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REVIEW: Embedded System Hardware

Embedded system hardware is frequently used

in a loop (“hardware in a loop“):

 cyber-physical systems
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Microcontrollers

 Integrate several components of a microprocessor 

system onto one chip
CPU, Memory, Timer, IO

 Low cost, 

small packaging

 Easy integration 

with circuits

 Single-purpose

PIC16C8X
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Application Specific Circuits (ASICS)

or Full Custom Circuits 

 Approach suffers from

 long design times,

 lack of flexibility

(changing standards) and

 high costs

(e.g. Mill. $ mask costs). 

 Custom-designed circuits 

necessary

 if ultimate speed or

 energy efficiency is the goal and

 large numbers can be sold.
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Energy

© Hugo De Man, 

IMEC, Philips, 2007
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Low Power vs. Low Energy 

Consumption

 Minimizing power consumption important for

• the design of the power supply

• the design of voltage regulators

• the dimensioning of interconnect

• short term cooling

 Minimizing energy consumption important due to

• restricted availability of energy (mobile systems)

– limited battery capacities (only slowly improving)

– very high costs of energy (solar panels, in space) 

• cooling

– high costs

– limited space

• dependability 

• long lifetimes, low temperatures
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Dynamic power management (DPM)

 RUN: operational

 IDLE: a SW routine 

may stop the CPU 

when not in use, while 

monitoring interrupts

 SLEEP: Shutdown of 

on-chip activity

RUN

SLEEPIDLE

400mW

160µW50mW

90µs

10µs

10µs
160ms

Example: STRONGARM SA1100

Power fault    

signal
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Fundamentals of dynamic voltage

scaling (DVS)

Power consumption of CMOS

circuits (ignoring leakage):
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[Courtesy, 

Yasuura, 2000]
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Variable-voltage/frequency example:

INTEL Xscale
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Low voltage, parallel operation more efficient 

than high voltage, sequential operation

Basic equations

Power: P ~ VDD² ,

Maximum clock frequency: f ~ VDD ,

Energy to run a program: E = P  t, with: t = runtime

Time to run a program: t ~ 1/f

Changes due to parallel processing, with  operations per clock:

Clock frequency reduced to: f ’ = f / ,

Voltage can be reduced to: VDD’ =VDD / ,

Power for parallel processing: P° = P / ² per operation,

Power for  operations per clock: P’ =   P° = P / , 

Time to run a program is still: t’ = t,

Energy required to run program: E’ = P’  t = E / 

Argument in favour of voltage scaling,

VLIW processors, and multi-cores

Rough 

approxi-

mations!
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Application: VLIW processing and voltage 

scaling in the Crusoe processor

 VDD:   32 levels (1.1V - 1.6V)

 Clock: 200MHz - 700MHz in increments of 33MHz

Scaling is triggered when CPU load change is detected 

by software (~1/2 ms).

 More load: Increase of supply voltage (~20 ms/step),

followed by scaling clock frequency

 Less load: reduction of clock frequency, followed by

reduction of supply voltage

Worst case (1.1V to 1.6V VDD, 200MHz to 700MHz) takes 

280 ms
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Result (as published by transmeta)

[www.transmeta.com]

Pentium Crusoe

Running the same multimedia application.



- 13 -BF - ES

Digital Signal Processing (DSP)

Example: Filtering

Signal at t=ts (sampling points)
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Filtering in digital signal processing

outer loop over 

sampling times ts

{ MR:=0; A1:=1; A2:=s-1;

MX:=w[s]; MY:=a[0];

for (k=0; k <= (n−1); k++)

{ MR:=MR + MX * MY;

MX:=w[A2]; MY:=a[A1];
A1++; A2--;

}

x[s]:=MR;

}

ADSP 2100
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DSP-Processors:  multiply/accumulate (MAC)

and zero-overhead loop (ZOL) instructions

MR:=0; A1:=1; A2:=n-2; MX:=x[n-1]; MY:=a[0];

for ( j:=1 to n)

{MR:=MR+MX*MY; MY:=a[A1]; MX:=x[A2]; A1++; A2--}

Multiply/accumulate (MAC) instruction Zero-overhead loop (ZOL) 

instruction preceding MAC 

instruction.

Loop testing done in parallel to 

MAC operations.
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Heterogeneous registers

MR

MF

MX MY

*
+,-

AR

AF

AX AY

+,-,..

D
P

Address 

generation 

unit (AGU)

Address-

registers

A0, A1, A2 

..

Different functionality of registers An, AX, AY, AF,MX, MY, MF, MR

Example (ADSP 210x):
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Separate address generation units (AGUs)

 Data memory can only be 

fetched with address contained 

in A,

 but this can be done in parallel 

with operation in main data path 

(takes effectively 0 time).

 A := A ± 1 also takes 0 time,

 same for A := A ± M;

 A := <immediate in instruction> 

requires extra instruction

Example (ADSP 210x):
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Modulo addressing

Modulo addressing:

Am++  Am:=(Am+1) mod n

(implements ring or circular 

buffer in memory)

..

x[t1-1]

x[t1]

x[t1-n+1]

x[t1-n+2]

..

Memory, t=t1 Memory, t2=t1+1

sliding window
x

t1
t

n most 

recent 

values

..

x[t1-1]

x[t1]

x[t1+1]

x[t1-n+2]

..
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Returns largest/smallest number in case of over/underflows

Example:

a 0111

b + 1001

standard wrap around arithmetic (1)0000

saturating arithmetic 1111

(a+b)/2: correct 1000

wrap around arithmetic 0000

saturating arithmetic + shifted 0111

Appropriate for DSP/multimedia applications:
• No timeliness of results if interrupts are generated for overflows

• Precise values less important

• Wrap around arithmetic would be worse.

Saturating arithmetic

„almost correct“
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Multimedia-Instructions/Processors

 Multimedia instructions exploit many registers, adders etc  

that are quite wide (32/64 bit),

 whereas most multimedia data types are narrow

(e.g. 8 bit per color, 16 bit per audio sample per channel)

 2-8 values can be stored per register and added. E.g.:

+

4 additions per instruction; 

carry disabled at word 

boundaries.
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Key idea of very long instruction word 
(VLIW) computers

 Instructions included in long instruction packets.

Instruction packets are assumed to be executed in 

parallel.

 Fixed association of packet bits with functional 

units.
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Very long instruction word (VLIW) architectures

 Very long instruction word

(“instruction packet”) contains several instructions, all of which are 

assumed to be executed in parallel.

 Compiler is assumed to generate these “parallel” packets

 Complexity of finding parallelism is moved from the hardware 

(RISC/CISC processors) to the compiler;

Ideally, this avoids the overhead (silicon, energy, ..) of identifying 

parallelism at run-time.

A lot of expectations into VLIW machines

 Explicitly parallel instruction set computers (EPICs) are an 

extension of VLIW architectures: parallelism detected by compiler, 

but no need to encode parallelism in 1 word.
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Large # of delay slots,

a problem of VLIW processors

add sub and or

sub mult xor div

ld st mv beq
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Large # of delay slots,

a problem of VLIW processors

add sub and or

sub mult xor div

ld st mv beq
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Large # of delay slots,

a problem of VLIW processors

The execution of many instructions has been started before it is 

realized that a branch was required.

Nullifying those instructions would waste compute power

 Executing those instructions is declared a feature, not a bug.

 How to fill all “delay slots“ with useful instructions?

 Avoid branches wherever possible.

add sub and or

sub mult xor div

ld st mv beq
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Predicated execution:

Implementing IF-statements „branch-free“

Conditional Instruction „[c] I“ consists of:

• condition c

• instruction I

c = true  =>  I executed

c = false =>  NOP
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Predicated execution:

Implementing IF-statements „branch-free“: 

TI C6x

if (c)

{ a = x + y;

b = x + z;

}

else

{ a = x - y;

b = x - z;

}

Conditional branch

[c] B L1

NOP 5

B L2

NOP 4

SUB x,y,a

||  SUB x,z,b

L1:        ADD x,y,a

||  ADD x,z,b

L2:

Predicated execution

[c]  ADD x,y,a

|| [c]  ADD x,z,b

|| [!c] SUB  x,y,a

|| [!c] SUB  x,z,b

max. 12 cycles 1 cycle
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EPIC: TMS 320C6xx as an example

31      0

0

Instr. 

A

31      0

0

Instr. 

D

31      0

1

Instr. 

F

31      0

0

Instr. 

G

31      0

1

Instr. 

E

31      0

1

Instr. 

C

31      0

1

Instr. 

B

Cycle Instruction

1 A

2 B C D

3 E F G

Instructions B, C and D use 

disjoint functional units, 

cross paths and other data 

path resources. The same 

is also true for E, F and G.

1 Bit per instruction encodes end of parallel exec.

Parallel execution cannot span several packets.


