
- 1 -BF - ES

Embedded Systems 7

- 2 -BF - ES

Production system
A modelbased realtime faultdiagnosis

system for technical processes

Ch. Steger, R. Weiss

- 3 -BF - ES

Sprout Counter Flow Pipeline-Processor

 Based on a stream of data packages

and a stream of instructions

compute

 Data and instructions arrive asynchronously

 Execution times of instructions vary

 Data flows from left to right

 Instructions flow from right to left

Wolfgang Reisig: Petrinetze, Springer 2010

- 4 -BF - ES

Module

receive data

pass instr

no instr

instr

pass data

reorganize

receive instr

compute

no data

data

instr

fresh
data

done
data

fresh

instr

done

- 5 -BF - ES

Analysis

Place invariants:

A + H + E + D = 2

B + D = 1

Hence, if A and H are marked,

B must also be marked.

The edges between B and c can be removed.

(Analogously for C and f.)

- 6 -BF - ES

Invariants & boundedness

 A net is covered by place invariants

iff every place is contained in some invariant.

Theorem 1:

a) If R is a place invariant and p  R, then p is bounded.

b) If a net is covered by place invariants then it is

bounded.

- 7 -BF - ES

Module

receive data

pass instr

no instr

instr

pass data

reorganize

receive instr

compute

no data

data

instr

fresh
data

done
data

fresh

instr

done

- 8 -BF - ES

Composition of modules

- 9 -BF - ES

REVIEW: Place/transition nets

Def.: (P, T, F, K, W, M0) is called a place/transition net (P/T net) iff

1. N=(P,T,F) is a net with places P and transitions T

2. K: P  (N0  {}) \{0} denotes the capacity of places

( symbolizes infinite capacity)

3. W: F (N0 \{0}) denotes the weight of graph edges

4. M0: P  N0 {} represents the initial marking of places

W

M0

(Segment of some net)
default:

K = 

W = 1

multiple tokens per place

- 10 -BF - ES

REVIEW: Reachability

- 11 -BF - ES

REVIEW: Liveness

 A transition is live if in every reachable marking there

exists a firing sequence such that the transition

becomes enabled

 A net is live if all its transitions are live

- 12 -BF - ES

REVIEW: Deadlock

 A dead marking (deadlock) is a marking where no

transition can fire

 A net is deadlock-free if no dead marking is reachable

- 13 -BF - ES

Reachability,

Liveness,

Deadlock

are graph problems

on reachability graph

Reachability graph:

- 14 -BF - ES

Reachability graph is in general infinite

Example from Wolfgang Reisig: Petrinetze, Springer 2010

- 15 -BF - ES

Coverability graph

Example from Wolfgang Reisig: Petrinetze, Springer 2010

- 16 -BF - ES

Coverability graph

Example from Wolfgang Reisig: Petrinetze, Springer 2010

 indicates that arbitrarily

high values can be reached:

for every bound n there is a

reachable marking M with

M(p) > n

- 17 -BF - ES

Constructing the coverability graph

 The initial graph consists of the initial marking M0

 Extend the graph as long as there exists a node M

such that

 a transition t can fire from M leading to some marking M’

 but there is no outgoing edge from M labeled with t

Create a t-labeled edge from M to M’’, where M” is defined as

follows:

M’’(p) =  if there exists a path from M0 to M through some node L

with L  M‘ and L(p) < M‘(p)

M’’(p) = M’(p) otherwise

- 18 -BF - ES

Coverability graph is not unique

Example from Wolfgang Reisig: Petrinetze, Springer 2010

- 19 -BF - ES

Finiteness of the coverability graph

Theorem 2: Every P/T net has a finite coverability graph.

Lemma 1: Every infinite sequence of markings (Mi)

contains a weakly monotonically growing infinite

subsequence (M`i), i.e., for j<k, M`j  M`k.

- 20 -BF - ES

Coverability theorem

A marking M covers a marking M’ iff, for all places p,

M(p) = M’(p) or M(p) = .

A computation of a P/T net is a sequence

where M0 is the initial marking and Mi+1 is the result of firing

transition ti in marking Mi

Theorem 3: For every computation

of a P/T net there exists, in

every coverability graph, a path

such that M’i covers Mi for all i.

...210

210 
ttt

MMM

...210

210 
ttt

MMM

...''' 210

210 
ttt

MMM

- 21 -BF - ES

The converse does not hold

Example from Wolfgang Reisig: Petrinetze, Springer 2010

- 22 -BF - ES

Simultaneous unboundedness

A set Q of places is simultaneously unbounded iff, for

every natural number i, there exists a reachable marking Mi

where, for all q  Q, Mi(q)  i.

Theorem 4: For every node M in a coverability graph of

some P/T net, it holds that the places in M, where pM

iff M(p) = , are simultaneously unbounded.

D and E are

unbounded but not

simultaneously

unbounded

- 23 -BF - ES

Extensions: Petri nets with priorities

 t1  t2 : t2 has higher priority than t1.

 Petri nets with priorities are Turing-complete.

test

p1 p0

t2 t1

- 24 -BF - ES

Extensions: Predicate/transition nets

 Goal: compact representation of complex systems.

 Key changes:

 Tokens are becoming individuals;

 Transitions enabled if functions at incoming edges true;

 Individuals generated by firing transitions defined through functions

 Changes can be explained by folding and unfolding C/E

nets,

 semantics can be defined by C/E nets.

- 25 -BF - ES

Predicate/transition model

of the dining philosophers problem

 Let x be one of the philosophers,

 let l(x) be the left fork of x,

 let r(x) be the right fork of x.

p1
p3

p2

f1
f2

f3

Token: individuals.

Semantics can be

defined by replacing

net by equivalent

condition/event net.

Model can be

extended to arbitrary

numbers.

- 26 -BF - ES

Petri nets - summary

 Petri nets: focus on causal dependencies

 Condition/event nets

 Single token per place

 Place/transition nets

 Multiple tokens per place

 Predicate/transition nets

 Tokens become individuals

 Advanced theory for analyzing properties
(In general expensive. Reachability is EXPSPACE-hard.)

- 27 -BF - ES

Data Flow Models
Lee/Seshia

Section 6.3

Marwedel

Section 2.5

- 28 -BF - ES

Dataflow Models

Buffered communication between concurrent components (actors).

An actor can fire whenever it has enough data (tokens) in its input

buffers. It then produces some data on its output buffers.

In principle, buffers are unbounded. But for implementation on a

computer, we want them bounded (and as small as possible).

Actor A
FIFO buffer

Actor B

- 29 -BF - ES

Streams: The basis for Dataflow models

- 30 -BF - ES

Dataflow

Misleading

terminology!

“synchronous

dataflow” does not

mean “synchronous

composition”

- 31 -BF - ES

Data flow as a “natural” model of applications

http://www.agilemodeling.com/artifacts/dataFlowDiagram.htm

Registering for courses

www.ece.ubc.ca/~irenek/techpaps/vod/vod.html

Video on demand system

- 32 -BF - ES

Process networks

Many applications can be specified in the form of a set of

communicating processes.

Example: system with two sensors:

mux

temperature sensor

humidity sensor

FIFO

Alternating read
loop

read_temp; read_humidity

until false;

of the two sensors

not the right approach.

- 33 -BF - ES

Reference model for dynamic data flow:
Kahn process networks (1974)

Describe computations to be performed and their

dependence

but not the order in which they must be performed

communication via infinitely large FIFOs

- 34 -BF - ES

Properties of Kahn process networks (1)

 Each node corresponds to one program/task;

 Communication is only via channels;

 Channels include FIFOs as large as needed;

 Channels transmit information within an unpredictable but finite

amount of time;

 Mapping from 1 input seq. to 1 output sequence;

 In general, execution times are unknown;

 Send operations are non-blocking, reads are blocking.

 One producer and one consumer;

i.e. there is only one sender per channel;

- 35 -BF - ES

Properties of Kahn process networks (2)

 There is only one sender per channel.

 A process cannot check whether data is available before

attempting a read.

 A process cannot wait for data for more than one port at a time.

 Therefore, the order of reads depends only on data, not on the

arrival time.

 Therefore, Kahn process networks are deterministic (!); for a

given input, the result will always the same, regardless of the

speed of the nodes.

- 36 -BF - ES

A Kahn Process

process f(in int u, in int v, out int w)

{

int i; bool b = true;

for (;;) {

i = b ? wait(u) : wait(v);

printf("%i\n", i);

send(i, w);

b = !b;

}

}

f

u

v

w

Process alternately reads
from u and v, prints the data
value, and writes it to w

Source: Gilles Kahn, The Semantics of a Simple Language for Parallel Programming (1974)

- 37 -BF - ES

A Kahn Process

process f(in int u, in int v, out int w)

{

int i; bool b = true;

for (;;) {

i = b ? wait(u) : wait(w);

printf("%i\n", i);

send(i, w);

b = !b;

}

}

Source: Gilles Kahn, The Semantics of a Simple Language for Parallel Programming (1974)

wait() returns the next
token in an input FIFO,
blocking if it’s empty

send() writes a data
value on an output FIFO

- 38 -BF - ES

A Kahn Process

process g(in int u, out int v, out int w)

{

int i; bool b = true;

for(;;) {

i = wait(u);

if (b) send(i, v); else send(i, w);

b = !b;

}

}

gu

v

w

Process reads from u and
alternately copies it to v and w

- 39 -BF - ES

A Kahn System

 Prints an alternating sequence of 0’s and 1’s

fg

h

h

Emits a 1 then copies input to output

Emits a 0 then copies input to output

- 40 -BF - ES

Definition: Kahn networks

A Kahn process network is a directed graph (V,E), where

 V is a set of processes,

 E  V  V is a set of edges,

 associated with each edge e is a domain De

 D: finite or countably infinite sequences over D

D is a complete partial order where

X  Y iff X is an initial segment of Y

- 41 -BF - ES

Definition: Kahn networks

 associated with each process vV with incoming edges

e1, …, ep and outgoing edges e1‘, …,eq‘

is a continuous function

fv: De1

  …  Dep

  De‘1

  …  De‘q



(A function f: AB is continuous if f(limA a) = limBf(a))

v

e1
e'1

ep

…

e‘q

…

