
- 1 -BF - ES

Embedded Systems 19

- 2 -BF - ES

REVIEW: Priority Ceiling Protocol

 The processor is assigned to a ready job J with highest priority.

 To enter a critical section, J needs priority > C(S*),
where S* is the currently locked semaphore with max C.
 otherwise J „blocks on semaphore“ and

priority of J is inherited by job J‘ holding S*.

 When J‘ exits critical section, its priority is updated to the highest
priority of some job that is blocked by J‘ (or to the nominal priority if
no such job exists).

- 3 -BF - ES

Example

J1

J2

J3

Priority of J3

S1

S2

S3

- 4 -BF - ES

Priority Ceiling Protocol

Theorem (Sha/Rajkumar/Lehoczky): Under the Priority
Ceiling Protocol, a job can be blocked by at most one
lower priority task.

- 5 -BF - ES

Priority Ceiling Protocol

The Priority Ceiling Protocol prevents deadlocks.

- 6 -BF - ES

Incorporating aperiodic tasks

 In real systems, not all tasks are periodic
 Environmental events to be processed
 Exceptions raised
 Background tasks running whenever CPU time budget permits

 Thus, real systems tend to be a combination of
 periodic and
 aperiodic tasks

and of
 hard real-time and
 soft real-time tasks.

- 7 -BF - ES

Aperiodic and periodic tasks together (1)

 Aperiodic and periodic tasks together
 can be handled by dynamic-priority schedulers like EDF

 Problem:
 Off-line guarantees can not be given without assumptions on

aperiodic tasks.
 If deadlines for aperiodic tasks are hard, aperiodic tasks need to

be characterized by a minimum interarrival time between
consecutive instances
 bounds on the aperiodic load

 Aperiodic tasks with maximum arrival rate may be modeled as
periodic tasks with this rate

 periodic scheduling
 Aperiodic tasks with maximum arrival rate are called sporadic

tasks.

- 8 -BF - ES

Aperiodic and periodic tasks together (2)

 Other solutions for the case that periodic tasks have
hard deadlines, aperiodic tasks have soft deadlines.

 Simplest solution: Background scheduling
• Aperiodic tasks are only executed when no periodic task is

ready
• Guarantees for periodic tasks do not change
• Only applicable when load is not too high

 Other solutions:
• Define new periodic tasks, a so-called server
• Aperiodic tasks are executed during “execution time” of

server process
• Independent scheduling strategies possible for periodic

tasks and aperiodic tasks “inside the server”

- 9 -BF - ES

Multiprocessor scheduling

- 10 -BF - ES

EDF with multiple processors?

- 11 -BF - ES

Multiprocessor Scheduling

Given
 n equivalent processors,
 a finite set M of aperiodic/periodic tasks
find a schedule such that each task always meets its deadline.

Assumptions:
 Tasks can freely be migrated between processors

 at any integer time instant, without overhead
 however: no task may run on two processors simultaneously

 All tasks are preemptable
 at any integer time instant, without overhead

- 12 -BF - ES

Game-theoretic problem formulation

 Associate possible states of the system with positions
on a game board.

 Associate choices one can influence in order to solve
the problem with own moves on the game board.

 Associate choices one cannot influence with
opponent‘s moves.

 Identify feasible solutions with winning positions.

Problem solution: find a winning strategy

- 13 -BF - ES

Game-board representation

- 14 -BF - ES

Game-board representation

- 15 -BF - ES

Game-board representation

- 16 -BF - ES

Game-board representation

- 17 -BF - ES

Game-board representation

- 18 -BF - ES

Game-board representation

- 19 -BF - ES

Game-board representation

- 20 -BF - ES

Extensions

 Resource conflicts: restricted move rules

 Precedence constraints: restricted move rules

 Periodic tasks: opponent‘s moves insert new nodes;
game won if no task ever reaches second quadrant

- 21 -BF - ES

Game-theoretic solution

Theorem: In games with
 finitely many positions on the game board, and
 complete information
there is a always a winning strategy for one of the two players;

it can be constructed effectively.

However: high complexity  predefined strategies preferred.

- Start with the losing positions
- Add all positions where we cannot avoid

moving into this set
- Add all positions wher the opponent can move

into this set
- Repeat until no more change

- 22 -BF - ES

LLF (Least Laxity First)

LLF is optimal.

- 23 -BF - ES

Schedulability

Within a set M of aperiodic tasks, we identify three classes
with respect to the next k time units starting at time t:

- 24 -BF - ES

Surplus computing power

Lemma: SCP(0,k)0 for all k>0 is a necessary condition
for schedulability.

- 25 -BF - ES

Online scheduling?

Theorem: There can be no optimal scheduling algorithm if
the release times are not known a priori.

- 26 -BF - ES

