
- 1 -BF - ES

Embedded Systems 8

- 2 -BF - ES

REVIEW: Dataflow modeling

 Identifying, modeling and documenting

how data moves around an information system.

 Dataflow modeling examines

 processes (activities that transform data from one form to

another),

 data stores (the holding areas for data),

 external entities (what sends data into a system or receives data

from a system, and

 data flows (routes by which data can flow).

 Dataflow modeling focuses on how things connect,

(imperative programming: how things happen).

 Scheduling responsibility of the system, not programmer

Lee/Seshia

Section 6.3

Marwedel

Section 2.5

- 3 -BF - ES

Dataflow models

Buffered communication between concurrent components (actors).

An actor can fire whenever it has enough data (tokens) in its input

buffers. It then produces some data on its output buffers.

In principle, buffers are unbounded. But for implementation on a

computer, we want them bounded (and as small as possible).

Actor A
FIFO buffer

Actor B

- 4 -BF - ES

REVIEW: Reference model for dynamic data

flow: Kahn process networks (1974)

Describe computations to be performed and their

dependence

but not the order in which they must be performed

communication via infinitely large FIFOs

- 5 -BF - ES

Properties of Kahn process networks (1)

 Each node corresponds to one program/task;

 Communication is only via channels;

 Channels include FIFOs as large as needed;

 Channels transmit information within an unpredictable but finite

amount of time;

 Mapping from 1 input sequence to 1 output sequence;

 In general, execution times are unknown;

 Send operations are non-blocking, reads are blocking.

 One producer and one consumer;

i.e. there is only one sender per channel;

- 6 -BF - ES

Properties of Kahn process networks (2)

 There is only one sender per channel.

 A process cannot check whether data is available before

attempting a read.

 A process cannot wait for data for more than one port at a time.

 Therefore, the order of reads depends only on data, not on the

arrival time.

 Therefore, Kahn process networks are deterministic (!); for a

given input, the result will always the same, regardless of the

speed of the nodes.

- 7 -BF - ES

A Kahn System

 Prints an alternating sequence of 0’s and 1’s

fg

h

h

Emits a 1 then copies input to output

Emits a 0 then copies input to output

- 8 -BF - ES

A Kahn Process

process f(in int u, in int v, out int w)

{

int i; bool b = true;

for (;;) {

i = b ? wait(u) : wait(v);

printf("%i\n", i);

send(i, w);

b = !b;

}

}

f

u

v

w

Process alternately reads
from u and v, prints the data
value, and writes it to w

Source: Gilles Kahn, The Semantics of a Simple Language for Parallel Programming (1974)

- 9 -BF - ES

A Kahn Process

process f(in int u, in int v, out int w)

{

int i; bool b = true;

for (;;) {

i = b ? wait(u) : wait(v);

printf("%i\n", i);

send(i, w);

b = !b;

}

}

Source: Gilles Kahn, The Semantics of a Simple Language for Parallel Programming (1974)

wait() returns the next
token in an input FIFO,
blocking if it’s empty

send() writes a data
value on an output FIFO

- 10 -BF - ES

A Kahn Process

process g(in int u, out int v, out int w)

{

int i; bool b = true;

for(;;) {

i = wait(u);

if (b) send(i, v); else send(i, w);

b = !b;

}

}

gu

v

w

Process reads from u and
alternately copies it to v and w

- 11 -BF - ES

Definition: Kahn networks

A Kahn process network is a directed graph (V,E), where

 V is a set of processes,

 E  V  V is a set of edges,

 associated with each edge e is a domain De

 D: finite or countably infinite sequences over D

D is a complete partial order where

X  Y iff X is an initial segment of Y

- 12 -BF - ES

Definition: Kahn networks

 associated with each process vV with incoming edges

e1, …, ep and outgoing edges e1‘, …,eq‘

is a continuous function

fv: De1

  …  Dep

  De1

  …  Deq



(A function f: AB is continuous if f(limA a) = limBf(a))

v

e1
e1‘

ep

…

eq‘

…

- 13 -BF - ES

Semantics: Kahn networks

A process network defines for each edge e E a

unique sequence Xe.

Xe is the least fixed point of the equations

(Xe1‘, …, Xeq‘) = fv(Xe1
, …, Xep

)

for all vV.

Result is independent of scheduling!

- 14 -BF - ES

Scheduling Kahn Networks

A
(always

produces
token)

C
(only

consumes
from A)

B
(always

produces
token)

Problem: run processes with finite buffer

D
(always

consumes
token)

- 15 -BF - ES

Scheduling may be impossible

a

b
A

(Two a’s
for every b)

B
(Alternates
between

receiving a
and b)

- 16 -BF - ES

Parks’ Scheduling Algorithm (1995)

 Set a capacity on each channel

 Block a write if the channel is full

 Repeat

 Run until deadlock occurs

 If there are no blocking writes  terminate

 Among the channels that block writes,

select the channel with least capacity

and increase capacity until producer can fire.

- 17 -BF - ES

Parks’ Algorithm in Action

A
(always

produces
token)

C
(only

consumes
from A)

B
(always

produces
token)

D
(always

consumes
token)

 Start with buffers of size 1

 Run A, B, C, D

- 18 -BF - ES

Parks’ Algorithm in Action

A
(always

produces
token)

C
(only

consumes
from A)

B
(always

produces
token)

D
(always

consumes
token)

 Start with buffers of size 1

 Run A, B, C, D

- 19 -BF - ES

Parks’ Algorithm in Action

A
(always

produces
token)

C
(only

consumes
from A)

B
(always

produces
token)

D
(always

consumes
token)

 Start with buffers of size 1

 Run A, B, C, D

- 20 -BF - ES

Parks’ Algorithm in Action

A
(always

produces
token)

C
(only

consumes
from A)

B
(always

produces
token)

D
(always

consumes
token)

 Start with buffers of size 1

 Run A, B, C, D

- 21 -BF - ES

Parks’ Algorithm in Action

A
(always

produces
token)

C
(only

consumes
from A)

B
(always

produces
token)

D
(always

consumes
token)

 Start with buffers of size 1

 Run A, B, C, D

- 22 -BF - ES

Parks’ Algorithm in Action

A
(always

produces
token)

C
(only

consumes
from A)

B
(always

produces
token)

D
(always

consumes
token)

 Start with buffers of size 1

 Run A, B, C, D

- 23 -BF - ES

Parks’ Algorithm in Action

A
(always

produces
token)

C
(only

consumes
from A)

B
(always

produces
token)

D
(always

consumes
token)

 B blocked waiting for space in B->C buffer

 Run A, then C

 System will run indefinitely

- 24 -BF - ES

Parks’ Scheduling Algorithm

 Whether a Kahn network can execute in bounded memory is
undecidable

 Parks’ algorithm does not violate this

 It will run in bounded memory if possible, and use unbounded
memory if necessary

Disadvantages:

 Requires dynamic memory allocation

 Does not guarantee minimum memory usage

 Scheduling choices may affect memory usage

 Data-dependent decisions may affect memory usage

 Relatively costly scheduling technique

 Detecting deadlock may be difficult

- 25 -BF - ES

Synchronous data flow

With digital signal processors, data flows at fixed rate

- 26 -BF - ES

Synchronous data flow (SDF)

 Restriction of Kahn networks (Berkeley, Ptolemy system)

 Asynchronous message passing=

tasks do not have to wait until output is accepted.

 Synchronous data flow =

all tokens are consumed at the same time.

SDF model allows static scheduling of token production and

consumption.

In the general case, buffers may be needed at edges.

- 27 -BF - ES

SDF: restriction of Kahn networks

An SDF graph is a tuple (V, E, cons, prod, d) where

 V is a set of nodes (activities)

 E is a set of edges (buffers)

 cons: E  N number of tokens consumed

 prod: E  N number of tokens produced

 d: E  N number of initial tokens

d: „delay“ (sample offset between input and output)

- 28 -BF - ES

CD-to-DAT rate converter

 Converts a 44.1 kHz sampling rate to 48 kHz

1 1 2 3 2 7 8 7 5 1

Upsampler Downsampler

- 29 -BF - ES

Scheduling SDF models

- 30 -BF - ES

SDF Scheduling Algorithm

Lee/Messerschmitt 1987

1. Establish relative execution rates

 Generate balance equations

 Solve for smallest positive integer vector c

2. Determine periodic schedule

 Form an arbitrarily ordered list of all nodes in the system

 Repeat:

• For each node in the list, schedule it if it is runnable,

trying each node once

• If each node has been scheduled cn times, stop.

• If no node can be scheduled, indicate deadlock.

Source: Lee/Messerschmitt, Synchronous Data Flow (1987)

- 31 -BF - ES

Balance equations

 Number of produced tokens must equal number of

consumed tokens on every edge

 Firing vector vS of schedule S: number of firings of each

actor in S

 vS(A) np = vS(B) nc must be satisfied on each edge

- 32 -BF - ES

Balance equations

- 33 -BF - ES

Rank of a matrix

The rank of a matrix  is the number of linearly
independent rows or columns.

The equation

forms a linear combination of the columns of . Such a
linear combination can only yield the zero vector if the
columns are linearly dependent.

If  has a columns and b rows, the rank cannot exceed
min(a, b).

0


q

- 34 -BF - ES

Balance equations

• Non-full rank

• Infinite number of solutions exist:

any multiple of | 1 2 2 |T satisfies the balance equations

• ABCBC and ABBCC are valid schedules

- 35 -BF - ES

Static SDF scheduling

SDF scheduling theorem (Lee ´86)

 A connected SDF graph with n actors has a periodic schedule iff

its topology matrix M has rank n-1

 If M has rank n-1 then there exsts a unique smallest integer

solution vS to

M vS = 0

 Rank must be at least n-1 because we need at least n-1

edges (connectedness), each providing a linearly

independent row

 Rank is at most n because there are n actors

 Admissibility is not guaranteed, depends on initial tokens

on cycles

- 36 -BF - ES

Admissibility

- 37 -BF - ES

An inconsistent system

C

1

3

A

B

1

1

2

1

• No way to execute without an unbounded

accumulation of tokens

• Only consistent solution is „do nothing“

a - c = 0

a – 2b = 0

3b – c = 0

3a – 2c = 0

