
Tutorial: Synthesis

Seminar “Games, Synthesis, and Robotics”

Bernd Finkbeiner
Universität des Saarlandes

From Verification to Synthesis

Specification Implementation

Verification

correct incorrect

Specification

Synthesis

Implementation unrealizable

Realizability: Does there exist an implementation?
Synthesis: Construct an implementation (if there is one).

Reactive Systems

Transformational Systems

x y

Reactive Systems

.

nonterminating

interaktive (system vs. environment)

Unrealizable Specifications

“If the start button is pressed, then the system will
immediately start brewing for the next two cycles and, after
that, coffee will be produced.”

“If the power off button is pressed, brewing stops immediately
and permanently.”

The specification is unrealizable, because the environment can

produce input that makes it impossible to satisfy both
requirements at the same time.

Synthesis as Games

Two Players

System vs. Environment
Environment chooses inputs
System chooses outputs

Competing Objectives

System attempts to satisfy specification
Environment attempts to violate specification

Synthesis workflow

Specification
construct
game

solve
game

Implementation

↑

Infinite games
over finite graphs

Synthesis workflow

Specification
construct
game

solve
game

Implementation

↑

Infinite games
over finite graphs

Infinite games over finite graphs

A game arena is a triple A = (V0,V1,E), where

V0 and V1 are disjoint sets of positions, called the positions of
player 0 and 1,

E ⊆ V × V for set V = V0 ⊎ V1 of game positions,

every position p ∈ V has at least one outgoing edge
(p, p′) ∈ E .

g g

r r

Example: Resource administrator, Player 1 (environment) chooses
value of r (request), Player 0 (system) chooses value of g (grant)

Plays and strategies

A play is an infinite sequence π = p0p1p2 . . . ∈ V ω such that
∀i ∈ ω . (pi , pi+1) ∈ E .

A strategy for player σ is a function fσ : V ∗ · Vσ → V s.t.
(p, p′) ∈ E whenever f (u · p) = p′.

A play π = p0, p1, . . . conforms to strategy fσ of player σ if
∀i ∈ ω . if pi ∈ Vσ then pi+1 = fσ(p0, . . . , pi).

Winning conditions

A safety/reachability game G = (A, S) consists of a game
arena and a safe set of positions S ⊆ V . Player 0 wins a play
π = p0p1 . . . if pi ∈ S for all i ∈ N, otherwise Player 1 wins.

A Büchi/co-Büchi game G = (A,F) consists of an arena A
and a set F ⊆ V . Player 0 wins a play π if In(π) ∩ F 6= ∅,
otherwise Player 1 wins.

A parity game G = (A, α) consists of an arena A and a
coloring function α : V → N. Player 0 wins play π if
max{c(q) | q ∈ In(π)} is even, otherwise Player 1 wins.

In(π) : set of positions that occur infinitely often in π.

Winning conditions

A safety/reachability game G = (A, S) consists of a game
arena and a safe set of positions S ⊆ V . Player 0 wins a play
π = p0p1 . . . if pi ∈ S for all i ∈ N, otherwise Player 1 wins.

Example: “Never issue a grant.”

g g

r r

Winning conditions

A safety/reachability game G = (A, S) consists of a game
arena and a safe set of positions S ⊆ V . Player 0 wins a play
π = p0p1 . . . if pi ∈ S for all i ∈ N, otherwise Player 1 wins.

Example: “Only issue a grant when there is a request.”

g g

r r

g g

r r

Winning conditions

A Büchi/co-Büchi game G = (A,F) consists of an arena A
and a set F ⊆ V . Player 0 wins a play π if In(π) ∩ F 6= ∅,
otherwise Player 1 wins.

Example: “Issue infinitely many grants.”

g g

r r

Winning conditions

A parity game G = (A, α) consists of an arena A and a
coloring function α : S → N. Player 0 wins play π if
max{c(q) | q ∈ In(π)} is even, otherwise Player 1 wins.

Example: “If there are only finitely many requests, issue only
finitely many grants.”

g : 1 g : 0

r : 2 r : 0

Determinacy

A strategy fσ is p-winning for player σ and position p if all plays
that conform to fσ and that start in p are won by Player σ.

The winning region for player σ is the set of positions

Wσ = {p ∈ V | there is a strategy fσ s.t. fσ is p-winning}.

A game is determined if V = W0 ∪W1.

A memoryless strategy for player σ is a function fσ : Vσ → V

which defines a strategy f ′
σ
(u · v) = f (v).

A game is memoryless determined if for every position some
player wins the game with memoryless strategy.

Solving Games

Theorem safety/reachability, Büchi/co-Büchi, and parity games
are memoryless determined.

Proof: By fixpoint constructions:
Safety games: W1 = Attr1(V r S)

Attractor Construction

Attr0
σ
(X ,G) = ∅;

Attr i+1
σ

(X ,G) = Attr i
σ
(X)

∪ {p ∈ Vσ | ∃p′ . (p, p′) ∈ E ∧ p′ ∈ Attr i
σ
(X ,G) ∪ X}

∪ {p ∈ V1−σ | ∀p′ . (p, p′) ∈ E ⇒ p′ ∈ Attr i
σ
(X ,G) ∪ X};

Attr+
σ
(X ,G) =

⋃

i∈ω Attr i
σ
(X ,G).

Attrσ(X ,G) = Attr+
σ
(X ,G) ∪ X

Example

1 2 3 2 = Player 0

0 = Player 1

4 5 6 S = {2, 3, 4, 5, 6, 8, 9}

7 8 9

Attr01({1, 7},G) = ∅ W1 = {1, 2, 3, 4, 5, 7}
Attr11({1, 7},G) = {4} W0 = {6, 8, 9}
Attr21({1, 7},G) = {4, 5, 7}
Attr31({1, 7},G) = {2, 4, 5, 7}
Attr41({1, 7},G) = {1, 2, 3, 4, 5, 7}
Attr+1 ({1, 7},G) = {1, 2, 3, 4, 5, 7}
Attr1({1, 7},G) = {1, 2, 3, 4, 5, 7}

Example

1 2 3 2 = Player 0

0 = Player 1

4 5 6 S = {2, 3, 4, 5, 6, 8, 9}

7 8 9

Attr01({1, 7},G) = ∅ W1 = {1, 2, 3, 4, 5, 7}
Attr11({1, 7},G) = {4} W0 = {6, 8, 9}
Attr21({1, 7},G) = {4, 5, 7}
Attr31({1, 7},G) = {2, 4, 5, 7}
Attr41({1, 7},G) = {1, 2, 3, 4, 5, 7}
Attr+1 ({1, 7},G) = {1, 2, 3, 4, 5, 7}
Attr1({1, 7},G) = {1, 2, 3, 4, 5, 7}

Solving Büchi games

W0 = Attr0(Recur0(G),G)

Recurrence Construction:

Recur0
σ
(G) = F ;

Recur i+1
σ

(G) = F ∩ Attr+
σ
(Recur i

σ
,G);

Recurσ(G) =
⋂

i∈N Recur i
σ
(G).

Example

1 2 3 2 = Player 0

0 = Player 1

4 5 6 F = {1, 7}

7 8 9

Recur00(G) = {1, 7} W0 = {4, 6, 7, 8, 9}
Attr+0 ({1, 7},G) = {4, 6, 7, 8, 9} W1 = {1, 2, 3, 5}
Recur10(G) = {7}
Attr+0 ({7},G) = {4, 6, 7, 8, 9}
Recur0(G) = {7}
Attr0({7},G) = {4, 6, 7, 8, 9}

Example

1 2 3 2 = Player 0

0 = Player 1

4 5 6 F = {1, 7}

7 8 9

Recur00(G) = {1, 7} W0 = {4, 6, 7, 8, 9}
Attr+0 ({1, 7},G) = {4, 6, 7, 8, 9} W1 = {1, 2, 3, 5}
Recur10(G) = {7}
Attr+0 ({7},G) = {4, 6, 7, 8, 9}
Recur0(G) = {7}
Attr0({7},G) = {4, 6, 7, 8, 9}

McNaughton’s Algorithm: Solving parity games

McNaughton(G)

1 c := highest color in G

2 if c = 0 or V = ∅
then return (V , ∅)

3 set σ to c mod 2

4 set W1−σ to ∅

5 repeat

1 G′ := G r Attrσ(α
−1(c),G)

2 (W ′

0,W
′

1) := McNaughton(G′)
3 if (W ′

1−σ
= ∅) then

1 Wσ := V rW1−σ

2 return (W0,W1)

4 W1−σ := W1−σ ∪ Attr (1−σ)(W
′

1−σ
,G)

5 G := G r Attr (1−σ)(W
′

1−σ
,G)

α−1(c)
arena

McNaughton’s Algorithm: Solving parity games

McNaughton(G)

1 c := highest color in G

2 if c = 0 or V = ∅
then return (V , ∅)

3 set σ to c mod 2

4 set W1−σ to ∅

5 repeat

1 G′ := G r Attrσ(α
−1(c),G)

2 (W ′

0,W
′

1) := McNaughton(G′)
3 if (W ′

1−σ
= ∅) then

1 Wσ := V rW1−σ

2 return (W0,W1)

4 W1−σ := W1−σ ∪ Attr (1−σ)(W
′

1−σ
,G)

5 G := G r Attr (1−σ)(W
′

1−σ
,G)

arena

McNaughton’s Algorithm: Solving parity games

McNaughton(G)

1 c := highest color in G

2 if c = 0 or V = ∅
then return (V , ∅)

3 set σ to c mod 2

4 set W1−σ to ∅

5 repeat

1 G′ := G r Attrσ(α
−1(c),G)

2 (W ′

0,W
′

1) := McNaughton(G′)
3 if (W ′

1−σ
= ∅) then

1 Wσ := V rW1−σ

2 return (W0,W1)

4 W1−σ := W1−σ ∪ Attr (1−σ)(W
′

1−σ
,G)

5 G := G r Attr (1−σ)(W
′

1−σ
,G)

W ′
1−σ

W ′
σ

arena

McNaughton’s Algorithm: Solving parity games

McNaughton(G)

1 c := highest color in G

2 if c = 0 or V = ∅
then return (V , ∅)

3 set σ to c mod 2

4 set W1−σ to ∅

5 repeat

1 G′ := G r Attrσ(α
−1(c),G)

2 (W ′

0,W
′

1) := McNaughton(G′)
3 if (W ′

1−σ
= ∅) then

1 Wσ := V rW1−σ

2 return (W0,W1)

4 W1−σ := W1−σ ∪ Attr (1−σ)(W
′

1−σ
,G)

5 G := G r Attr (1−σ)(W
′

1−σ
,G)

W ′
1−σ

arena

Synthesis workflow

Specification
construct
game

solve
game

Implementation

↑ ↑
LTL Infinite games

in the over finite graphs
seminar
also:

GR(1), CTL,
or game directly given

Linear-Time Temporal Logic (LTL)

Syntax:

Let AP be a set of atomic propositions.

Every atomic proposition p ∈ AP is an LTL formula

If ϕ and ψ are LTL formulas, then so are

¬ϕ, ϕ ∧ φ,
2 ϕ, ϕ U ψ

Abbreviations:
1 ϕ ≡ true U ϕ;
0 ϕ ≡ ¬(1 ¬ϕ);
ϕW ψ ≡ (ϕU ψ) ∨ 0 ϕ;

Semantics

For an infinite sequence α ∈ (2AP)ω:

α, i � p iff p ∈ α(i);

α, i � ¬ϕ iff α, i 6� ϕ;
α, i � ϕ ∧ ψ iff α, i � ϕ and α, i � ψ;

α, i � 2 ϕ iff α, i + 1 � ϕ

α, i � ϕU ψ iff there is some j ≥ i s.t.
α, j � ψ and for all i ≤ k < j : α, k � ϕ

α � ϕ iff α, 0 � ϕ

Examples

Invariant: 0 p

Guarantee: 1 p

Recurrence: 0 1 p

Request-Response: 0 (p → 1 q)

Fairness: (0 1 p) → (0 1 q)

Synthesis workflow

Specification
construct
game

solve
game

Implementation

↑

LTL
↓

NBA
↓

DPA
↓

parity game

Büchi automata

a

b

a c

A NBA (nondeterministic Büchi automaton) A = (Σ, S , I ,T ,F)
consists of the following:

Σ: alphabet

S : finite set of states

I ⊆ S : initial states

T ⊆ S × Σ× S : transitions

F ⊆ S : accepting states

Accepting runs

A run of an NBA A = (Σ, S , I ,T ,F)
on an infinite word σ0σ1 . . . ∈ Σω

is an infinite sequence of states q0 q1 . . . ∈ Sω,
such that the following holds:

q0 ∈ I and
(qi , σi , qi+1) ∈ T for all i ≥ 0.

A run q0 q1 q2 . . . is accepting
iff qn ∈ F for infinitely many n.

A word w is accepted by A
if there exists an accepting run of A on w .

The language of A:

Lω(A) =
{

σ ∈ Σω | σ is accepted by A
}

A recognizes Lω(A).

Two NBAs A and A′ are equivalent iff Lω(A) = Lω(A
′).

NBA vs. NFA

finite equivalence 6⇒ ω-equivalence

a

a

a

a

ω-equivalence 6⇒ finite equivalence

a

a

a

a

NFA: nondeterministic finite-word automaton

LTL vs. NBA

0 p: 1 p:{p}, {p, q}

{p}, {p, q}

Σ

Σ

models(ϕ)={α ∈ (2AP)w | α � ϕ}

For every LTL formula ϕ there is an NBA Aϕ over Σ = 2AP

that recognizes models(ϕ).

The size of Aϕ is exponential in the length of ϕ.

There are NBA-recognizable languages that cannot be defined
as an LTL formula.
Example: (∅∅)∗{p}ω

Deterministic Büchi automata (DBA)

A Büchi automaton A is deterministic (DBA) iff
|I | ≤ 1 and
|{q′ ∈ S | (q, σ, q′) ∈ T}| ≤ 1 for all q ∈ S und σ ∈ Σ

NBAs are strictly more expressive than DBAs.
There is no DBA for 1 0 a

q0 q1 q2
{a} ∅

∅, {a} {a} ∅, {a}

Parity automata

A NPA (nondeterministic parity automaton) A = (Σ, S , I ,T , α)
consists of the following:

Σ: alphabet

S : finite set of states

I ⊆ S : initial states

T ⊆ S × Σ× S : transitions

α : V → N coloring function

A run π of a parity automaton is accepting iff
max{c(q) | q ∈ In(π)} is even.

From NBA to DPA

DPA: Deterministic parity automaton

For every NBA there exists an equivalent DPA

The number of states of the DPA is exponential
in the number of states of the NBA.

0 1

∅

∅, {a}

{a}

From LTL to DPA

Corollary: For every LTL formula ϕ there exists a DPA Pϕ

such that L(Pϕ) = models(ϕ).

The number of states of Pϕ is doubly-exponential
in the length of ϕ.

Example:
Ln = {{0, 1,#}∗ ·# · w · {0, 1,#}∗ · $ · w | w ∈ {0, 1}n}

Smallest deterministic automaton recognizing Ln

has 22
n

states.

Ln can be defined with small (quadratic) LTL formula:

[(¬$ U $ ∧ 2 0 ¬$)] ∧
1 [# ∧

∧

1≤i≤n
((2 i 0 ∧ 0 ($ → 2 i 0)) ∨ (2 i 1 ∧ 0 ($ → 2 i 1)))]

Example

“Only issue a grant when there is a request.”

LTL: 0 (¬r → ¬g)

DPA:
0 1

{g}

{r , g}, {r}, ∅ {r , g}, {r}, {g}, ∅

Parity game:

g : 0 g : 0

r : 0 r : 0

g : 1 g : 1

r : 1 r : 1

Example

“Only issue a grant when there is a request.”

LTL: 0 (¬r → ¬g)

DPA:
0 1

{g}

{r , g}, {r}, ∅ {r , g}, {r}, {g}, ∅

Parity game:

g : 0 g : 0

r : 0 r : 0

g : 1 g : 1

r : 1 r : 1

Synthesis workflow

Specification
construct
game

solve
game

Implementation

↑

Transducer

Transducer

A transducer (Mealy machine) A = (Σ,∆, S , i ,T , δ) consists of
the following:

Σ: input alphabet

∆: output alphabet

S : finite set of states

i ∈ S : initial state

T : S × Σ → S : transition function

δ : S × Σ → ∆: output function

The winning strategy can be represented as a transducer.

Example

Parity game:

g : 0 g : 0

r : 0 r : 0

g : 1 g : 1

r : 1 r : 1

Transducer:

q

{r}, ∅

δ(q, r) = g

δ(q, r) = g

Synthesis workflow

Specification
construct
game

solve
game

Implementation

↑ ↑ ↑ ↑

LTL NBA safety/ transducer
DPA Büchi/

parity
games

Major extensions in the seminar

GR(1) — an efficient fragment of LTL

timed games — games with real time

CTL — from linear time to branching time

distribution — incomplete information

robotics!

	Introduction
	Games
	LTL
	Automata
	Transducer
	Summary

