
- 1 -BF - ES

Embedded Systems 13

- 2 -BF - ES

REVIEW: Embedded System Hardware

Embedded system hardware is frequently used

in a loop (“hardware in a loop“):

 cyber-physical systems

- 3 -BF - ES

Microcontrollers

 Integrate several components of a microprocessor

system onto one chip
CPU, Memory, Timer, IO

 Low cost,

small packaging

 Easy integration

with circuits

 Single-purpose

PIC16C8X

- 4 -BF - ES

Application Specific Circuits (ASICS)

or Full Custom Circuits

 Approach suffers from

 long design times,

 lack of flexibility

(changing standards) and

 high costs

(e.g. Mill. $ mask costs).

 Custom-designed circuits

necessary

 if ultimate speed or

 energy efficiency is the goal and

 large numbers can be sold.

- 5 -BF - ES

Energy

© Hugo De Man,

IMEC, Philips, 2007

- 6 -BF - ES

Low Power vs. Low Energy

Consumption

 Minimizing power consumption important for

• the design of the power supply

• the design of voltage regulators

• the dimensioning of interconnect

• short term cooling

 Minimizing energy consumption important due to

• restricted availability of energy (mobile systems)

– limited battery capacities (only slowly improving)

– very high costs of energy (solar panels, in space)

• cooling

– high costs

– limited space

• dependability

• long lifetimes, low temperatures

- 7 -BF - ES

Dynamic power management (DPM)

 RUN: operational

 IDLE: a SW routine

may stop the CPU

when not in use, while

monitoring interrupts

 SLEEP: Shutdown of

on-chip activity

RUN

SLEEPIDLE

400mW

160µW50mW

90µs

10µs

10µs
160ms

Example: STRONGARM SA1100

Power fault

signal

- 8 -BF - ES

Fundamentals of dynamic voltage

scaling (DVS)

Power consumption of CMOS

circuits (ignoring leakage):

frequencyclock :

tagesupply vol:

ecapacitanc load:

activity switching:

with2

f

V

C

fVCP

dd

L

ddL





 

) than

voltage threshhold

 with

ddt

t

tdd

dd
L

VV

V

VV

V
Ck






(

:

2


Delay for CMOS circuits:

[Courtesy,

Yasuura, 2000]

- 9 -BF - ES

Variable-voltage/frequency example:

INTEL Xscale

F
ro

m
 I

n
te

l’s
 W

e
b
 S

it
e

OS should

schedule

distribution

of the

energy

budget.

- 10 -BF - ES

Low voltage, parallel operation more efficient

than high voltage, sequential operation

Basic equations

Power: P ~ VDD² ,

Maximum clock frequency: f ~ VDD ,

Energy to run a program: E = P  t, with: t = runtime

Time to run a program: t ~ 1/f

Changes due to parallel processing, with  operations per clock:

Clock frequency reduced to: f ’ = f / ,

Voltage can be reduced to: VDD’ =VDD / ,

Power for parallel processing: P° = P / ² per operation,

Power for  operations per clock: P’ =   P° = P / ,

Time to run a program is still: t’ = t,

Energy required to run program: E’ = P’  t = E / 

Argument in favour of voltage scaling,

VLIW processors, and multi-cores

Rough

approxi-

mations!

- 11 -BF - ES

Application: VLIW processing and voltage

scaling in the Crusoe processor

 VDD: 32 levels (1.1V - 1.6V)

 Clock: 200MHz - 700MHz in increments of 33MHz

Scaling is triggered when CPU load change is detected

by software (~1/2 ms).

 More load: Increase of supply voltage (~20 ms/step),

followed by scaling clock frequency

 Less load: reduction of clock frequency, followed by

reduction of supply voltage

Worst case (1.1V to 1.6V VDD, 200MHz to 700MHz) takes

280 ms

- 12 -BF - ES

Result (as published by transmeta)

[www.transmeta.com]

Pentium Crusoe

Running the same multimedia application.

- 13 -BF - ES

Digital Signal Processing (DSP)

Example: Filtering

Signal at t=ts (sampling points)

- 14 -BF - ES

Filtering in digital signal processing

outer loop over

sampling times ts

{ MR:=0; A1:=1; A2:=s-1;

MX:=w[s]; MY:=a[0];

for (k=0; k <= (n−1); k++)

{ MR:=MR + MX * MY;

MX:=w[A2]; MY:=a[A1];
A1++; A2--;

}

x[s]:=MR;

}

ADSP 2100

- 15 -BF - ES

DSP-Processors: multiply/accumulate (MAC)

and zero-overhead loop (ZOL) instructions

MR:=0; A1:=1; A2:=n-2; MX:=x[n-1]; MY:=a[0];

for (j:=1 to n)

{MR:=MR+MX*MY; MY:=a[A1]; MX:=x[A2]; A1++; A2--}

Multiply/accumulate (MAC) instruction Zero-overhead loop (ZOL)

instruction preceding MAC

instruction.

Loop testing done in parallel to

MAC operations.

- 16 -BF - ES

Heterogeneous registers

MR

MF

MX MY

*
+,-

AR

AF

AX AY

+,-,..

D
P

Address

generation

unit (AGU)

Address-

registers

A0, A1, A2

..

Different functionality of registers An, AX, AY, AF,MX, MY, MF, MR

Example (ADSP 210x):

- 17 -BF - ES

Separate address generation units (AGUs)

 Data memory can only be

fetched with address contained

in A,

 but this can be done in parallel

with operation in main data path

(takes effectively 0 time).

 A := A ± 1 also takes 0 time,

 same for A := A ± M;

 A := <immediate in instruction>

requires extra instruction

Example (ADSP 210x):

- 18 -BF - ES

Modulo addressing

Modulo addressing:

Am++  Am:=(Am+1) mod n

(implements ring or circular

buffer in memory)

..

x[t1-1]

x[t1]

x[t1-n+1]

x[t1-n+2]

..

Memory, t=t1 Memory, t2=t1+1

sliding window
x

t1
t

n most

recent

values

..

x[t1-1]

x[t1]

x[t1+1]

x[t1-n+2]

..

- 19 -BF - ES

Returns largest/smallest number in case of over/underflows

Example:

a 0111

b + 1001

standard wrap around arithmetic (1)0000

saturating arithmetic 1111

(a+b)/2: correct 1000

wrap around arithmetic 0000

saturating arithmetic + shifted 0111

Appropriate for DSP/multimedia applications:
• No timeliness of results if interrupts are generated for overflows

• Precise values less important

• Wrap around arithmetic would be worse.

Saturating arithmetic

„almost correct“

- 20 -BF - ES

Multimedia-Instructions/Processors

 Multimedia instructions exploit many registers, adders etc

that are quite wide (32/64 bit),

 whereas most multimedia data types are narrow

(e.g. 8 bit per color, 16 bit per audio sample per channel)

 2-8 values can be stored per register and added. E.g.:

+

4 additions per instruction;

carry disabled at word

boundaries.

- 21 -BF - ES

Key idea of very long instruction word
(VLIW) computers

 Instructions included in long instruction packets.

Instruction packets are assumed to be executed in

parallel.

 Fixed association of packet bits with functional

units.

- 22 -BF - ES

Very long instruction word (VLIW) architectures

 Very long instruction word

(“instruction packet”) contains several instructions, all of which are

assumed to be executed in parallel.

 Compiler is assumed to generate these “parallel” packets

 Complexity of finding parallelism is moved from the hardware

(RISC/CISC processors) to the compiler;

Ideally, this avoids the overhead (silicon, energy, ..) of identifying

parallelism at run-time.

A lot of expectations into VLIW machines

 Explicitly parallel instruction set computers (EPICs) are an

extension of VLIW architectures: parallelism detected by compiler,

but no need to encode parallelism in 1 word.

- 23 -BF - ES

Large # of delay slots,

a problem of VLIW processors

add sub and or

sub mult xor div

ld st mv beq

- 24 -BF - ES

Large # of delay slots,

a problem of VLIW processors

add sub and or

sub mult xor div

ld st mv beq

- 25 -BF - ES

Large # of delay slots,

a problem of VLIW processors

The execution of many instructions has been started before it is

realized that a branch was required.

Nullifying those instructions would waste compute power

 Executing those instructions is declared a feature, not a bug.

 How to fill all “delay slots“ with useful instructions?

 Avoid branches wherever possible.

add sub and or

sub mult xor div

ld st mv beq

- 26 -BF - ES

Predicated execution:

Implementing IF-statements „branch-free“

Conditional Instruction „[c] I“ consists of:

• condition c

• instruction I

c = true => I executed

c = false => NOP

- 27 -BF - ES

Predicated execution:

Implementing IF-statements „branch-free“:

TI C6x

if (c)

{ a = x + y;

b = x + z;

}

else

{ a = x - y;

b = x - z;

}

Conditional branch

[c] B L1

NOP 5

B L2

NOP 4

SUB x,y,a

|| SUB x,z,b

L1: ADD x,y,a

|| ADD x,z,b

L2:

Predicated execution

[c] ADD x,y,a

|| [c] ADD x,z,b

|| [!c] SUB x,y,a

|| [!c] SUB x,z,b

max. 12 cycles 1 cycle

- 28 -BF - ES

EPIC: TMS 320C6xx as an example

31 0

0

Instr.

A

31 0

0

Instr.

D

31 0

1

Instr.

F

31 0

0

Instr.

G

31 0

1

Instr.

E

31 0

1

Instr.

C

31 0

1

Instr.

B

Cycle Instruction

1 A

2 B C D

3 E F G

Instructions B, C and D use

disjoint functional units,

cross paths and other data

path resources. The same

is also true for E, F and G.

1 Bit per instruction encodes end of parallel exec.

Parallel execution cannot span several packets.

