
Embedded Systems 3

- 2 -BF - ES

REVIEW: StateCharts

 Hierarchy

 Concurrency

Statechart SC

- 3 -BF - ES

REVIEW: General form of edge labels

Meaning:
 Transition may be taken, if event occurred in last step and

condition is true

 If transition is taken, then reaction is carried out.

Conditions:
 Refer to values of variables

Actions:
 Can either be assignments for variables or creation of events

Example:
 a & [x = 1023] / overflow; x:=0

event [condition] / action

- 4 -BF - ES

REVIEW: History and deep history

S

DC CO

ID OP

SL FA

Default states

Active states
H

History connectors

remember states

at the same level

as the history

connector!

- 5 -BF - ES

Concurrency

 AND-super-states: FSM is in all (immediate) sub-

states of a AND-super-state; Example:

- 6 -BF - ES

Concurrency

 Example for active states:

answ.

off on

l-m. k-m.

K.w

.

K.p.

Default states

Active states

L.w. L.p.

AND-super-state

- 7 -BF - ES

Benefits of AND-decomposition

- 8 -BF - ES

Entering and leaving AND-super-states

 Line-monitoring and key-monitoring are entered and left,

when key-on and key-off events occur.

incl.

- 9 -BF - ES

Types of states

In StateCharts, states are either

 basic states, or

 AND-super-states, or

 OR-super-states.

- 10 -BF - ES

Timers

 In StateCharts, special edges can be used for

timeouts.

If event a does not happen while the system is in the left

state for 20 ms, a timeout will take place.

- 11 -BF - ES

Using timers in answering machine

- 12 -BF - ES

Condition connector

- 13 -BF - ES

Connectors

 Example: Traffic light control with two programs

- 14 -BF - ES

Join and Fork Connectors

- 15 -BF - ES

Compound transitions

t1 and t2 must

be executed

together

- 16 -BF - ES

Semantics of StateCharts

 Execution of a StateChart model consists of a sequence

of steps

 A step leads from one status to another

 One step:

 Given:

• Current system status si

• Current time t

• External changes 

 Find:

• New status si+1

- 17 -BF - ES

External changes

 External data and external events constitute the

interface between system and environment.

 The environment provides external events at certain

times and changes external data at certain times.

 External events not yet seen in the previous step and

changes of external data not seen in the previous step

are called external changes for the current step.

- 18 -BF - ES

Status of the system

The current status of the system is given by

 set of active states

 current values of variables

 the generated events from previous step

 the values of the history connectors

 set of all timeout events <tm(e, d), n> in the state chart

with „emission times“ n (times n are initially set to 1)

 set of currently scheduled actions <sc(a, d), n> with their

times n

- 19 -BF - ES

StateMate Semantics

Three phases

1. Effect of external changes on events and conditions is

evaluated

2. The set of transitions to be made in the current step

and right-hand side of assignments are computed

3. Transitions become effective, variables obtain new

values

http://www-03.ibm.com/software/products/en/ratistat

http://www-03.ibm.com/software/products/en/ratistat

- 20 -BF - ES

Example

 In part 2, variables a and b are assigned to temporary
variables. In part 3, these are assigned to a and b. As a
result, variables a and b are swapped.

 Without this separation, executing the left state first
would assign the old value of b (=0) to a and b.
Executing the right state first would assign the old value
of a (=1) to a and b. The execution of parallel assignment
would be nondeterministic.

- 21 -BF - ES

Reflects model of clocked hardware

 In an actual clocked (synchronous) hardware system,

both registers would be swapped as well.

Same separation into phases found in other languages

as well, especially those that are intended to model

hardware.

- 22 -BF - ES

Other semantics

 Several other specification languages for hierarchical

state machines (e.g., UML) do not include the three

simulation phases

 Corresponds more to a software point of view without

synchronous clocks.

 Some simulation tools can be run with optional multi-

phased simulation.

- 23 -BF - ES

Broadcast mechanism

 Values of variables are visible to all parts of the StateChart

model.

 New values become effective in part 3 of the execution

stage for the current step and are obtained by all parts of

the model in the following step.

 StateCharts implicitly assumes a broadcast mechanism

for variables.

 StateCharts is appropriate for local control systems (),

but not for distributed applications for which updating

variables might take some time ().

- 24 -BF - ES

Time models

 External events and external changes of variables are

associated with physical times.

 But how does time proceed internally?

 How many steps are performed before external changes

are evaluated?

- 25 -BF - ES

The synchronous time model

 A single step every time unit.

 If the current step is executed at time t, then the next

step is executed at time t+1.

 Events and variable changes are communicated

between different states during one time unit.

 External changes are only accumulated during one time

unit.

- 26 -BF - ES

Models of time in statecharts

 Synchronous time model

 Assume single step executed every time unit

 Reacts to external changes occurred since end of previous step

 Asynchronous time model

 Reacts when external changes occur

 Allows several changes to occur simultaneously

 Allows several steps at once – superstep

 In both models, execution of step takes zero time

- 27 -BF - ES

The super-step time model (1)

 A step of the statechart does not need time.

 Super-steps are performed:

 A super-step is a sequence of steps.

 A super-step terminates when the status of the system is stable.

 During a super-step the time does not proceed and thus external

changes are not considered.

 After a super-step, physical time restarts running, i.e.

activity of the environment will be possible again.

 The computation of the statechart is resumed when

 external changes enable transitions in the statechart

 Timeout events enable transitions of the statechart

- 28 -BF - ES

The super-step time model (2)

 In STATEMATE, GO-REPEAT command executes

superstep

 Semantics for GO-REPEAT

 Execute external changes since end of last step

 Execute timeout and scheduled actions that are due

 Execute basic step algorithm until system in stable state (no

generated events, no enabled compound transitions, static

reactions)

 GO-REPEAT may result in infinite loop

- 29 -BF - ES

The super-step time model (3)

 Two-dimensional time:

 Assumption: Computation time is neglegible compared to dynamics of
the environment.

- 30 -BF - ES

The super-step time model (4)

 During one super-step the number of communications
between different states is not restricted. All
communications are assumed to be performed in zero
time.

 Simplified model of reality.

 Can only be realistic, if
 Discrete computations are fast compared to dynamics of the

environment.

 Discrete computations will be stable after a restricted number of
steps.

 Timeout events can reactivate a statechart
 Possible to specify statecharts which permit progress of

physical time after a limited number of steps and reactivate
themselves via timeout events

- 31 -BF - ES

Evaluation of StateCharts (1)

Pros:

 Hierarchy allows arbitrary nesting of AND- and OR-
superstates.

 Formal semantics (defined in a follow-up paper to original
paper).

 Large number of commercial simulation tools available
(StateMate, StateFlow, BetterState, ...)

 Available „back-ends“ translate StateCharts into C or
VHDL, thus enabling software or hardware
implementations.

- 32 -BF - ES

Evaluation of StateCharts (2)

Cons:

 Generated C programs frequently inefficient,

 Not useful for distributed applications,

 No program constructs,

 No description of non-functional behavior,

 No object-orientation,

 No description of structural hierarchy.

- 33 -BF - ES

Some general properties of languages

1. Synchronous vs. asynchronous languages

 Description of several (concurrent) processes in many
languages non-deterministic:
The order in which executable tasks are executed is not
specified (may affect result).

 Synchronous languages: based on automata models.
They describe concurrently operating automata. When
automata are composed in parallel, a transition of the
product is made of the "simultaneous" transitions of all of
them.

 Synchronous languages implicitly assume the presence of

a (global) clock. Each clock tick, all inputs are considered,

new outputs and states are calculated and then the

transitions are made.

- 34 -BF - ES

 This requires a broadcast mechanism for all parts of the

model.

 Idealistic view of concurrency.

 Has the advantage of guaranteeing deterministic behavior.

 Statechart steps work synchronously.

 Broadcast of events and variable changes during each step.

 StateCharts are deterministic, if priority rules are introduced for

transitions enabled at the same time.

Some general properties of languages

1. Synchronous vs. asynchronous languages

- 35 -BF - ES

Some general properties of languages

2. Properties of processes

 Number of processes

static (suitable for hardware);

dynamic (dynamically changed hardware architecture)

 Nested declaration of processes

or all declared at the same level

  StateCharts comprises a static number of

processes and nested declaration of processes.

- 36 -BF - ES

Some general properties of languages

3. Communication paradigms

 Message passing
 Asynchronous message passing = non-blocking

communication
Sender does not have to wait until message has arrived; potential
problem: buffer overflow

 Synchronous message passing = blocking communication,
rendez-vous-based communication
Sender will wait until receiver is ready for receiving message
(“point of communication”)

 Extended rendez-vous
Explicit acknowledge from receiver required. Receiver can do
checking before sending acknowledgement.

- 37 -BF - ES

Some general properties of languages

3. Communication paradigms

 Shared memory

Variables accessible to several tasks

 Problem: Concurrent write.

 Critical sections = sections at which exclusive access to some

resource r must be guaranteed.

 StateCharts uses shared memory for communication

between processes.

- 38 -BF - ES

Some general properties of languages

4. Specifying timing

4 types of timing specs required [Burns, 1990]:

 Measure elapsed time

Check, how much time has elapsed since last call

 Means for delaying processes

 Possibility to specify timeouts

We would like to be in a certain state only a certain

maximum amount of time.

 Methods for specifying deadlines

With current languages not available or specified in

separate control file.

 StateCharts comprises a mechanism for specifying

timeouts. Other types of timing specs are not

supported.

- 39 -BF - ES

Synchronous Composition

 Important semantic model for concurrent composition

 Here: composition of actors

 Foundation of Statecharts, Simulink,

synchronous programming languages

 Esterel

 Lustre

 Scade

 Idealistic view of concurrency, not adequate for

distributed systems (Implicit assumption: presence of

global clock and instant communication;

requires broadcast mechanism)

Lee/Seshia

Section 6.2

- 40 -BF - ES

Goal: deterministic behavior

An important advantage of synchronous over asynchronous
composition is that determinacy can be preserved.

In the following, we’ll assume that the individual actors are
deterministic, and ensure that the composition remains
deterministic.

For example, StateCharts are deterministic, if priority rules
are introduced for transitions enabled at the same time (see,
for example, the Stateflow semantics.)

- 41 -BF - ES

REVIEW: Actor Model for State Machines

Expose inputs and outputs, enabling composition:

- 42 -BF - ES

REVIEW: Actor Model of Continuous-Time Systems

A system is a function that

accepts an input signal and

yields an output signal.

The domain and range of the

system function are sets of

signals, which themselves are

functions.

Parameters may affect the

definition of the function S.

- 43 -BF - ES

Synchronous composition

Synchronous composition: the machines react

simultaneously and instantaneously, despite the apparent

causal relationship!

- 44 -BF - ES

Synchronous composition:

Reactions are simultaneous and instantaneous

- 45 -BF - ES

Synchronous composition:

Reactions are simultaneous and instantaneous

unreachable

