Embedded Systems

A e s U e A e e e

BF - ES

20

REVIEW: LLF (Least Laxity First)

Remaining

: , When tasks are released, they are inserted
computation time

into the game board according to their WCET
and laxity (= deadline — remain. comp. time).

In every time scheduling step / turn of the game:
— at most n nodes go down by 1
— the rest moves 1 to the left

LLF is optimal.

/)

REVIEW: Schedulability HERYIN
\1&\/—7

K
Within a set M of aperiodic tasks, we identify three classes

with respect to the next k time units starting at time t:

1. Tasks that have to be fully run within the next k time units:
FR{t, k) ={i € M | Dy(t) <k}

2. Tasks that have to be partially run within the next k time units:

PR(t, k) ={ie M | L{(t) <k AD;yt) >k}

3. Tasks that need not be run within the next k time units:

NN(t, k) ={i e M| Li(t) > k}

BF - ES 3.

SR)

Surplus computing
power

Theorem: If all tasks are released at time 0, then
SCP(0,k)>0 for all k>0 is a necessary and sufficient
condition for schedulability.

Ue slov Kok 1o deadlds on g WO‘L“J LY,

A) Scf ccdc)/';/ ?a\xu e (maxd DEY
=)
W
‘t k 7 O V . S
2) SC'E 6’7 igc\? C/k*’/\l(/\) 7/6 go;kéo\/\&»o«-\ C as
(143
A) ser (T2 o (t) +L

A N SRR L) et (e

SR)

Ay
(o ¥ k20 Bl st

SCG C‘V’r/l/\/(v 2, SCP ({’k()
Care A0 fL et L A Lok e el
U\
Pl
:
i
L

o+ ??‘6%- C;M\\»:\;w%‘” o v &S
T e W - e i)
o e P b Tl h,ﬁwa [+C=K

pr s krla ooy seR s Sep Cer k)

\\\ ‘; ~ Scf(erkrl)
»\\:

BF - ES k! - 6-

SR)

(1‘7)1 LLE o« folee, tuit L mad Aocvnied
M4 L= ¢,

o Pl v Le (,«Q’r/ﬂ)"' UL«/\-\E‘;{E{:))
- - —
=
” ‘ = ASC? =
L PR et) =/

BF - ES o

SR)

BF - ES . 8-

Periodic tasks

Theorem: A necessary and sufficient condition for the
schedulability of periodic tasks is that U < n.

BF - ES

Scheduling idea

1. Divide the time line into time slices such that each period of each process is
divided into an integral number of time slices.
Slice length T = GCD(T;y, ..., T,,).
. Within each time slice, allocate processor time in proportion to the
utilization U; = <~ originating from the various tasks.

Processing time per slice r; = TU; =T ({_‘; :

Hence, each task runs +ir; = LLT&L — C; time units within its period.
i T 1

. Allocate r; according to the following algorithm
(a) Look for the first processor proc; that has free capacity in its time slices.
(b) Allocate that portion of r; to proc; that proc; can accommodate.
(c) If all of r; has been allocated then proceed with the next task (goto step
a).
(d) Otherwise allocate the remainder of r; to proc; ;.
proc;1 has enough spare capacity as it has not previously been usead

and r; < T dueto U; < 1. Furthermore, due to r; < T, we don't
generate temporal overlap between the two partial runs of task i.

Example (2 processors) T | Ty | Ts

T|4|8]|6
Z § } C|2|8]|3
= — x — &4 -
h=% r§ *2 =2
- }coute,&’lé)cz.
each &
T, lhes W T ,
2 N LW.\o
T, \Acn L'T{ - |
1 or 2'§- = A
C
:Lr—’:l‘k *:{/\ T)_.
== =
3 U

BF -ES - 11-

Scheduling idea

This scheme works If
* the load isn’t too high:

Cs
U=2 3 sn
cM

1

and
* the time slices allocated have integral length:

ri:Tui:T%eNforeachieM

Rescheduling fractional parts

u Let Xi — T*Ci/Ti - LT*CI/T|J

* |n each period,
allocate in Xi * Ti/T slices: [T*C/T J+1 units
and in all other slices: L T*C/T.] units

= This can be done without allowing any task to miss its
deadline: use EDF!

BF - ES

- 13-

Example (2 processors) T | Ty | Ts

T|4|6]4
(A_Z;,F.Lf.—\—z_—:_zl(_fLCiZLls
T (¥
| = a,c<l<q(C‘L() =2
n chA g«({c*.
l - |22)= hiwe vF
T, = ‘Tq ~ LS{J: A Hwe st
T e LZ'E’.J LCC ~ N ki~ it
. e Ll'fr): ;J ”
Nk oo \
1, Ty b e e 3 b

BF - ES _(3

T WT T |
LT USRIy T

BF - ES

- 15 -

