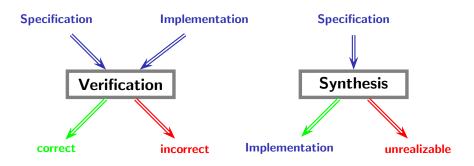
Tutorial: Synthesis

Seminar "Games, Synthesis, and Robotics"

Bernd Finkbeiner Universität des Saarlandes

From Verification to Synthesis



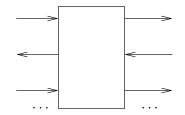
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Realizability: Does there exist an implementation? **Synthesis:** Construct an implementation (if there is one).

Reactive Systems

• Transformational Systems

• Reactive Systems



- nonterminating
- interaktive (system vs. environment)

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Unrealizable Specifications

- "If the *start* button is pressed, then the system will immediately start brewing for the next two cycles and, after that, coffee will be produced."
- "If the *power off* button is pressed, brewing stops immediately and permanently."

The specification is unrealizable, because *the environment can produce input* that makes it *impossible* to satisfy both requirements at the same time.

Synthesis as Games

• Two Players

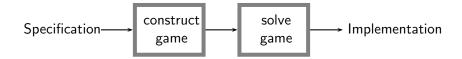
- System vs. Environment
- Environment chooses inputs
- System chooses outputs

• Competing Objectives

- System attempts to satisfy specification
- Environment attempts to violate specification

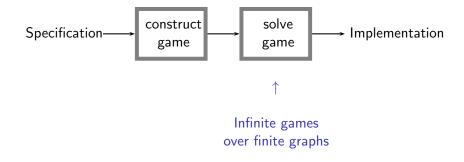
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Synthesis workflow



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Synthesis workflow

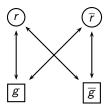


▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ − つくぐ

Infinite games over finite graphs

A game arena is a triple $\mathcal{A} = (V_0, V_1, E)$, where

- V_0 and V_1 are disjoint sets of positions, called the positions of player 0 and 1,
- $E \subseteq V \times V$ for set $V = V_0 \uplus V_1$ of game positions,
- every position $p \in V$ has at least one outgoing edge $(p, p') \in E$.



Example: Resource administrator, Player 1 (environment) chooses value of r (request), Player 0 (system) chooses value of g (grant)

A play is an infinite sequence $\pi = p_0 p_1 p_2 \ldots \in V^{\omega}$ such that $\forall i \in \omega \ . \ (p_i, p_{i+1}) \in E$.

A strategy for player σ is a function $f_{\sigma}: V^* \cdot V_{\sigma} \to V$ s.t. $(p, p') \in E$ whenever $f(u \cdot p) = p'$.

A play $\pi = p_0, p_1, \dots$ conforms to strategy f_{σ} of player σ if $\forall i \in \omega$. if $p_i \in V_{\sigma}$ then $p_{i+1} = f_{\sigma}(p_0, \dots, p_i)$.

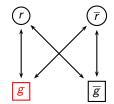
- A safety/reachability game G = (A, S) consists of a game arena and a safe set of positions S ⊆ V. Player 0 wins a play π = p₀p₁... if p_i ∈ S for all i ∈ N, otherwise Player 1 wins.
- A Büchi/co-Büchi game G = (A, F) consists of an arena A and a set F ⊆ V. Player 0 wins a play π if In(π) ∩ F ≠ Ø, otherwise Player 1 wins.

A parity game G = (A, α) consists of an arena A and a coloring function α : V → N. Player 0 wins play π if max{c(q) | q ∈ In(π)} is even, otherwise Player 1 wins.

 $In(\pi)$: set of positions that occur infinitely often in π .

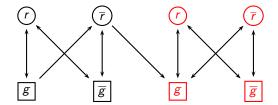
A safety/reachability game G = (A, S) consists of a game arena and a safe set of positions S ⊆ V. Player 0 wins a play π = p₀p₁... if p_i ∈ S for all i ∈ N, otherwise Player 1 wins.

Example: "Never issue a grant."



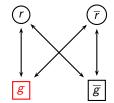
A safety/reachability game G = (A, S) consists of a game arena and a safe set of positions S ⊆ V. Player 0 wins a play π = p₀p₁... if p_i ∈ S for all i ∈ N, otherwise Player 1 wins.

Example: "Only issue a grant when there is a request."



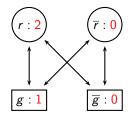
A Büchi/co-Büchi game G = (A, F) consists of an arena A and a set F ⊆ V. Player 0 wins a play π if In(π) ∩ F ≠ Ø, otherwise Player 1 wins.

Example: "Issue infinitely many grants."



A parity game G = (A, α) consists of an arena A and a coloring function α : S → N. Player 0 wins play π if max{c(q) | q ∈ In(π)} is even, otherwise Player 1 wins.

Example: "If there are only finitely many requests, issue only finitely many grants."



Determinacy

A strategy f_{σ} is *p*-winning for player σ and position *p* if all plays that conform to f_{σ} and that start in *p* are won by Player σ .

The **winning region** for player σ is the set of positions

 $W_{\sigma} = \{ p \in V \mid \text{there is a strategy } f_{\sigma} \text{ s.t. } f_{\sigma} \text{ is } p \text{-winning} \}.$

A game is **determined** if $V = W_0 \cup W_1$.

A memoryless strategy for player σ is a function $f_{\sigma} : V_{\sigma} \to V$ which defines a strategy $f'_{\sigma}(u \cdot v) = f(v)$.

A game is **memoryless determined** if for every position some player wins the game with memoryless strategy.

Solving Games

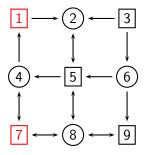
Theorem safety/reachability, Büchi/co-Büchi, and parity games are memoryless determined.

Proof: By fixpoint constructions: Safety games: $W_1 = Attr_1(V \setminus S)$

Attractor Construction

$$\begin{aligned} &Attr_{\sigma}^{0}(X,\mathcal{G}) = \emptyset;\\ &Attr_{\sigma}^{i+1}(X,\mathcal{G}) = Attr_{\sigma}^{i}(X)\\ &\cup \{p \in V_{\sigma} \mid \exists p' \ . \ (p,p') \in E \land p' \in Attr_{\sigma}^{i}(X,\mathcal{G}) \cup X\}\\ &\cup \{p \in V_{1-\sigma} \mid \forall p' \ . \ (p,p') \in E \Rightarrow p' \in Attr_{\sigma}^{i}(X,\mathcal{G}) \cup X\};\\ &Attr_{\sigma}^{+}(X,\mathcal{G}) = \bigcup_{i \in \omega} Attr_{\sigma}^{i}(X,\mathcal{G}).\\ &Attr_{\sigma}(X,\mathcal{G}) = Attr_{\sigma}^{+}(X,\mathcal{G}) \cup X\end{aligned}$$

Example



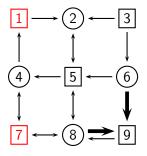
$$\bigcirc = \mathsf{Player} \ \mathbf{0}$$
$$\square = \mathsf{Player} \ \mathbf{1}$$

$$S = \{2, 3, 4, 5, 6, 8, 9\}$$

 $\begin{array}{l} Attr_1^0(\{1,7\},\mathcal{G}) = \emptyset\\ Attr_1^1(\{1,7\},\mathcal{G}) = \{4\}\\ Attr_1^2(\{1,7\},\mathcal{G}) = \{4,5,7\}\\ Attr_1^3(\{1,7\},\mathcal{G}) = \{2,4,5,7\}\\ Attr_1^4(\{1,7\},\mathcal{G}) = \{1,2,3,4,5,7\}\\ Attr_1^+(\{1,7\},\mathcal{G}) = \{1,2,3,4,5,7\}\\ Attr_1(\{1,7\},\mathcal{G}) = \{1,2,3,4,5,7\}\\ \end{array}$

▲口→ ▲圖→ ▲注→ ▲注→ 三注 …

Example



$$\bigcirc = \mathsf{Player} \ \mathbf{0}$$
$$\square = \mathsf{Player} \ \mathbf{1}$$

$$S = \{2, 3, 4, 5, 6, 8, 9\}$$

 $\begin{array}{l} Attr_1^0(\{1,7\},\mathcal{G}) = \emptyset\\ Attr_1^1(\{1,7\},\mathcal{G}) = \{4\}\\ Attr_1^2(\{1,7\},\mathcal{G}) = \{4,5,7\}\\ Attr_1^3(\{1,7\},\mathcal{G}) = \{2,4,5,7\}\\ Attr_1^4(\{1,7\},\mathcal{G}) = \{1,2,3,4,5,7\}\\ Attr_1^+(\{1,7\},\mathcal{G}) = \{1,2,3,4,5,7\}\\ Attr_1(\{1,7\},\mathcal{G}) = \{1,2,3,4,5,7\}\\ \end{array}$

・ロト ・ 一日 ・ ・ ヨ ・ ・ ヨ ・

Solving Büchi games

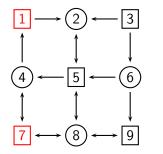
 $W_0 = Attr_0(Recur_0(\mathcal{G}), \mathcal{G})$

Recurrence Construction:

$$\begin{aligned} & \operatorname{Recur}_{\sigma}^{0}(\mathcal{G}) = F; \\ & \operatorname{Recur}_{\sigma}^{i+1}(\mathcal{G}) = F \cap \operatorname{Attr}_{\sigma}^{+}(\operatorname{Recur}_{\sigma}^{i}, \mathcal{G}); \\ & \operatorname{Recur}_{\sigma}(\mathcal{G}) = \bigcap_{i \in \mathbb{N}} \operatorname{Recur}_{\sigma}^{i}(\mathcal{G}). \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example



 $\bigcirc = \mathsf{Player} \ \mathbf{0} \\ \square = \mathsf{Player} \ \mathbf{1}$

$$F = \{1, 7\}$$

$$Recur_{0}^{0}(\mathcal{G}) = \{1,7\}$$

$$Attr_{0}^{+}(\{1,7\},\mathcal{G}) = \{4,6,7,8,9\}$$

$$Recur_{0}^{1}(\mathcal{G}) = \{7\}$$

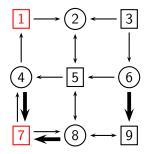
$$Attr_{0}^{+}(\{7\},\mathcal{G}) = \{4,6,7,8,9\}$$

$$Recur_{0}(\mathcal{G}) = \{7\}$$

$$Attr_{0}(\{7\},\mathcal{G}) = \{4,6,7,8,9\}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

Example



$$\bigcirc = \mathsf{Player} \ \mathbf{0} \\ \square = \mathsf{Player} \ \mathbf{1}$$

$$F = \{1,7\}$$

$$Recur_{0}^{0}(\mathcal{G}) = \{1,7\}$$

$$Attr_{0}^{+}(\{1,7\},\mathcal{G}) = \{4,6,7,8,9\}$$

$$Recur_{0}^{1}(\mathcal{G}) = \{7\}$$

$$Attr_{0}^{+}(\{7\},\mathcal{G}) = \{4,6,7,8,9\}$$

$$Recur_{0}(\mathcal{G}) = \{7\}$$

$$Attr_{0}(\{7\},\mathcal{G}) = \{4,6,7,8,9\}$$

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ - 一 の へ ()

- c := highest color in G
- $if c = 0 \text{ or } V = \emptyset$ <u>then return</u> (V, \emptyset)
- Set σ to $c \mod 2$
- 9 set $W_{1-\sigma}$ to \emptyset
- Interpret in the second sec

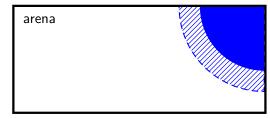
$$\begin{array}{l} \bullet \quad \mathcal{G}' := \mathcal{G} \smallsetminus Attr_{\sigma}(\alpha^{-1}(c), \mathcal{G}) \\ \bullet \quad (W'_{0}, W'_{1}) := McNaughton(\mathcal{G}') \\ \bullet \quad \underbrace{if} \quad (W'_{1-\sigma} = \emptyset) \underbrace{then} \\ \bullet \quad W_{\sigma} := V \smallsetminus W_{1-\sigma} \\ \bullet \quad \underbrace{return} \quad (W_{0}, W_{1}) \\ \bullet \quad W_{1-\sigma} := W_{1-\sigma} \cup Attr_{(1-\sigma)}(W'_{1-\sigma}, \mathcal{G}) \\ \bullet \quad \mathcal{G} := \mathcal{G} \smallsetminus Attr_{(1-\sigma)}(W'_{1-\sigma}, \mathcal{G}) \end{array}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- c := highest color in \mathcal{G}
- $if c = 0 \text{ or } V = \emptyset$ <u>then return</u> (V, \emptyset)
- \bigcirc set σ to $c \mod 2$
- set $W_{1-\sigma}$ to \emptyset

Interpret in the second sec

• $\mathcal{G}' := \mathcal{G} \setminus Attr_{\sigma}(\alpha^{-1}(c), \mathcal{G})$ • $(W'_0, W'_1) := McNaughton(\mathcal{G}')$ • $\underline{if}(W'_{1-\sigma} = \emptyset) \underline{then}$ • $W_{\sigma} := V \setminus W_{1-\sigma}$ • $\underline{return}(W_0, W_1)$ • $W_{1-\sigma} := W_{1-\sigma} \cup Attr_{(1-\sigma)}(W'_{1-\sigma}, \mathcal{G})$ • $\mathcal{G} := \mathcal{G} \setminus Attr_{(1-\sigma)}(W'_{1-\sigma}, \mathcal{G})$



▲日▼▲□▼▲日▼▲日▼ ヨークへで

arena

- c := highest color in G
- $if c = 0 \text{ or } V = \emptyset$ $then return (V, \emptyset)$
- \bigcirc set σ to $c \mod 2$

• CI. C.

- set $W_{1-\sigma}$ to \emptyset
- repeat

 $W'_{1-\sigma}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$\begin{array}{l} \bullet \quad \mathcal{G} \quad := \mathcal{G} \smallsetminus Attr_{\sigma}(\alpha \quad (c), \mathcal{G}) \\ \bullet \quad (W'_0, W'_1) := McNaughton(\mathcal{G}') \\ \bullet \quad \underbrace{if} \quad (W'_{1-\sigma} = \emptyset) \underbrace{then} \\ \bullet \quad W_{\sigma} := V \smallsetminus W_{1-\sigma} \\ \bullet \quad \underbrace{return} \quad (W_0, W_1) \\ \bullet \quad W_{1-\sigma} := W_{1-\sigma} \cup Attr_{(1-\sigma)}(W'_{1-\sigma}, \mathcal{G}) \\ \bullet \quad \mathcal{G} := \mathcal{G} \smallsetminus Attr_{(1-\sigma)}(W'_{1-\sigma}, \mathcal{G}) \end{array}$$

- c := highest color in \mathcal{G}
- $if c = 0 \text{ or } V = \emptyset$ $then return (V, \emptyset)$
- Set σ to $c \mod 2$
- (4) set $W_{1-\sigma}$ to \emptyset

arena $W'_{1-\sigma}$

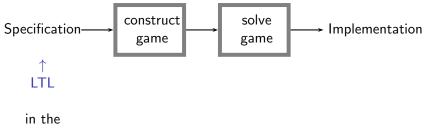
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Interpret in the second sec

•
$$\mathcal{G}' := \mathcal{G} \smallsetminus Attr_{\sigma}(\alpha^{-1}(c), \mathcal{G})$$

• $(W'_0, W'_1) := McNaughton(\mathcal{G}')$
• $\underline{if}(W'_{1-\sigma} = \emptyset) \underline{then}$
• $W_{\sigma} := V \smallsetminus W_{1-\sigma}$
• $\underline{return}(W_0, W_1)$
• $W_{1-\sigma} := W_{1-\sigma} \cup Attr_{(1-\sigma)}(W'_{1-\sigma}, \mathcal{G})$
• $\mathcal{G} := \mathcal{G} \smallsetminus Attr_{(1-\sigma)}(W'_{1-\sigma}, \mathcal{G})$

Synthesis workflow



▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● のへで

seminar

also:

GR(1), CTL, or game directly given

Linear-Time Temporal Logic (LTL)

Syntax:

- Let AP be a set of atomic propositions.
- Every atomic proposition $p \in AP$ is an LTL formula

 $\bullet~{\rm If}~\varphi$ and ψ are LTL formulas, then so are

•
$$\neg \varphi, \ \varphi \land \phi,$$

•
$$\bigcirc \varphi, \ \varphi \ \mathcal{U} \psi$$

Abbreviations:

$$\begin{array}{l} \diamondsuit \varphi \ \equiv \ true \ \mathcal{U} \varphi; \\ \Box \ \varphi \ \equiv \ \neg(\diamondsuit \neg \varphi); \\ \varphi \ \mathcal{W} \ \psi \ \equiv \ (\varphi \mathcal{U} \ \psi) \lor \Box \ \varphi; \end{array}$$

Semantics

For an infinite sequence $\alpha \in (2^{AP})^{\omega}$:

◆□ ▶ <圖 ▶ < E ▶ < E ▶ E • 9 < 0</p>

•
$$\alpha \vDash \varphi$$
 iff $\alpha, \mathbf{0} \vDash \varphi$

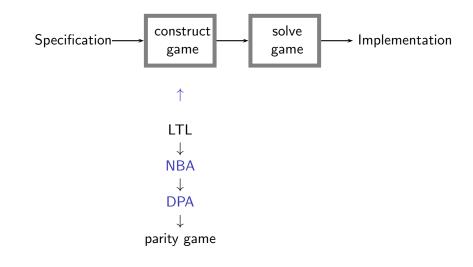
Examples

- Invariant: $\square p$
- Guarantee: $\Diamond p$
- Recurrence: $\Box \diamondsuit p$
- Request-Response: $\Box(p \rightarrow \diamondsuit q)$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

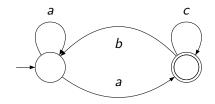
• Fairness: $(\Box \diamondsuit p) \rightarrow (\Box \diamondsuit q)$

Synthesis workflow



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Büchi automata



A **NBA** (nondeterministic Büchi automaton) $A = (\Sigma, S, I, T, F)$ consists of the following:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Σ : alphabet
- S: finite set of states
- $I \subseteq S$: initial states
- $T \subseteq S \times \Sigma \times S$: transitions
- $F \subseteq S$: accepting states

Accepting runs

- A run of an NBA A = (Σ, S, I, T, F) on an infinite word σ₀σ₁... ∈ Σ^ω is an infinite sequence of states q₀ q₁... ∈ S^ω, such that the following holds:
 - $q_0 \in I$ and
 - $(q_i, \sigma_i, q_{i+1}) \in T$ for all $i \ge 0$.
- A run $q_0 q_1 q_2 \dots$ is accepting iff $q_n \in F$ for infinitely many n.
- A word w is accepted by A if there exists an accepting run of A on w.
- The language of A:

$$\mathcal{L}_{\omega}(\mathcal{A}) = ig\{ \sigma \in \Sigma^{\omega} \mid \sigma ext{ is accepted by } \mathcal{A} ig\}$$

 \mathcal{A} recognizes $\mathcal{L}_{\omega}(\mathcal{A})$.

• Two NBAs \mathcal{A} and \mathcal{A}' are equivalent iff $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{A}')$.

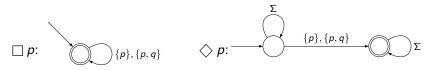
NBA vs. NFA

• finite equivalence $\neq \omega$ -equivalence



• ω -equivalence \neq finite equivalence

LTL vs. NBA

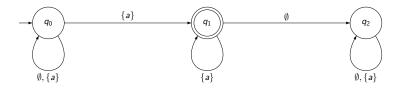


- models(φ)={ $\alpha \in (2^{AP})^w \mid \alpha \vDash \varphi$ }
- For every LTL formula φ there is an NBA A_φ over Σ = 2^{AP} that recognizes models(φ).
- The size of \mathcal{A}_{φ} is exponential in the length of φ .
- There are NBA-recognizable languages that cannot be defined as an LTL formula.
 Example: (ØØ)*{p}^ω

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Deterministic Büchi automata (DBA)

- A Büchi automaton \mathcal{A} is deterministic (DBA) iff $|I| \leq 1$ and $|\{q' \in S \mid (q, \sigma, q') \in T\}| \leq 1$ for all $q \in S$ und $\sigma \in \Sigma$
- NBAs are strictly more expressive than DBAs. There is no DBA for <> □ a



Parity automata

A NPA (nondeterministic parity automaton) $\mathcal{A} = (\Sigma, S, I, T, \alpha)$ consists of the following:

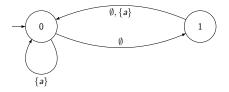
- Σ : alphabet
- S: finite set of states
- $I \subseteq S$: initial states
- $T \subseteq S \times \Sigma \times S$: transitions
- $\alpha: V \to \mathbb{N}$ coloring function

A run π of a parity automaton is **accepting** iff $\max\{c(q) \mid q \in In(\pi)\}$ is even.

From NBA to DPA

- DPA: Deterministic parity automaton
- For every NBA there exists an equivalent DPA
- The number of states of the DPA is exponential in the number of states of the NBA.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



From LTL to DPA

- Corollary: For every LTL formula φ there exists a DPA P_φ such that L(P_φ) = models(φ).
- The number of states of \mathcal{P}_{φ} is doubly-exponential in the length of φ .

Example:

 $\mathcal{L}_n = \{\{0, 1, \#\}^* \cdot \# \cdot w \cdot \{0, 1, \#\}^* \cdot \$ \cdot w \mid w \in \{0, 1\}^n\}$

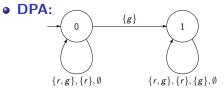
- Smallest deterministic automaton recognizing L_n has 2^{2ⁿ} states.
- \mathcal{L}_n can be defined with small (quadratic) LTL formula:

 $\begin{array}{l} [(\neg \$ \ \mathcal{U} \ \$ \land \bigcirc \Box \neg \$)] \land \\ \diamondsuit[\# \land \bigwedge_{1 \leq i \leq n} ((\bigcirc^{i} 0 \land \Box(\$ \to \bigcirc^{i} 0)) \lor (\bigcirc^{i} 1 \land \Box(\$ \to \bigcirc^{i} 1)))] \end{array}$

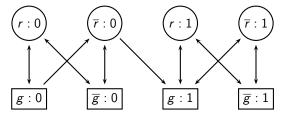
Example

"Only issue a grant when there is a request."

• LTL:
$$\Box(\neg r \rightarrow \neg g)$$



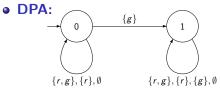
• Parity game:



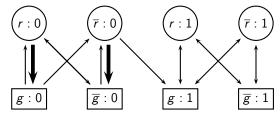
Example

"Only issue a grant when there is a request."

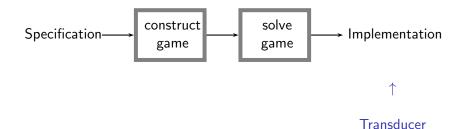
• LTL:
$$\Box(\neg r \rightarrow \neg g)$$



• Parity game:



Synthesis workflow



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Transducer

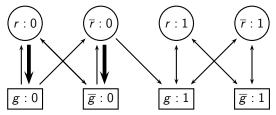
A transducer (Mealy machine) $\mathcal{A} = (\Sigma, \Delta, S, i, T, \delta)$ consists of the following:

- Σ : input alphabet
- Δ : output alphabet
- S: finite set of states
- $i \in S$: initial state
- $T: S \times \Sigma \rightarrow S$: transition function
- $\delta: S \times \Sigma \to \Delta$: output function

The winning strategy can be represented as a transducer.

Example

• Parity game:

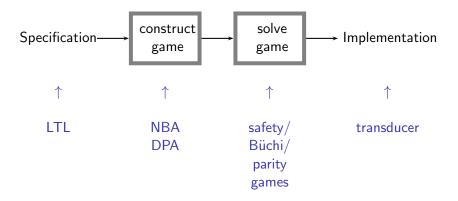


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Transducer:

$$\begin{array}{c} & & & \\ & & & \\ & & \\ & & \\ \delta(q, r) = g \\ \delta(q, \overline{r}) = \overline{g} \end{array}$$

Synthesis workflow



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Major extensions in the seminar

- GR(1) an efficient fragment of LTL
- timed games games with real time
- CTL from linear time to branching time

- distribution incomplete information
- or robotics!