
- 1 -BF - ES

Embedded Systems 9

- 2 -BF - ES

Overview: computational models

Communication/

local computations

Shared memory Asynchronous message

passing

Communicating

finite state

machines

Statecharts,

hybrid automata,

synchronous

composition

Data flow Petri nets,

Kahn process networks,

SDF

Discrete event (DE)

model

Simulink, VHDL Distributed DE

- 3 -BF - ES

REVIEW: SDF Scheduling Algorithm

Lee/Messerschmitt 1987

1. Establish relative execution rates

 Generate balance equations

 Solve for smallest positive integer vector c

2. Determine periodic schedule

 Form an arbitrarily ordered list of all nodes in the system

 Repeat:

• For each node in the list, schedule it if it is runnable,

trying each node once

• If each node has been scheduled cn times, stop.

• If no node can be scheduled, indicate deadlock.

Source: Lee/Messerschmitt, Synchronous Data Flow (1987)

- 4 -BF - ES

REVIEW: An inconsistent system

C

1

3

A

B

1

1

2

1

• No way to execute without an unbounded

accumulation of tokens

• Only consistent solution is „do nothing“

a - c = 0

a – 2b = 0

3b – c = 0

3a – 2c = 0

- 5 -BF - ES

REVIEW: Scheduling SDF models

- 6 -BF - ES

PASS example: 1) firing rates

B

D

1

2
3

2

C

A

3

41

3

2

1

d(AB)=6

Smallest solution: a=2; b=3; d=4; c=1

- 7 -BF - ES

REVIEW: example: 2) Simulation

B

D

1

2
3

2

C

A

3

41

3

2

1

d(AB)=6

Possible schedules:

BBBCDDDDAA

BDBDBCADDA

BBDDBDDCAA

(and many more)

BC... not valid

Smallest solution:

a=2; b=3; d=4; c=1

- 8 -BF - ES

CD-to-DAT rate converter

1 1 2 3 2 7 8 7 5 1

A B A B C A B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C D E

A F F F F F B C A B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C

D E A F F F F F B A B C A B C A B A B C A B C D E A F F F F F B A B C A B C A

B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F F F F F E B C A

F F F F F B A B C A B C D E A F F F F F B A B C A B C A B A B C A B C D E A F

F F F F B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C A B A B C

D E A F F F F F B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C A

B C D E A F F F F F B A B C A B C A B A B C D E A F F F F F E B C A F F F F F B

A B C A B C A B A B C D E A F F F F F B C A B A B C A B C D E A F F F F F B A

B C A B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C D E A F F F

F F B C A B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C D E A F

F F F F B A B C A B C A B A B C A B C D E A F F F F F E B A F F F F F B C A B C

A B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F F F F F B C A

B A B C A B C D E A F F F F F B A B C A B C A B A B C A B C D E A F F F F F B

A B C A B C A B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F

F F F F B C A B A B C A B C D E F F F F F E F F F F F

Source: Shuvra Bhattacharyya

- 9 -BF - ES

CD-to-DAT rate converter

1 1 2 3 2 7 8 7 5 1

Source: Shuvra Bhattacharyya in “Memory Management for Synthesis of DSP Software”

Scheduling strategy Code Data

Minimum buffer schedule, no looping 13735 32

Minimum buffer schedule, with looping 9400 32

Worst minimum code size schedule 170 1021

Best minimum code size schedule 170 264

- 10 -BF - ES

Periodic admissible parallel schedules (PAPS)

- 11 -BF - ES

Periodic admissible parallel schedules (PAPS)

- 12 -BF - ES

Periodic admissible parallel schedules (PAPS)

- 13 -BF - ES

Variations of SDF: Structured Dataflow

LabVIEW (National Instruments) uses homogeneous SDF

augmented with syntactically constrained forms of feedback

and rate changes: while loops, conditionals,…

Such structured dataflow models are decidable.

[Kodosky 86]

- 14 -BF - ES

Variations of SDF:

Data-dependent communication

H.263 video codec

Wiggers/Bekooj/Smit: Buffer Capacity Computation for Throughput Constrained

Streaming Applications with Data-Dependent Inter-Task Communication, 2008

Read VLD DQ IDCT MC DAC
1 1

1[n]

2048 m 1 1n 1 1 n

1[n]

Variable-Length

Decoder

Motion

Compensator

- 15 -BF - ES

Summary dataflow

 Communcation exclusively through FIFOs

 Kahn process networks

 Blocking read, nonblocking write

 Deterministic

 Schedulability undecidable

 SDF

 Useful for DSP

 Fixed token consumption/production

 Compile-time scheduling: balance equations

 Decidable extensions of SDF

 Structured Dataflow

- 16 -BF - ES

Discrete-event systems

Dynamical systems whose evolution is governed by the

occurrence of events at discrete time points, at possibly

irregularly-spaced intervals

Many cyber-physical systems are modeled as discrete-

event systems:

 Communication networks

 Microprocessors

 Manufacturing facilities

 Communicating robots

Marwedel 2.7

- 17 -BF - ES

Example: Communicating Robots/Sensor Nodes

Network can

fwd, corrupt, drop

packets

send

recv

- 18 -BF - ES

Simulating the System with an Event Queue

 Simulation Timer, T = 0

 Repeat while there are events in the event queue:
1. Dequeue event at head of queue (“imminent event”)

2. Advance simulation timer to time of imminent event

3. Execute imminent event: update system state

4. Generate future events and enqueue them

. . .

Event queue

t1
e1

t2
e2

t3
e3

timestamp

event record t1 < t2 < t3 < …

- 19 -BF - ES

VHDL

 HDL = hardware description language

 VHDL = VHSIC hardware description language

 VHSIC = very high speed integrated circuit

 Initiated by US Department of Defense

 1987 IEEE Standard 1076

 Reviews of standard: 1993, 2000, 2002, 2008

 Standard in (European) industry

 Extension: VHDL-AMS, includes analog modeling

- 20 -BF - ES

Goals

 Two goals: simulation and synthesis

 Synthesis: compilation into an implementation technology

such as ASIC or FPGA

 Not all constructs in VHDL are suitable to synthesis

 Modelling at various levels of abstraction

 Technology-independent

 Re-Usability of specifications

 Standard

 Portability (different synthesis and analysis tools possible)

 Validation of designs based on the same description

language for different levels of abstraction

Here: Only some aspects of VHDL, not complete language.

- 21 -BF - ES

Entities and architectures

 Each design unit is called an entity.

 Entities are comprised of entity declarations and one or

several architectures.

Each architecture includes a model of the entity. By default,

the most recently analyzed architecture is used. The use of

another architecture can be requested in a configuration.

- 22 -BF - ES

Example: full adder

- Entity declaration -

 Entity declaration:

entity full_adder is

port(a, b, carry_in: in Bit; -- input ports

sum,carry_out: out Bit); -- output ports

end full_adder;

- 23 -BF - ES

Example: full adder

- Architecture with behavioural body

architecture behavior of full_adder is

begin

sum <= (a xor b) xor carry_in after 10 Ns;

carry_out <= (a and b) or (a and carry_in) or

(b and carry_in) after 10 Ns;

end behavior;

- 24 -BF - ES

Example: full adder

- structural body

architecture structure of full_adder is
component half_adder

port (in1,in2:in Bit; carry:out Bit; sum:out Bit);
end component;
component or_gate

port (in1, in2:in Bit; o:out Bit);
end component;

signal x, y, z: Bit; -- local signals
begin -- port map section
i1: half_adder port map (a, b, x, y);
i2: half_adder port map (y, carry_in, z, sum);
i3: or_gate port map (x, z, carry_out);

end structure;

- 25 -BF - ES

Example: full adder

- Architectures

 Architectures describe implementations of entities.

 For component half_adder we need

 An entity, e.g.

entity half_adder
port (in1,in2:in Bit; carry:out Bit; sum:out Bit);

end half_adder;

 (At least) one architecture
• This architecture may contain components, too.

 Architectures and their components can define a
hierarchy of arbitrary depth.

- 26 -BF - ES

Structural and behavioural descriptions

 Structural descriptions use component instances.

 Behavioural descriptions describe behaviour without
defining the structure of the system.

 Mixtures are possible.

 Mixtures are needed,
at least for the leaves in structural hierarchy.

 Structural hierarchy is essential for a compact and clear
modelling of large (hardware) systems.

 To define semantics of VHDL, we can assume that the
structural hierarchy is „flattened“, i.e., we can assume
w.l.o.g. that we have just an behavioural description.

- 27 -BF - ES

Processes

 Behavioural descriptions consist of a set of concurrently

executed processes.

 Syntax:
[label:]
process[(sensitivity list)]

declarations
begin

statements
end process [label]

- 28 -BF - ES

Processes – Examples (1)

architecture RTL of NANDXOR is

begin

process

begin

if (C='0') then

D <= A nand B after 5 ns;

else

D <= A and B after 10 ns;

end if;

wait on A, B, C;

end process;

end RTL;

- 29 -BF - ES

Processes – Examples (2)

signal clk : std_logic;

…

clk_gen : process

begin

clk <= 0;

wait for 5 ns;

clk <= 1;

wait for 5 ns;

end process clk_gen;

- 30 -BF - ES

Processes – Examples (3)

architecture RTL of DFF is

begin

p : process

begin

if (clk‘event) and (clk=`1`) then

Q <= D;

end if;

wait on clk;

end process p;

end RTL;

- 31 -BF - ES

Processes - Execution

 Processes are not allowed to have subprocesses

(no hierarchy of processes).

 Processes are executed sequentially until a wait

statement is encountered.

 Processes are reactivated according to conditions of

wait-statements.

 Different types of wait-statements

- 32 -BF - ES

Wait-statements

Four possible types of wait-statements:

 wait on signal list;
 wait until at least one of the signals in signal list changes;

 Example: wait on a;

 wait until condition;
 wait until condition is met;

 Example: wait until c='1';

 wait for duration;
 wait for specified amount of time;

 Example: wait for 10 ns;

 wait;
 suspend indefinitely

- 33 -BF - ES

Processes - Sensitivity lists

 Sensitivity lists are a shorthand for a single wait on-
statement at the end of the process body:

 process (x, y)
begin
prod <= x and y ;
end process;

is equivalent to

 process
begin
prod <= x and y ;
wait on x,y;
end process;

- 34 -BF - ES

Signal assignments

 Signal assignments outside processes can be viewed as

implicit processes:

a <= b and c after 10 ns

is equivalent to

process(b, c)
begin
a <= b and c after 10 ns
end

- 35 -BF - ES

Constants, signals and variables

 Constants

 the value of a constant cannot be changed.

 Examples:

constant PI : real := 3.1415;

constant DEFAULT : bit_vector(0 to 3) :=„1001“;

constant PERIOD : time := 100 ns;

- 36 -BF - ES

Constants, signals, and variables

 Variables
 Variables are declared locally in processes (and procedures / functions)

and are only visible in this scope.

 Signals
 Can be viewed as a wire

 Signals cannot be declared in processes (procedures / functions), but in
architectures (outside processes).

 Syntax:
 variable_assignment ::=

target := expression

• Example:

Sum := 0

 signal_assignment ::=
target <= [delay_mechanism] waveform_element

{ , waveform_element }
 waveform_element ::=

value_expression [after time_expression]
• Example:

Inpsig <= ´0´, ´1´after 5 ns, ´0´ after 10 ns, ´1´ after 20 ns;

- 37 -BF - ES

Variable versus signal assigment

 Variable assignments are performed sequentially and directly after

their occurence,

 Signal assignments are performed concurrently, i.e. they are

(sequentially) collected until the process is stopped and are

performed in parallel after all processes are stopped.

signal a : std_logic := `0`;

signal b : std_logic := `1`;

…

swap : process

variable c : std_logic := `1`;

variable d : std_logic := `0`;

begin

a <= b; b <= a;

c := d; d := c;

wait on a, b;

end process swap;

- 38 -BF - ES

Semantics of VHDL:

Basic concepts

 „Discrete event driven simulation“

 Step-based semantics as in StateCharts:

 Computation as a series of basic steps

 Time does not necessarily proceed between two steps

 Like superstep semantics of StateCharts

 Concurrent assignments (of signals) like concurrent

assignments in StateCharts.

Steps consist of two stages.

- 39 -BF - ES

Overview of simulation

Initialization

End of simulation

Assign new values

to signals

Update

current time

Evaluate processes

Resume processes

- 40 -BF - ES

Transaction list and process activation list

 Transaction list

 For signal assignments

 Entries of form (s, v, t) meaning

„signal s is set to value v at time t“

 Example: (clock, ´1´, 10 ns)

 Process activation list

 For reactivating processes

 Entries of form (pi, t) meaning

„process pi resumes at time t“.

