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REVIEW: LLF (Least Laxity First)

Remaining

: , When tasks are released, they are inserted
computation time

into the game board according to their WCET
and laxity (= deadline — remain. comp. time).

In every time scheduling step / turn of the game:
— at most n nodes go down by 1
— the rest moves 1 to the left

LLF is optimal.
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REVIEW: Schedulability HERYIN
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Within a set M of aperiodic tasks, we identify three classes

with respect to the next k time units starting at time t:

1. Tasks that have to be fully run within the next k time units:
FR{t, k) ={i € M | Dy(t) <k}

2. Tasks that have to be partially run within the next k time units:

PR(t, k) ={ie M | L{(t) <k AD;yt) >k}

3. Tasks that need not be run within the next k time units:

NN(t, k) ={i e M| Li(t) > k}
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Surplus computing
power

Theorem: If all tasks are released at time 0, then
SCP(0,k)>0 for all k>0 is a necessary and sufficient
condition for schedulability.
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Periodic tasks

Theorem: A necessary and sufficient condition for the
schedulability of periodic tasks is that U < n.
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Scheduling idea

1. Divide the time line into time slices such that each period of each process is
divided into an integral number of time slices.
Slice length T = GCD(T;y, ..., T,,).
. Within each time slice, allocate processor time in proportion to the
utilization U; = <~ originating from the various tasks.

Processing time per slice r; = TU; =T ({_‘; :

Hence, each task runs +ir; = LLT&L — C; time units within its period.
i T 1

. Allocate r; according to the following algorithm
(a) Look for the first processor proc; that has free capacity in its time slices.
(b) Allocate that portion of r; to proc; that proc; can accommodate.
(c) If all of r; has been allocated then proceed with the next task (goto step
a).
(d) Otherwise allocate the remainder of r; to proc; ;.
proc;1 has enough spare capacity as it has not previously been usead

and r; < T dueto U; < 1. Furthermore, due to r; < T, we don't
generate temporal overlap between the two partial runs of task i.




Example (2 processors) T | Ty | Ts
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Scheduling idea

This scheme works If
* the load isn’t too high:

Cs
U=2 3 sn
cM

1

and
* the time slices allocated have integral length:

ri:Tui:T%eNforeachieM




Rescheduling fractional parts

u Let Xi — T*Ci/Ti - LT*CI/T|J

* |n each period,
allocate in Xi * Ti/T slices: [ T*C/T J+1 units
and in all other slices: L T*C/T.] units

= This can be done without allowing any task to miss its
deadline: use EDF!
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Example (2 processors) T | Ty | Ts
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