Embedded Systems

{po1iigy ¢

e e by

.........

BF - ES

100110

043

13

REVIEW: Embedded System Hardware

Embedded system hardware is frequently used
In a loop (“hardware in a loop*®).

A/D converter diZFﬂay
le—and—hold processing
Sample-and-ho D/A converter

! ¢

(physical)

Sensors < actuators

environment

'

& cyber-physical systems

BF - ES 0.

Microcontrollers

= |ntegrate several components of a microprocessor

system onto one chip

CPU, Memory, Timer, 10 — Qm RS

Program
= |Low cost I
PICIGCE3/RES
) 512 x 14 2 Lovel Sck File Registers EEFROM
PFIC1GCEHEARE (r;b'rtj F|c163%33gﬂsars4 EEDATA Dat M emary
x b3

small packaging T e
m ' i — S 1—‘*

Easy Integration Fervone

| 5 Direct Addr

with circuits
» Single-purpose -

Power-u P
5 Tim 10 Parts
In=tru ction Dzcillator i
Decode & (=3 | Startup Timer
Coritrol
P er-on . R
Reset "
Timin igtchd og .
Generation = Timer == RBT:RET
% é [% =[] REOANT

05 C2ACLEOUT MCTR oo, wes
0% CHCLEIN

BF-ES PIC16C8X - 3-

Application Specific Circuits (ASICS)
or Full Custom Circuits

= Approach suffers from
* |ong design times,

» |ack of flexibility
(changing standards) and

= high costs
(e.g. Mill. $ mask costs).

= Custom-designed circuits
necessary

= if ultimate speed or

= energy efficiency is the goal and
* |large numbers can be sold.

BF - ES 4.

Energy

© Hugo De Man,
IMEC, Philips, 2007

BF - ES

GOP/J

1000

100

10

0.1

0.01

0.001

ISC

x cell
o MPU
+ RISC

1990

1995

2005

2010

Low Power vs. Low Energy
Consumption

= Minimizing power consumption important for
* the design of the power supply -
- the design of voltage regulators % 03
 the dimensioning of interconnect
 short term cooling
= Minimizing energy consumption important due to
* restricted availability of energy (mobile systems)
— limited battery capacities (only slowly improving)
— very high costs of energy (solar panels, in space)
 cooling
— high costs
— limited space
« dependability

 long lifetimes, low temperatures
BF -ES . 6-

Dynamic power management (DPM)

Example: STRONGARM SA1100

= RUN: operational 400mW

= |IDLE: a SW routine RUN &
may stop the CPU N R

. _ > %
when not in use, while 10ps & @ @
monitoring interrupts 160

= SLEEP: Shutdown of
on-chip activity IDLE }

Power fault
signal

50mW 160pW

{ SLEEP }

BF - ES S 7.

Fundamentals of dynamic voltage
scaling (DVS)

o 500 | | ~ 50MHz= 50
& Maximum Clock Frequency gw
S 40 40nJ 7 140 =
i g ¢
s | 0
— g g
° 30 180 2
| 25MH; -
201 Energy Consumption 20 £ [Courtesy,
10nd T Yasuura, 2000]
10} ¢ 10

25 30 35 40 45 5.0
Power consumption of CMOS
circuits (ignoring leakage):

P=a C V/ f with
o : switching activity r=kC_
C, : load capacitance

Delay for CMQOS circuits:

Vdd
(Vdd _Vt)2
V, :threshholdvoltage

V, <thanV,,)

with

V,, :supply votage

"TFf . clock frequency

- 8-

Variable-voltage/frequency example:
INTEL Xscale

POWER-PERFORMANCE COMPARISON

14000 & s
e iings Intel™ XScale

lllllll

Inted® StrongARM® Mi :
Toclnokogy icroarchitecture
120
TTTTL L]
v
10 g
=
2
....... -1
E E
= 2
&
...... 3
I E
23IMHz 175MHz 150MHz 400MHz BOOMHz BOOMH:z 1 GHz
@2 OV @1.5 @0, 75\ @1.0V 1.3y @1.6V &1.8v
. MIPS .Waus
BF - ES

OS should
schedule
distribution
of the
energy
budget.

From Intel’s Web Site

Low voltage, parallel operation more efficient
than high voltage, sequential operation

Basic equations

Power: P~Vpp?,
Maximum clock frequency: f~Vpp,
Energy to run a program: E =P x t, with: t = runtime
Time to run a program: t~ 1/t

Changes due to parallel processing, with o operations per clock:

Clock frequency reduced to: f=1/a,
Voltage can be reduced to: Voo =Vpp ! a,
Power for parallel processing: P° =P/ a? per operation,
Power for oo operations per clock: P=axP°=P/a,
Time to run a program is still: t’=1,
Energy required to run program: E’=P'xt=E/a
Rough
= Argument in favour of voltage scaling, gpproxi-
VLIW processors, and multi-cores mations!

BF - ES - 10-

Application: VLIW processing and voltage
scaling in the Crusoe processor

Vpp: 32 levels (1.1V - 1.6V)
Clock: 200MHz - 700MHz Iin increments of 33MHz

Scaling is triggered when CPU load change is detected
by software (~1/2 ms).

More load: Increase of supply voltage (~20 ms/step),
followed by scaling clock frequency

Less load: reduction of clock frequency, followed by
reduction of supply voltage

Worst case (1.1V to 1.6V V, 200MHz to 700MHz) takes
280 ms

BF - ES - 11 -

Result (as published by transmeta)

Pentium Crusoe
B |

Crusoe f‘_,,] M5400)
Max Tems y |
A8.2

Running the same multimedia application.
[www.transmeta.com]
BF - ES - 12 -

Digital Signal Processing (DSP)

Example: Filtering

T | anti- 0 | Sample- | = |A/D- | = |Proces— | =
aliasing & hold conv. sing
n—1
Xs = Z Ws—k *d
k=0

Signal at t=t, (sampling points)

BF - ES - 13-

Filtering In digital signal processing

P |« ADSP 2100
%\ D w
® 0\
I
|
AX AY W i—1 | MX MY| 9541 |
k+2 |
s—k=2 — — |
AF MF| |
Address- |
registers ¢ ¢ \L |
A0, A1, A1 \/ \/ |
+, - \ * / |
|
Addresg Vo pxa |
generation AR , |
unit (AGU) $ |
MR] :
s |
|
» e ¢
BF - ES

n—1
Xy = zws_k*ak
k=0

outer loop over
sampling times t,

{ MR:=0; Al:=1,; A2:=s-1,
MX:=w([s]; MY:=a[0];
for (k=0; k <= (n-1); k++)
{ MR:=MR + MX * MY;
MX:=w[A2]; MY:=a[Al];
Al++; A2—-;

}
X[s]:=MR;
}

- 14 -

DSP-Processors: multiply/accumulate (MAC)
and zero-overhead loop (ZOL) instructions

MR:=0; Al:=1; A2:=n-2; MX:=x[n-1]; MY:=a[0];
for (j:=1 to n)

{MR:=MR+MX*MY; MY:=a[Al]; MX:=x[A2]; Al++; A2--}
7

/ \

Multiply/accumulate (MAC) instruction Zero-overhead loop (ZOL)
Instruction preceding MAC
Instruction.
Loop testing done in parallel to
MAC operations.

BF - ES - 15 -

Heterogeneous registers

Example (ADSP 210x):

P
D
I B - ¥ w—
AX XY I\)I(X IC/I(Y

Address- [AF]« [MF]
registers | \
A0, Al, A2
Address v [+,7]
generation a8l [v
unit (AGU) [MR]

-

Different functionality of registers An, AX, AY, AF,MX, MY, MF, MR

BF - ES

- 16 -

Separate address generation units (AGUS)

Example (ADSP 210x):

\
_ ;
address modify

register /T//__\ ;_(Tgi:;er
T ile

Instruction l

file A

-

data

memory @

BF - ES

Data memory can only be
fetched with address contained
In A,

but this can be done in parallel
with operation in main data path
(takes effectively O time).
A=A+ 1 also takes 0O time,
same forA.=At M;

A = <immediate in instruction>
requires extra instruction

- 17 -

Modulo addressing

Modulo addressing: sliding window

Am++ = Am:=(Am+1) mod n

(implement_s ring or circular A
buffer in memory) -

n most X[t[%i]l] X[t13]
X
recent | X[l
| X[t1-n+1] R R R R e X[t1+1]
values | xfte-n+2] | it1ne2] |
Memory, t=t1 Memory, t2=t1+1

BF - ES o

Saturating arithmetic

= Returns largest/smallest number in case of over/underflows

= Example:
a 0111
o) + 1001
standard wrap around arithmetic (1)0000
saturating arithmetic 1111
(a+b)/2: correct 1000
wrap around arithmetic 0000

saturating arithmetic + shifted 0111 .almost correct”

= Appropriate for DSP/multimedia applications:

* No timeliness of results if interrupts are generated for overflows
* Precise values less important
* Wrap around arithmetic would be worse.

BF - ES - 19-

Multimedia-Instructions/Processors

= Multimedia instructions exploit many registers, adders etc
that are quite wide (32/64 bit),
= whereas most multimedia data types are narrow
(e.g. 8 bit per color, 16 bit per audio sample per channel)
= 2-8 values can be stored per register and added. E.g.:

64 bits

word 3

word 2

word 1

word 0

\/

64 bits
word 3 word 2 word 1 word 0
64 bits
word 3 word 2 word 1 word 0

BF - ES

+

4 additions per instruction;
carry disabled at word
boundaries.

- 20 -

Key idea of very long instruction word

(VLIW) computers

* [nstructions included in long instruction packets.
Instruction packets are assumed to be executed in

parallel.

* Fixed association of packet bits with functional

units.

instruction packet

instruction 1

Instruction 2

Instruction 3

iInstruction 4

¢

¢

floating point
unit

iInteger

integer
unit

memory
unit

unit
l

BF - ES

- 21 -

Very long instruction word (VLIW) architectures

= Very long instruction word
(“instruction packet”) contains several instructions, all of which are
assumed to be executed in parallel.

» Compiler is assumed to generate these “parallel” packets

= Complexity of finding parallelism is moved from the hardware
(RISC/CISC processors) to the compiler;
|deally, this avoids the overhead (silicon, energy, ..) of identifying
parallelism at run-time.

< A lot of expectations into VLIW machines

= EXxplicitly parallel instruction set computers (EPICs) are an
extension of VLIW architectures: parallelism detected by compiler,
but no need to encode parallelism in 1 word.

BF - ES _ 22

Large # of delay slots,

a problem of VLIW processors

pipeline =

stages i

BF - ES

add

sub

and

sub__demitslotear

or

div

ST

I~

/ é‘?

Tmv Y Beq
\

£

i

1y

3\l

N

V%

Y

A

instruction fetch

instruction decode

instruction execute

register writeback Vt

- 23-

Large # of delay slots,

a problem of VLIW processors

pipeline =

stages i

BF - ES

add dJeapsiotand

or

ST

sub

" "mult

L

|z

a7

instruction fetch

instruction decode

instruction execute

register writeback Vt

- 24 -

Large # of delay slots,

a problem of VLIW processors

pipeline =

stages i

delay slots
aﬁd/ ’x’ys,fub \:\\énd\ or
séb Il%ult Xor | _div
[0 st mv | beq

instruction fetch

instruction decode

instruction execute

register writeback Vt

The execution of many instructions has been started before it is
realized that a branch was required.
Nullifying those instructions would waste compute power

& Executing those instructions is declared a feature, not a bug.
< How to fill all “delay slots™ with useful instructions?

< Avoid branches wherever possible.

BF - ES

- 25-

Predicated execution:
Implementing IF-statements ,,branch-free*

Conditional Instruction ,,[c] |“ consists of:
e condition c
 iInstruction |

c =true => | executed
c = false => NOP

BF - ES

- 26 -

Predicated execution:
Implementing IF-statements ,,branch-free“:

TI C6X

If (C)
{a=x+Yy;
b=x+ 2z
}

else
{a=x-Yy;
b=x-2z

}

BF - ES

Conditional branch

Predicated execution

[c] B L1
NOP 5
BL2
NOP 4
SUB x,y,a
|| SUB x,z,b
L1: ADD x,y,a
|| ADD x,z,b

L2:

[c] ADD x,y,a

c] ADD x,z,b
Ic] SUB x,y,a
Ic] SUB x,z,b

max. 12 cycles

1 cycle

- 27 -

EPIC: TMS 320C6xx as an example

1 Bit per instruction encodes end of parallel exec.
3. 031 031 031 03 031 031 O

0 1 1 0 1 1 0

Instr. Instr. Instr. Instr. Instr. Instr. Instr.
A B C D E F G
Cycle Instruction Instructions B, C and D use
disjoint functional units,
1 A v cross paths and other data
2 B C D path resources. The same
3 E F G IS also true for E, F and G.

Parallel execution cannot span several packets.

BF - ES - 28 -

