
- 1 -BF - ES

Embedded Systems 17

- 2 -BF - ES

REVIEW: Rate monotonic scheduling (RM)

 Rate monotonic scheduling (RM) (Liu, Layland ’73):
 Assign fixed priorities to tasks i:

• priority(i) = 1/Ti
• I.e., priority reflects release rate

 Always execute ready task with highest priority
 Preemptive: currently executing task is preempted by newly

arrived task with shorter period.

- 3 -BF - ES

REVIEW: Optimality of Rate Monotonic Scheduling

 Theorem (Liu, Layland, 1973):
RM is optimal among all fixed-priority scheduling
algorithms.

 Def.: The response time Ri, j of an instance j of task i is
the time (measured from the arrival time) at which the
instance is finished: Ri, j = fi, j – ai, j.

 The critical instant of a task is the time at which the
arrival of the task will produce the largest response time.

- 4 -BF - ES

REVIEW: Schedulability check

 A set of tasks can be scheduled by RM if
U < Ubnd(RM) = ln 2  0.69

 But what can we say about schedulability when
processor utilization factor is larger than ?

 We can compute a more precise result, if we make use
of the knowledge of periods Ti and computation times Ci.

- 5 -BF - ES

Schedulability check

 Compute an upper bound Ri on the response time:

 Suppose that 1, ..., n are ordered with increasing
periods (i.e. decreasing priorities).

 Consider an arbitrary periodic task i.
 At a critical instant t, when an instance of i arrives

together with all higher priority tasks, we have:
• Ri = Ci + k=1

i-1 (# activations of k during [t, t + Ri])  Ck
= Ci + k=1

i-1 Ri/Tk  Ck

- 6 -BF - ES

Schedulability check

 Compute the following sequence:
 Ri

(0) = Ci.
 Ri

(j+1) = Ci + k=1
i-1 Ri

(j) / Tk  Ck.

 It is easy to see that this sequence is monotonically
increasing, i.e., f(x) = Ci + k=1

i-1 x / Tk  Ck is
monotonically increasing.

  If a least fixed point of f(x) exists, then the sequence
converges to this fixed point.

- 7 -BF - ES

Schedulability check

Algorithm:

 i: Ri
(0) = Ci

repeat

 i: Ri
(j+1) = Ci + k=1

i-1  Ri
(j) / Tk   Ck

until ( i with Ri
(j+1) > Di) or ( i Ri

(j+1) = Ri
(j));

if ( i Ri
(j+1) = Ri

(j)) then
report (“RM schedulable”);

- 8 -BF - ES

Example
1 2 3 4

Ti 4 5 6 11
Ci 1 1 2 1
Di 3 4 5 10

- 9 -BF - ES

Example
1 2 3 4

Ti 4 5 6 11
Ci 1 1 2 1
Di 3 4 5 10

- 10 -BF - ES

Summary

 Problem of scheduling independent and preemptable
periodic tasks

 Rate monotonic scheduling:
 Optimal solution among all fixed-priority schedulers
 Schedulability of n tasks guaranteed, if processor utilization

 Earliest deadline first:
 Optimal solution among all dynamic-priority schedulers
 Schedulability guaranteed if processor utilization U  1.

- 11 -BF - ES

Rate Monotonic Scheduling
in Presence of Task Dependencies

- 12 -BF - ES

Wait state caused by resource constraints

ready run

wait

activation termination

signal wait

• Each mutually exclusive resource Ri
is protected by a semaphore Si.

• Each critical section operating on Ri
must begin with a wait(Si) primitive
and end with a signal(Si) primitive.

• wait primitive on locked semaphore
 wait state until another task executes signal primitive

dispatching

preemption

- 13 -BF - ES

The priority inversion problem

 Priority inversion can occur due to resource conflicts
(exclusive use of shared resources) in fixed priority
schedulers like RM:

normal execution critical region
priority(J1) > priority(J2)

 Here: Blocking time equal to length of critical section.

J1

J2

J1 blocked

- 14 -BF - ES

The priority inversion problem

normal execution critical region
priority(J1) > priority(J2) > priority(J3)

 Blocking time equal to length of critical section +
computation time of J2.

 Unbounded time of priority inversion, if J3 is interrupted
by tasks with priority between J1 and J3 during its critical
region.

J1

J2

J1 blocked

J3

- 15 -BF - ES

Priority inversion in real life:
The MARS Pathfinder problem (1)

“But a few days into the mission, not long
after Pathfinder started gathering
meteorological data, the spacecraft
began experiencing total system resets,
each resulting in losses of data. The
press reported these failures in terms
such as "software glitches" and "the
computer was trying to do too many
things at once".” …

- 16 -BF - ES

Priority inversion in real life:
The MARS Pathfinder problem

normal execution critical region

priority(J1) > priority(J2) > priority(J3)

J1

J2

J1 blocked

J3

Reset by watchdog timer

- 17 -BF - ES

Coping with priority inversion:
The priority inheritance protocol

Idea of priority inheritance protocol:
 If a task Jh blocks, since another task Jl with lower priority owns

the requested resource, then Jl inherits the priority of Jh.
 When Jl releases the resource, the priority inheritance from Jh is

undone.
 Rule: Tasks always inherit the highest priority

of tasks blocked by it.

- 18 -BF - ES

Direct vs. push-through blocking

 Direct blocking: High-priority job tries to acquire resource already
held by lower-priority job

 Push-through blocking: Medium-priority job is blocked by lower-
priority job that has inherited a higher priority.

J1

J2

J3

- 19 -BF - ES

Transitive priority inheritance

J1

J2

J3

Priority of J3

- 20 -BF - ES

Priority inheritance for the Pathfinder example

normal execution critical region

priority(J1) > priority(J2) > priority(J3)

J1

J2

J1 blocked

J3

NO reset by watchdog timer

J3 inherits priority of J1

- 21 -BF - ES

Priority inversion on Mars

 Priority inheritance also solved the Mars Pathfinder
problem:
 the VxWorks operating system used in the pathfinder

implements a flag for the calls to mutual exclusion primitives.
 This flag allows priority inheritance to be set to “on”.
 When the software was shipped, it was set to “off”.

The problem on Mars was corrected
by using the debugging facilities of
VxWorks to change the flag to “on”,
while the Pathfinder was already on

the Mars [Jones, 1997].

- 22 -BF - ES

Schedulability check

Let Bi be the maximum blocking time due to lower-priority
jobs that a job Ji may experience.

 i: Ri
(0) = Ci

repeat

 i: Ri
(j+1) = Ci + Bi + k=1

i-1  Ri
(j) / Tk   Ck

until ( i with Ri
(j+1) > Di) or ( i Ri

(j+1) = Ri
(j));

if ( i Ri
(j+1) = Ri

(j)) then
report(“RM schedulable”);

- 23 -BF - ES

Blocking Time Computation

 Precise algorithm based on exhaustive search: exponential cost

 Here: approximative solution
 Assumption: no nested critical sections

Lemma: Transitive priority inheritance can only occur in the presence
of nested critical sections.

- 24 -BF - ES

Blocking Time

priority ceiling C(S)=priority of the highest-priority job that can lock S

Theorem: In the absence of nested critical sections,
a critical section of job J guarded by semaphore S
can only block job J‘
if priority(J) < priority(J‘)  C(S).

- 25 -BF - ES

Blocking Time

 Dj,k: duration of longest critical section of task j,
guarded by semaphore Sk

 Blocking Time

 Bi  n
j=i+1 maxk[Dj,k : C(Sk)Pi]

 Bi  m
k=1 maxj>i[Dj,k : C(Sk)Pi]

where the task set consists of n periodic tasks that
use m distinct semaphores.

- 26 -BF - ES

Example Dik = * : task I does not
use semaphore Sk

Dik Sa Sb Sc

1 1 1 *
2 * 8 2
3 7 6 *
4 5 4 3

- 27 -BF - ES

Problem: Chained Blocking

J1

J2

J3

- 28 -BF - ES

Problem: Deadlock

J1

J2

J1:

wait(Sa)

signal(Sa)

wait(Sb)

signal(Sb)

J2:

wait(Sb)

signal(Sb)

wait(Sa)

signal(Sa)

- 29 -BF - ES

Priority Ceiling Protocol

 The processor is assigned to a ready job J with highest priority.

 To enter a critical section, J needs priority > C(S*),
where S* is the currently locked semaphore with max C.
 otherwise J „blocks on semaphore“ and

priority of J is inherited by job J‘ holding S*.

 When J‘ exits critical section, its priority is updated to the highest
priority of some job that is blocked by J‘ (or to the nominal priority if
no such job exists).

- 30 -BF - ES

Example

J1

J2

J3

Priority of J3

S1

S2

S3

- 31 -BF - ES

Priority Ceiling Protocol

Theorem (Sha/Rajkumar/Lehoczky): Under the Priority
Ceiling Protocol, a job can be blocked for at most the
duration of one critical section.

- 32 -BF - ES

Priority Ceiling Protocol

The Priority Ceiling Protocol prevents deadlocks.

