Piotr Danilewski

ALGORITHMS IN PARITY GAMES

1 Summary

Parity Game is a game played by two players on a graph, using a token or a pawn. Its rules are relatively
easy, yet it is general enough so that various other problems can be reduced to parity games, for example - a
minimal /maximal function fixpoint computation tasks.

First I will define formally what parity game is. Later I will show some basic facts about strategies which
can be used in such game. Then I will describe an algorithm which can be used for finding optimal strategies
for such game.

2 Parity Game

Parity game is played by two players on a finite graph G = (V, E). Priority p : V' — N is assigned to each
vertex, represented by a natural number. For simplicity we assume that there are no double edges or dead ends
in the graph. Let ¢ denote maximal priority assigned to a vertex. Algorithm complexity will highly depend on
this value.

In the game a token is given, initially over one of the vertices vy. Over time the token will change its position
by moving along the edges. Vertices are partitioned into two sets: V4 and Vp which are under control by players
A and B respectively, that is that player may choose an edge and pefrom a single step with the token.

By m = (vo, v1, v2, ...) we define a string of visited vertices during an infinite play performed by the players.
Let P denote value of minimal priority that repeated itself infinitely many times during the play =. If P is even
then player B wins; otherwise player A wins.

3 Various facts of parity games

Given the game we want to know how and when we can win it. We assume that our opponent plays the best
of his possibility and we will not count on mistakes he might make.

If the token is at some given vertex v and we know how to play in order to win from that position, we say
that we have a winning strategy for v. Note that the strategy will not change whether v is an initial vertex or
we reached it after finite number of steps. If we have winning strategy when v is initial state, we can play in
exactly the same way after reaching v in some steps. Clearly, we do not depend our strategy on the previous
path. Such strategy is called a memoryless strategy and can be represented by functions: sy : V4 — V,
sp: Vg — V - pointing at a successor which we pick, once we have such opportunity.

We call graph G 4 a strategy-graph for player A if we take initial graph G and limit edges outgoing from
Va to only those chosen by s4. Similarly we define Gg. Winning strategy for player A, given vertex v € V
is equivalent that all reachable cycles in G 4 from v are odd, that is - the minimal priority in the cycle is odd.
Similarly winning strategy for player B, given vertex v € V is equivalent to even cycles.

There exists partition of V' into winning sets W4, Wg. There are no vertices where no one can win or both
players can win.

4 Algorithms for parity game

In general there are two ways to approach the problem of finding optimal strategies. First one is to enrich the
graph with some additional information and then deduct the desired strategy. Other approach is to define some
strategies for players and then improve them until no improvement can be done. In practise the latter seems to
be efficient but little is known about its complexity. Here I will focus on the first approach which has stronger
theoretical background.

Naive approach
Consider all strategies s4. For each we consider all possible counter-strategies of the opponent sp and see
how badly we fail with s4. Finally we pick s4 which happen to be the least bad.
Although the algorithm is obviously correct, its complexity is horrible: O (HUEV deg v), which in case of full

graph is equal to O <|V||V‘).
In the following sections we will focus on one of the fastest algorithms we know so far - Jurdzinski’s algorithm.

5 Parity Progress Measures

Parity Progress Measure is an additional information assigned to a graph, which helps us find the strategies.

First, we store additional tuple N°*! at each vertex (N, := {0,1,...,2}). We define comparison on the tuples:
<, <4, =i, >, >; which are lexical operators, but take only i 4+ 1 first elements into account.

Function p : V. — N¢*! is parity progress measure if V(v,w) € E : p(v) >,y p(w) and inequality is strict
if p(v) is odd. Thus following the edge reduces p on first p(v) + 1 positions, but there can be anything on the
other positions.

If there is such function for given parity graph G then all cycles are even. Otherwise if minimal priority ¢ is
odd at vertex v; we have a cycle of inequalities:

p(v1) >i p(v2) =i p(vs)... Zi p(v1)

Since first inequality is strict it cannot be true.
Our codomain is infinite, we want to reduce it. Let V; := p~1(i) is a set of all vertices with priority i. We
limit the codomain of parity progress measure to a set:

MG = NO X N|V1\ X NO X N\Vgl X NO X ..o X N\VC\

(or Ny at the end if c is even).

We want to proof that such restriction will not affect the existence of the parity progress measure. If all
cycles in a parity graph G are even then we can still find p : V' — M. Additionally we want that if p(v) is
odd then p(v) >, (0,0,...,0).

We will prove it by induction over the number of vertices.

Initial step - one-vertex graph - is trivial.

In second step of the induction we consider three cases:

o If Vo =0 AV, = without loss of generality we can reduce all priorities by 2.

e Vj # 0. By induction we know that reduced graph V' \ V; has function p and no odd vertices have assigned
a value of (0,0,,0). We can easily apply p(v) = (0,0,,0) for all v € V.

e Vo=0AV1L#0
Let R; denote a set of reachable vertices from any element of V; in at least 1 step. Neither of vertices of
set V1 may lie on a cycle, therefore we can sort them in topological order and the first vertex cannot be
reached from any of set V] including itself. Therefore V; \ R; must be nonempty.

G := GN Ry, GNR := G\ Ry are nonempty. By induction there are parity progress measures pf* and
pNE for these graphs.

pi= pRU(pNR+(Oa|V1R JRERES) ‘/CR’))
In other words: The G* subgraph of G remains the same. Parity progress measure for GV however is
increased by the maximal value of GE. Since in the original GV no odd values had p(v) = (0,0,, 0) then

all inequalities between G and GV subgraphs will conform the parity progress measures constraints.

aoa |V3R

Maximal value at odd position i of p™% is, by induction |V;N¥| therefore value of p at the position i
cannot exceed |[VNE| + V| = V.

6 Game Parity Progress Measure

So far we assumed that are only even cycles and we can find the parity progress measure. Now we will extend our
codomain by another, highest element 7', which will intuitively mean that for given vertex we cannot compute
it. ML = MgUT.

We now define a small progress function Prog(p,n,m) as the least m € M% : m >pv) P(w) and if p(v) is
odd then either inequality is strict or m = p(w) = T. In other words - Prog(p,n,m) is the minimal value at
vertex v so that edge (v, w) is valid according to definition of parity progress measure and current function p.

We define Game Parity Progress Measure as a function p: V — MZ if for all v we have:

o if v e Va:p(v) >p0) Prog(p,v,w) for all (v,w) € E - no matter what player A chooses, it will be still an
even cycle.

e if v € VB : p(v) >p) Prog(p,v,w) for some (v,w) € E - player B can choose route to an even cycle.

Strategy for player B s, : Vg — V is to pick successor which minimises the function p.
If p(v) is not T we can reach some even cycle and successor will be lower than T" as well; v € Wg. If p(v) =T
then we are doomed; player A wins no matter what we do, v € W4.

7 Algorithm for finding minimal Game Parity Progress Measure

Although p(v) = TVv € V is a valid function, we are looking for minimal which will maximise the Wg set.
For all game parity progress measure functions f,g we define f C g if Vo € V : f(v) < g(v). Since it
is a complete lattice and it is finite, we know there exists the least element, which we will try to find in our
algorithm.
At the beginning we start with value (0,0, ...,0) in all vertices. Most likely it will not be a valid game parity
progress measure and some values will have to be increased. Therefore we define a lifting function which will
solve this problem:

plu) = u#v
Lift(p,v)(u) :== { max (p(v), ming, uep Prog(p,v,w)) <u=v € Vp
max (p(v), max, .)er Prog(p,v, w)) cu=veVy

Lift operation is monotonic. Once we reach fix point: Yv € V' : p = Lift(p,v), the function p is valid Game
Parity Progress Measure, and it is the minimal function with that property.

Strategy for player B is defined as picking the minimal vertex from those reachable along a single edge from
given vertex v.

Space usage is O(c|V]) - we have to remember GPPM tuples in each vertex of the graph

Time complexity is harder to compute. Lift operation for given v can be implemented in time O(cdegw)
There can be at most |M¢| lifts for given vertex v, thus whole algorithm will work in O3,y |[M¢|cdegv) =
O (c|E||Mg]|). Where degv denotes number of outgoing edges.

< < |—§ £
A L (ANEETAR <|V|>M

M| = T (Veimal +1) <

=1 5]

Finally

Other algorithms
Of course it is not the only algorithm. There are also noticeable works of McNaughton and its further upgrade
developed by Sven. Unfortunately I have to little time to describe all those algorithms in detail.

Complexity of the problem
The problem of finding strategy in Parity Games is a NP N co-NP problem. What is more, it is UP N co-UP
problem, meaning there exists non deterministic Turing machine solving the problem in polynomial time, but
for given input word there exists at most one run accepting it.
Currently, all known algorithms have exponential time complexity. Yet it is not believed to be an NP-
complete problem and strong research is being made to find an algorithm which would solve it in polynomial
time.

