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Production system
A modelbased realtime faultdiagnosis 

system for technical processes

Ch. Steger, R. Weiss
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Sprout Counter Flow Pipeline-Processor

 Based on a stream of data packages

and a stream of instructions

compute

 Data and instructions arrive asynchronously

 Execution times of instructions vary

 Data flows from left to right

 Instructions flow from right to left

Wolfgang Reisig: Petrinetze, Springer 2010
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Module

receive data

pass instr

no instr

instr

pass data

reorganize

receive instr

compute

no data

data

instr

fresh
data

done
data

fresh  

instr

done
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Analysis

Place invariants:

A + H + E + D = 2

B + D = 1

Hence, if A and H are marked,

B must also be marked.

The edges between B and c can be removed.

(Analogously for C and f.)
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Invariants & boundedness

 A net is covered by place invariants 

iff every place is contained in some invariant.

Theorem 1: 

a) If R is a place invariant and p  R, then p is bounded.

b) If a net is covered by place invariants then it is

bounded. 
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Composition of modules
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REVIEW: Place/transition nets

Def.: (P, T, F, K, W, M0) is called a place/transition net (P/T net) iff

1. N=(P,T,F) is a net with places P and transitions T

2. K: P  (N0  {}) \{0} denotes the capacity of places

( symbolizes infinite capacity)

3. W: F (N0 \{0}) denotes the weight of graph edges

4. M0: P  N0 {} represents the initial marking of places

W

M0

(Segment of some net)
default:

K = 

W = 1

multiple tokens per place
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REVIEW: Reachability
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REVIEW: Liveness

 A transition is live if in every reachable marking there 

exists a firing sequence such that the transition 

becomes enabled

 A net is live if all its transitions are live
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REVIEW: Deadlock

 A dead marking (deadlock) is a marking where no 

transition can fire

 A net is deadlock-free if no dead marking is reachable
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Reachability,

Liveness,

Deadlock

are graph problems

on reachability graph

Reachability graph:
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Reachability graph is in general infinite

Example from Wolfgang Reisig: Petrinetze, Springer 2010
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Coverability graph

Example from Wolfgang Reisig: Petrinetze, Springer 2010
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Coverability graph

Example from Wolfgang Reisig: Petrinetze, Springer 2010

 indicates that arbitrarily 

high values can be reached: 

for every bound n there is a 

reachable marking M with 

M(p) > n
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Constructing the coverability graph

 The initial graph consists of the initial marking M0

 Extend the graph as long as there exists a node M

such that 

 a transition t can fire from M leading to some marking M’

 but there is no outgoing edge from M labeled with t

Create a t-labeled edge from M to M’’, where M” is defined as 

follows:

M’’(p) =  if there exists a path from M0 to M through some node L

with L  M‘ and L(p) < M‘(p)

M’’(p) = M’(p) otherwise
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Coverability graph is not unique

Example from Wolfgang Reisig: Petrinetze, Springer 2010
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Finiteness of the coverability graph

Theorem 2: Every P/T net has a finite coverability graph.

Lemma 1: Every infinite sequence of markings (Mi) 

contains a weakly monotonically growing infinite 

subsequence (M`i), i.e., for j<k, M`j  M`k.
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Coverability theorem

A marking M covers a marking M’ iff, for all places p,

M(p) = M’(p) or  M(p) = .

A computation of a P/T net is a sequence 

where M0 is the initial marking and Mi+1 is the result of firing 

transition ti in marking Mi

Theorem 3: For every computation

of a P/T net there exists, in 

every coverability graph, a path 

such that M’i covers Mi for all i.

...210

210 
ttt

MMM

...210

210 
ttt

MMM

...''' 210

210 
ttt

MMM
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The converse does not hold

Example from Wolfgang Reisig: Petrinetze, Springer 2010
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Simultaneous unboundedness

A set Q of places is simultaneously unbounded iff, for 

every natural number i, there exists a reachable marking Mi

where, for all q  Q, Mi(q)  i.

Theorem 4: For every node M in a coverability graph of 

some P/T net, it holds that the places in M, where  pM

iff M(p) = , are simultaneously unbounded.

D and E are 

unbounded but not 

simultaneously 

unbounded
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Extensions: Petri nets with priorities

 t1  t2 : t2 has higher priority than t1.

 Petri nets with priorities are Turing-complete.

test

p1 p0

t2 t1
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Extensions: Predicate/transition nets

 Goal: compact representation of complex systems.

 Key changes:

 Tokens are becoming individuals;

 Transitions enabled if functions at incoming edges true;

 Individuals generated by firing transitions defined through functions

 Changes can be explained by folding and unfolding C/E 

nets,

 semantics can be defined by C/E nets.
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Predicate/transition model

of the dining philosophers problem

 Let x be one of the philosophers,

 let l(x) be the left fork of x,

 let r(x) be the right fork of x.

p1
p3

p2

f1
f2

f3

Token: individuals.

Semantics can be 

defined by replacing 

net by equivalent 

condition/event net.

Model can be 

extended to arbitrary 

numbers.
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Petri nets - summary

 Petri nets: focus on causal dependencies

 Condition/event nets

 Single token per place

 Place/transition nets

 Multiple tokens per place

 Predicate/transition nets

 Tokens become individuals

 Advanced theory for analyzing properties
(In general expensive. Reachability is EXPSPACE-hard.)
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Data Flow Models
Lee/Seshia

Section 6.3

Marwedel

Section 2.5
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Dataflow Models

Buffered communication between concurrent components (actors).

An actor can fire whenever it has enough data (tokens) in its input 

buffers. It then produces some data on its output buffers.

In principle, buffers are unbounded. But for implementation on a 

computer, we want them bounded (and as small as possible).

Actor A
FIFO buffer

Actor B
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Streams: The basis for Dataflow models
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Dataflow

Misleading 

terminology!

“synchronous 

dataflow” does not 

mean “synchronous 

composition”
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Data flow as a “natural” model of applications

http://www.agilemodeling.com/artifacts/dataFlowDiagram.htm

Registering for courses

www.ece.ubc.ca/~irenek/techpaps/vod/vod.html

Video on demand system
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Process networks

Many applications can be specified in the form of a set of 

communicating processes.

Example: system with two sensors:

mux

temperature sensor

humidity sensor

FIFO

Alternating read
loop

read_temp; read_humidity

until false;

of the two sensors 

not the right approach.
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Reference model for dynamic data flow:
Kahn process networks (1974)

Describe computations to be performed and their 

dependence 

but not the order in which they must be performed

communication via infinitely large FIFOs
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Properties of Kahn process networks (1)

 Each node corresponds to one program/task;

 Communication is only via channels;

 Channels include FIFOs as large as needed;

 Channels transmit information within an unpredictable but finite 

amount of time;

 Mapping from 1 input seq. to 1 output sequence;

 In general, execution times are unknown;

 Send operations are non-blocking, reads are blocking.

 One producer and one consumer;

i.e. there is only one sender per channel;
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Properties of Kahn process networks (2)

 There is only one sender per channel.

 A process cannot check whether data is available before 

attempting a read.

 A process cannot wait for data for more than one port at a time.

 Therefore, the order of reads depends only on data, not on the 

arrival time.

 Therefore, Kahn process networks are deterministic (!);  for a 

given input, the result will always the same, regardless of the 

speed of the nodes.
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A Kahn Process

process f(in int u, in int v, out int w)

{

int i; bool b = true;

for (;;) {

i = b ? wait(u) : wait(v);

printf("%i\n", i);

send(i, w);

b = !b;

}

}

f

u

v

w

Process alternately reads 
from u and v, prints the data 
value, and writes it to w

Source: Gilles Kahn, The Semantics of a Simple Language for Parallel Programming (1974)
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A Kahn Process

process f(in int u, in int v, out int w)

{

int i; bool b = true;

for (;;) {

i = b ? wait(u) : wait(w);

printf("%i\n", i);

send(i, w);

b = !b;

}

}

Source: Gilles Kahn, The Semantics of a Simple Language for Parallel Programming (1974)

wait() returns the next 
token in an input FIFO, 
blocking if it’s empty

send() writes a data 
value on an output FIFO
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A Kahn Process

process g(in int u, out int v, out int w)

{

int i; bool b = true;

for(;;) {

i = wait(u);

if (b) send(i, v); else send(i, w);

b = !b;

}

}

gu

v

w

Process reads from u and 
alternately copies it to v and w
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A Kahn System

 Prints an alternating sequence of 0’s and 1’s

fg

h

h

Emits a 1 then copies input to output

Emits a 0 then copies input to output
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Definition: Kahn networks

A Kahn process network is a directed graph (V,E), where

 V is a set of processes,

 E  V  V is a set of edges,

 associated with each edge e is a domain De

 D: finite or countably infinite sequences over D

D is a complete partial order where 

X  Y iff X is an initial segment of Y
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Definition: Kahn networks

 associated with each process vV with incoming edges

e1, …, ep and outgoing edges e1‘, …,eq‘  

is a continuous function

fv: De1

  …  Dep

  De‘1

  …  De‘q



(A function f: AB is continuous if f(limA a) = limBf(a) )

v

e1
e'1

ep

…

e‘q

…


