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REVIEW: Periodic scheduling

 Given:
 A set of periodic tasks  = {1, …, n} with

• phases i (arrival times of first instances of tasks), 
• periods Ti (time difference between two consecutive activations)
• relative deadlines Di (deadline relative to arrival times of instances) 
• computation times Ci

 j th instance i, j of task i with
• arrival time ai, j = i + (j-1) Ti, 
• deadline di, j = i + (j-1) Ti + Di,

 Find a feasible schedule
• start time si, j and 
• finishing time fi, j

i i

Ci

Ti

Di

i+(j-1)Ti

Instance i, jInstance i, 1

0
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REVIEW: An example for periodic scheduling

1 2

i 0 0
Ti 3 4
Ci 2 2
Di 3 4

 No feasible schedule for single processor.
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REVIEW: Processor utilization 

 Define Ubnd(A) = inf {U() |  is not schedulable by algorithm A}.

 If Ubnd(A) > 0 then a simple, sufficient criterion for schedulability by 
A can be based on processor utilization:
 If U() < Ubnd(A) then  is schedulable by A.
 However, if Ubnd(A) < U() ≤ 1, then  may or may not be schedulable 

by A.

 Theorem: A set of periodic tasks 1, ..., n with Di = Ti is 
schedulable with EDF iff  U  1.
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EDF and processor utilization factor

 Theorem: A set of periodic tasks 1, ..., n with Di = Ti is 
schedulable with EDF iff  U  1.
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Rate monotonic scheduling (RM)

 Rate monotonic scheduling (RM) (Liu, Layland ’73): 
 Assign fixed priorities to tasks i: 

• priority(i) = 1/Ti
• I.e., priority reflects release rate

 Always execute ready task with highest priority
 Preemptive: currently executing task is preempted by newly 

arrived task with shorter period.
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Example for RM (1)

2

3
0     1      2      3     4      5     6      7     8      9     10   11    12

1 2 3

i 0 0 0
Ti 4 6 12
Ci 2 1 4
Di 4 6 12

1
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Example for RM (2)

1 2 3

i 0 0 0
Ti 4 5 10
Ci 2 2 1
Di 4 5 10

0     1      2      3     4      5     6      7     8      9     10   11    12
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Example for RM (2)

1 2 3

i 0 0 0
Ti 4 5 10
Ci 2 2 1
Di 4 5 10

2

3
0     1      2      3     4      5     6      7     8      9     10   11    12

1
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Optimality of Rate Monotonic Scheduling

 Theorem (Liu, Layland, 1973):
RM is optimal among all fixed-priority scheduling 
algorithms.

 Def.: The response time Ri, j of an instance j of task i is 
the time (measured from the arrival time) at which the 
instance is finished: Ri, j = fi, j – ai, j.

 The critical instant of a task is the time at which the 
arrival of the task will produce the largest response time.
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REVIEW: Response times and critical instants

 Observation: 
For RM, the critical instant t of a task i is given by the 
time when i, j arrives together with all tasks 1, ..., i-1
with higher priority.
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Response times and critical instants

 For our “worst case task sets” we focus on the critical 
instants where an instance of a task arrives together 
with all higher priority tasks.

 A task set is schedulable, if the response time at these 
critical instants is not larger than the relative deadline.



- 16 -BF - ES

Non-RM Schedule

2

1

0 T2

Schedule feasible iff C1 + C2  T1
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RM-Schedule

 Let F = T2 / T1 be the number of periods of 1 entirely 
contained in T2.

 Case 1: 
• The computation time C1 is short enough, so that all 

requests of 1 within period of 2 are completed before 
second request of 2.

• I.e. C1 ≤ T2 – F T1

Schedule feasible if (F+1)C1 + C2  T2

2

1

0 FT1 T2
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RM-Schedule

 Case 2: 
• The second request of 2 arrives when 1 is running.
• I.e. C1 ≥ T2 – F T1

Schedule feasible if FC1 + C2  FT1

2

1

0 FT1 T2
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Proof of Liu/Layland
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REVIEW: Processor utilization as a schedulability 
criterion

 Given: a scheduling algorithm A
 Define Ubnd(A) = inf {U() |  is not schedulable by algorithm A}.

 If Ubnd(A) > 0 then a simple, sufficient criterion for schedulability by 
A can be based on processor utilization:
 If U() < Ubnd(A) then  is schedulable by A.
 However, if Ubnd(A) < U() ≤ 1, then  may or may not be schedulable 

by A.
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Computation of Ubnd(RM)

 We focus on task sets with 2 tasks (general case: n tasks) 
 Computation of 

Ubnd(RM, 2) = inf {U() |  is not schedulable by RM, || = 2}.

 Idea:
 Construct set of tasks with following properties:

1. Set of tasks is schedulable by RM.
2. Any increase of computation times makes 

the set of tasks non-schedulable.
3. Processor utilization is minimal under properties 1. and 2. 
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Computation of Ubnd(RM, 2)

Worst case situation constructed for 2 processes: 

0

2

1

idle times
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Computation of Ubnd(RM, 2)

 Consider a set of 2 periodic tasks 1 and 2 with T1 ≤ T2
 priority(1) > priority(2).

 We consider the critical instant when 1 and 2 arrive at 
the same time.

 We construct a worst case scenario where any increase
of computation times destroys schedulability 
and minimize the processor utilization.

This is done  by manipulating
 computation times C1 and C2 and 
 T1 and T2 (more precisely T2 / T1)
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Case 1: C1 ≤ T2 – F T1

2

1

0 FT1 T2
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Case 2: C1 ≥ T2 – F T1

2

1

0 FT1 T2
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Manipulating T2/T1
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Computation of Ubnd(RM)

 Result for two processes:
Any set of two periodic tasks with a processor utilization 
factor ≤ can be scheduled by RM.

 Similarly, for the general case of n processes the 
following can be shown:
Any set of n periodic tasks with a processor utilization 
factor ≤ can be scheduled by RM.Ubnd

Ubnd
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Computation of Ubnd(RM)

 Any set of n periodic tasks with a processor utilization 
factor ≤ can be scheduled by RM.

 Ubnd is decreasing with n and converges to ln 2  0.69
for n  

Ubnd


