approximation register

—

= digital output

y

Y

¥

¥

—

D/A—conversion

Key idea: binary search:

= Set MSB="1'

= if too large: reset MSB

» Set MSB-1="1'

= if too large: reset MSB-1

BF - ES

Successive approximation (2)

1100

1011

BF - ES

1000

1010

v

Digital-to-Analog (D/A) Converters

= Convert digital value to conductivity proportional to the
digital value

X3
—— R |
3
7
| 2R |
r
‘ 4R |
Xo
. 8 R
lg

BF - ES - 10-

Operational amplifier

« Use operational amplifier to convert conductivity to
voltage: V=-V R,/ R;

ref

BF -ES - 11-

Digital-to-Analog (D/A) Converters (3)

X3
— R
R,
X2
— 2R
. [])
X1
—e 1 4R -
[]
Xo +
Vref . 8 R V

BF - ES .12

Design Issues with Sensors

Calibration
» Relating measurements to the physical phenomenon
= Can dramatically increase manufacturing costs
= Nonlinearity
= Measurements may not be proportional to physical phenomenon
= Correction may be required
= Feedback can be used to keep operating point in the linear
region
= Sampling
= Aliasing
= Missed events
= Noise
» Analog signal conditioning
= Digital filtering
» |ntroduces latency

BF - ES - 13-

Aliasing

1. / ‘\‘
e, (t) :sin(Ej+O.53in(Ej+O.53in(E) ! _
8 4 1 \J
'26 1 2 3 4 5 6 7 8

= Periods of p=8,4,1

= [ndistinguishable if sampled at integer times, p.=1
BF - ES

- 14 -

Aliasing

Nyquist criterion (sampling theory):

Aliasing can be avoided if we restrict the frequencies of
the incoming signal to less than half of the sampling
rate.

ps < ¥2 py Where py is the period of the “fastest” sine wave

or f,>2fy where fy is the frequency of the “fastest” sine wave

fy Is called the Nyquist frequency, fis the sampling rate.

See e.g. [Oppenheim/Schafer, 2009]

BF -ES - 15-

(Wikimedia Commons)

Anti-aliasing filter

A filter is needed to remove high frequencies

S | anti- > | Sample- | =
aliasing & hold
2 S
st 3 e,(t) changed into eg(t)
1k ! "‘ l“\
t 0.5
g(t) Ideal filter
E(t) j 05 |
///////'\ "
20 1 2 3 4 5 6 ’ 8
Realizable
filter fs /2 f

BF - ES - 17 -

Possible to reconstruct input signal?

’ e(t)
8(?)
h(t)
w(t)
x(1)
y(t)
’ z(t)

anti- Sample- A/D- proces— D/A- filter

aliasing & hold conv. sing conv.

»1‘50

= Assuming Nyquist criterion met
Let {t.},s=..,—1,0,1,2, ... be times at which we sample g(t)
Assume a constant sampling rate of 1/p, (Vs: p, = t.,;—t).

According to sampling theory, we can approximate the input signal
using the Shannon-Whittaker interpolation:

Weighting factor
for influence of
y(t)) at time t

[Oppenheim, Schafer, 2009]

BF - ES - 18-

Weighting factor for influence of y(t,)
at time t

sin(-(t — 1))

sinc(t —t;) =

}% { — 1)

BF - ES . 19.-

Contributions from the various sampling
Instances

1.5
1 /TN]

AN

0

-0.5 \

_1 AL/
12, 1 2 3 4 5 6 7 8

BF - ES - 20 -

(Attempted) reconstruction of input signal

h(t)
w(t)

) -
SN— N—
= -~

I e(t)
&0

anti— Sample- A/D- proces— D/A-
aliasing & hold conv. sing conv. /

filter

//

A |

\

* Assuming O-

order hold 1.5

BF - ES

How to compute the sinc() function?

= wlts)sin (1 —15)

L Y Ty

S—=—uo0a0

» Filter theory: The required interpolation is performed by an
Ideal low-pass filter (sinc is the Fourier transform of the low-

pass filter transfer function)

2V
y (1)

y(t)
| (1)

‘x(t)

D/A- filter

| J conv.

Filter removes high frequencies present in y(t)

BF - ES

- 22

How precisely are we reconstructing the input?

= Y(ts)sing (1 —15)

2(t) =)

Tt

= Sampling theory:
« Reconstruction using sinc () is precise

= However, it may be impossible to really compute z(t)

BF - ES - 23-

Limitations

= Y(ts)sin (1 —15)

z(r) = Z L p—

S——o0o Z:,;

= Actual filters do not compute sinc()
In practice, filters are used as an approximation.
Computing good filters is an art itself!

= All samples must be known to reconstruct e(t) or g(t).
< Waiting indefinitely before we can generate output!
In practice, only a finite set of samples is available.

= Actual signals are never perfectly bandwidth limited.

= Quantization noise cannot be removed.

BF - ES

- 24 -

Actuators and output

= Huge variety of actuators and outputs
= Two base types:
e analogue drive
(requires D/A conversion, unless on/off sufficient)
* CRTs, speakers, electrical motors with collector

« electromagnetic (e.g., coils) or electrostatic drives

* piezo drives
« digital drive (requires amplification only)
- LEDs

« stepper motors

* relais, electromagnetic valve (if actuation slope irrelevant)

BF - ES

Micromotors

P,
TU BERLIN

© MCNC) TU Berlin)

BF - ES - 26 -

Interfaces

/— JTAG and SWD interface
= g - aaeaxmmt B — USB interface

switches
connected I speaker
to GPIO pins «— connected to
........ : GPIO or PWM
analog v i =
(ADC) — EeeR) 11< (05
inputs -+= | _gontroller, =" «— GPIO connectors
o, p— PWM outputs
removable Ny
flash B8 ¥ —— CAN bus interface
memory

slot
¥ Ethernet interface

Stellaris®RILM3S8962 evaluation board

BF - ES

- 27 -

Interfaces

VDD

= Pulse width modulation (PWM) jr:;';;f:
| microcontroller

| microcontroller

microcon troller drive /
7

transistor

» General-Purpose Digital 1/0 (GPIO)

register

= Parallel
= Multiple data lines transmitting data
= EX: PCI, ATA, CF cards, Bus

= Serial
= Single data line transmitting data
= Ex: USB, SATA, SD cards,

BF - ES - 28-

Example Using a Serial Interface

In an Atmel AVR 8-bit microcontroller, to send a byte over
a serial port, the following C code will do:

while (! (UCSROA & 0x20));
UDRO = x;

* X IS a variable of type uint8.
« UCSROA and UDRO are variables defined in header.
* They refer to memory-mapped registers.

BF - ES - 29-

Send a Sequence of Bytes

for(i = 0; i < 8; i++) {
while (! (UCSROA & 0x20)) ;
UDRO = x[1];

How long will this take to execute? Assume:

« 57600 baud serial speed.

« 8/57600 =139 microseconds.

* Processor operates at 18 MHz.

Each while loop will consume 2500 cycles.

BF - ES

- 30 -

Input Mechanisms in Software

= Polling = Interrupts

= Main loop checks each = External hardware alerts

I/O device periodically. the processor that input is
= |f input is ready, ready.
processor initiates » Processor suspends what
communication. it is doing, invokes an
Interrupt service routine
(ISR).

Processor Setup Code

\4 Processor Setup Code
—» Processor checks I/O control register Reasy®»| processor services 1/0 1
for status of peripheral 1 I \ 4
Not Read\)* * Register the Interrupt Service Routine
Processor checks 1/0O control register Readyp| Processor services I/O 2
for status of peripheral 2 Interrupt! ﬁ
\ 4
Not Read$ { Context swit P
Processor checks 1/O control register e e KU ITESITPE £6miize Roviine
i
for status of peripheral 3 ’ Reedy Resume

Not Read)l' <

BF - ES . 31-

Timed Interrupt

Processor Setup

'

Register Interrupt Service Routine

A 4

Initialize Timer

ocessor jumps to ISR

[

Timer

When timer expires,
interrupt processor

Reset timer

Execute Task Code

»

A

BF - ES

Resumes

Update Tick / Sample

Example:
Do something for 2 seconds then stop

uint timer count = 0; _— static variable: declared outside
a main() puts them in statically

allocated memory (not on the
stack)

timer coun

}
}
int main (void) {
// initialization code
<::§§5TicklntRegister(&ISR);

77 other—1trtt

volatile: C keyword to tell the
compiler that this variable may
change at any time, not (entirely)
under the control of this program.

timer count = 2000; Interrupt service routine
while (timer count != 0) {

code to run for 2 seconds Registering the ISR to be invoked
} on every SysTick interrupt

BF - ES - 33-

input: assert, return: pure
assert |

.

return /

Example

iﬂt/r/ﬂalj-ﬂ!v?i?! L volatile uint timerCount = 0
initialization code oid]:_t,_:(((s d) {
SysTickIntRegister (&ISR); D e disa;;; interrupts

. . g . . . // other init TP iee Count != 0
variables: timerCount: uint merC —0/ ALy timercount = 2000; R
. t' . I!mer Ottnt - Bl while(timerCount != 0) { }
lnpll . aSSEF‘f. pure mmmemmm e ,—— code to run for 2 seconds .. enable interrupts

L el C—>

timerCount = 2000 " timerCount £0 /

A

assert / assert /

/
timerCount--

/
stimerCount--

/
timerCount--

v
'
.
Il
'
'
'
'
'
v

'
]
"
v

! timerCount # 0 / ;
i timerCount # 0 /

timerCount # 0 /

BF - ES . 34-

