
- 1 -BF - ES

Embedded Systems 17

- 2 -BF - ES

REVIEW: Periodic scheduling

 Given:
 A set of periodic tasks  = {1, …, n} with

• phases i (arrival times of first instances of tasks),
• periods Ti (time difference between two consecutive activations)
• relative deadlines Di (deadline relative to arrival times of instances)
• computation times Ci

 j th instance i, j of task i with
• arrival time ai, j = i + (j-1) Ti,
• deadline di, j = i + (j-1) Ti + Di,

 Find a feasible schedule
• start time si, j and
• finishing time fi, j

i i

Ci

Ti

Di

i+(j-1)Ti

Instance i, jInstance i, 1

0

- 3 -BF - ES

REVIEW: An example for periodic scheduling

1 2

i 0 0
Ti 3 4
Ci 2 2
Di 3 4

 No feasible schedule for single processor.

- 4 -BF - ES

REVIEW: Processor utilization

 Define Ubnd(A) = inf {U() |  is not schedulable by algorithm A}.

 If Ubnd(A) > 0 then a simple, sufficient criterion for schedulability by
A can be based on processor utilization:
 If U() < Ubnd(A) then  is schedulable by A.
 However, if Ubnd(A) < U() ≤ 1, then  may or may not be schedulable

by A.

 Theorem: A set of periodic tasks 1, ..., n with Di = Ti is
schedulable with EDF iff U  1.

- 5 -BF - ES

EDF and processor utilization factor

 Theorem: A set of periodic tasks 1, ..., n with Di = Ti is
schedulable with EDF iff U  1.

- 6 -BF - ES

- 7 -BF - ES

- 8 -BF - ES

- 9 -BF - ES

Rate monotonic scheduling (RM)

 Rate monotonic scheduling (RM) (Liu, Layland ’73):
 Assign fixed priorities to tasks i:

• priority(i) = 1/Ti
• I.e., priority reflects release rate

 Always execute ready task with highest priority
 Preemptive: currently executing task is preempted by newly

arrived task with shorter period.

- 10 -BF - ES

Example for RM (1)

2

3
0 1 2 3 4 5 6 7 8 9 10 11 12

1 2 3

i 0 0 0
Ti 4 6 12
Ci 2 1 4
Di 4 6 12

1

- 11 -BF - ES

Example for RM (2)

1 2 3

i 0 0 0
Ti 4 5 10
Ci 2 2 1
Di 4 5 10

0 1 2 3 4 5 6 7 8 9 10 11 12

- 12 -BF - ES

Example for RM (2)

1 2 3

i 0 0 0
Ti 4 5 10
Ci 2 2 1
Di 4 5 10

2

3
0 1 2 3 4 5 6 7 8 9 10 11 12

1

- 13 -BF - ES

Optimality of Rate Monotonic Scheduling

 Theorem (Liu, Layland, 1973):
RM is optimal among all fixed-priority scheduling
algorithms.

 Def.: The response time Ri, j of an instance j of task i is
the time (measured from the arrival time) at which the
instance is finished: Ri, j = fi, j – ai, j.

 The critical instant of a task is the time at which the
arrival of the task will produce the largest response time.

- 14 -BF - ES

REVIEW: Response times and critical instants

 Observation:
For RM, the critical instant t of a task i is given by the
time when i, j arrives together with all tasks 1, ..., i-1
with higher priority.

- 15 -BF - ES

Response times and critical instants

 For our “worst case task sets” we focus on the critical
instants where an instance of a task arrives together
with all higher priority tasks.

 A task set is schedulable, if the response time at these
critical instants is not larger than the relative deadline.

- 16 -BF - ES

Non-RM Schedule

2

1

0 T2

Schedule feasible iff C1 + C2  T1

- 17 -BF - ES

RM-Schedule

 Let F = T2 / T1 be the number of periods of 1 entirely
contained in T2.

 Case 1:
• The computation time C1 is short enough, so that all

requests of 1 within period of 2 are completed before
second request of 2.

• I.e. C1 ≤ T2 – F T1

Schedule feasible if (F+1)C1 + C2  T2

2

1

0 FT1 T2

- 18 -BF - ES

RM-Schedule

 Case 2:
• The second request of 2 arrives when 1 is running.
• I.e. C1 ≥ T2 – F T1

Schedule feasible if FC1 + C2  FT1

2

1

0 FT1 T2

- 19 -BF - ES

Proof of Liu/Layland

- 20 -BF - ES

- 21 -BF - ES

REVIEW: Processor utilization as a schedulability
criterion

 Given: a scheduling algorithm A
 Define Ubnd(A) = inf {U() |  is not schedulable by algorithm A}.

 If Ubnd(A) > 0 then a simple, sufficient criterion for schedulability by
A can be based on processor utilization:
 If U() < Ubnd(A) then  is schedulable by A.
 However, if Ubnd(A) < U() ≤ 1, then  may or may not be schedulable

by A.

- 22 -BF - ES

Computation of Ubnd(RM)

 We focus on task sets with 2 tasks (general case: n tasks)
 Computation of

Ubnd(RM, 2) = inf {U() |  is not schedulable by RM, || = 2}.

 Idea:
 Construct set of tasks with following properties:

1. Set of tasks is schedulable by RM.
2. Any increase of computation times makes

the set of tasks non-schedulable.
3. Processor utilization is minimal under properties 1. and 2.

- 23 -BF - ES

Computation of Ubnd(RM, 2)

Worst case situation constructed for 2 processes:

0

2

1

idle times

- 24 -BF - ES

Computation of Ubnd(RM, 2)

 Consider a set of 2 periodic tasks 1 and 2 with T1 ≤ T2
 priority(1) > priority(2).

 We consider the critical instant when 1 and 2 arrive at
the same time.

 We construct a worst case scenario where any increase
of computation times destroys schedulability
and minimize the processor utilization.

This is done by manipulating
 computation times C1 and C2 and
 T1 and T2 (more precisely T2 / T1)

- 25 -BF - ES

Case 1: C1 ≤ T2 – F T1

2

1

0 FT1 T2

- 26 -BF - ES

- 27 -BF - ES

Case 2: C1 ≥ T2 – F T1

2

1

0 FT1 T2

- 28 -BF - ES

- 29 -BF - ES

Manipulating T2/T1

- 30 -BF - ES

- 31 -BF - ES

- 32 -BF - ES

- 33 -BF - ES

Computation of Ubnd(RM)

 Result for two processes:
Any set of two periodic tasks with a processor utilization
factor ≤ can be scheduled by RM.

 Similarly, for the general case of n processes the
following can be shown:
Any set of n periodic tasks with a processor utilization
factor ≤ can be scheduled by RM.Ubnd

Ubnd

- 34 -BF - ES

Computation of Ubnd(RM)

 Any set of n periodic tasks with a processor utilization
factor ≤ can be scheduled by RM.

 Ubnd is decreasing with n and converges to ln 2  0.69
for n  

Ubnd

