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Practical use of Parity Games

I Modal µ-calculus model checking

I Synthesis and satisfiability checking for reactive systems

I Module checking
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Parity Graph

G = (V ,E , p)

p : V −→ N
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Parity Game
Nodes assigned to players A and B .

V = VA ∪ VB
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Play
Play - infinite path π = (v0, v1, v2, ....)

π1 = (q1, q3, q6, q7, q6, q7, ...)

π2 = (q2, q4, q5, q2, q4, q5, ...)
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Winning condition

Winning condition

Let P denote minimal priority which repeats itself infinitely often.

I If P is odd then player A wins.

I If P is even then player B wins.

Piotr Danilewski Algorithms for Parity Games



Outline
Parity Games

When can we win?
Algorithms

Why?
Definition
Winning condition

Winning condition

π1 = (q1, q3, q6, q7, q6, q7, ...)

(1, 4, 1, 4, 1, 4, 1, 4...)

P = 1⇒ A wins.
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Winning condition

π2 = (q2, q4, q5, q2, q4, q5, ...)

(2, 3, 3, 2, 3, 3, 2, 3...)

P = 2⇒ B wins.
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Ideal playing
We assume players do not make mistakes.

I π1 is invalid under this assumption.
At vertex q3 player B should have chosen q5.

I π2 is valid. Choosing q3 at q2 would not help player A.
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Memoryless property

We do not have to know how we reached certain vertex in order to
deduct how to play.
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General observations
Strategy representation
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Memoryless strategy representation

Strategy does not change over time.

sA : VA −→ V

sB : VB −→ V

sA, sB point to successor picked by players A and B respectively.
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Memoryless strategy representation

sA(v) :=


q3 if v = q1

q4 if v = q2

q7 if v = q6
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Strategy graph

GA - Graph G were edges outgoing from VA are limited to only
those chosen by sA.
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Winning condition in strategy graph

Player A wins if for given vertex v all reachabe cycles in GA are
odd.
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Winning sets partition

Every parity game graph can be partitioned into winning sets WA

and WB .
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I Enrich graph with additional information and deduct the best
strategy

I Choose some strategy and then improve it
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The naive algorithm

I Consider all possible strategies sA.

I Consider all possible counter-strategies sB .

I Pick the best sA
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Time complexity of the naive algorithm

O

(∏
v∈V

deg v

)
In case of full graph:

O
(
|V ||V |

)
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Jurdzinski’s algorithm

Piotr Danilewski Algorithms for Parity Games



Outline
Parity Games

When can we win?
Algorithms

General approaches
Naive algorithm
Jurdzinski’s algorithm
Other algorithms
Complexity

Parity Progress Measure

Store additional tuple Nc+1 at each vertex where c is maximal
priority.
Comparison operators: <i ,≤i ,=i ,≥i , >i - lexicographic operators
on i + 1 first elements.

(2, 3, 0, 0) >1 (2, 2, 4, 1)

(2, 3, 0, 0) =0 (2, 2, 4, 1)

(0, 1, 0, 0) <1 (1, 0, 0, 0)
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Parity Progress Measure

Function ρ : V −→ Nc+1 is a Parity Progress Measure if:

∀(v ,w) ∈ E : ρ(v) ≥p(v) ρ(w)

and if p(v) is odd

∀(v ,w) ∈ E : ρ(v) >p(v) ρ(w)
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Parity Progress Measure

If Parity Progress Measure ρ exists then graph G must have only
even cycles.
Otherwise, let i be minimal odd priority in some cycle. Then:

ρ(v1) >i ρ(v2) ≥i ρ(v3)... ≥i ρ(v1)

Piotr Danilewski Algorithms for Parity Games



Outline
Parity Games

When can we win?
Algorithms

General approaches
Naive algorithm
Jurdzinski’s algorithm
Other algorithms
Complexity

Parity Progress Measure

Vi := p−1(i)

MG := N0 × N|V1| × N0 × N|V3| × N0 × ...× N|Vc |
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Codomain restriction


V0 := ∅
V1 := {q1, q6}
V2 := {q2}
V3 := {q4, q5}
V4 := {q3, q7}

MG = N0 × N2 × N0 × N2 × N0
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Game Parity Progress Measure

So far - we worked on graphs with even cycles only.
Now - we want to include all graphs and vertex assignment to
players.
Add highest element T :

MT
G = MG ∪ {T}

T means we cannot fit any other value because we reach an odd
cycle

Piotr Danilewski Algorithms for Parity Games



Outline
Parity Games

When can we win?
Algorithms

General approaches
Naive algorithm
Jurdzinski’s algorithm
Other algorithms
Complexity

Game Parity Progress Measure

Let ρ : V −→ MT
G be any function.

Small progress function:
Prog(ρ, v ,w) := least m ∈ MT

G : m ≥p(v) ρ(w), and inequality
must be strict if p(v) is odd.

q6
1(0, 1, 0, 0, 0) q7

4 (0, 1, 0, 1, 0)

Prog(ρ, q6, q7) = { least m >1 (0, 1, 0, 1, 0)} = (0, 2, 0, 0, 0)
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Game Parity Progress Measure
Game Parity Progress Measure is a function ρ : V −→ MT

G such
that for all v ∈ V :

I v ∈ VA ⇒ ∀(v ,w) ∈ E : ρ(v) ≥p(v) Prog(ρ, v ,w)
I v ∈ VB ⇒ ∃(v ,w) ∈ E : ρ(v) ≥p(v) Prog(ρ, v ,w)

q1
1(0, 1, 0, 0, 0)

q2
2 (0, 0, 0, 0, 0)

q3
4(0, 0, 0, 1, 0) q4

3 (0, 0, 0, 2, 0)

q5
3 (0, 0, 0, 1, 0)

q6
1T

q7
4 T
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Game Parity Progress Measure
Game Parity Progress Measure is a function ρ : V −→ MT

G such
that for all v ∈ V :

I v ∈ VA ⇒ ∀(v ,w) ∈ E : ρ(v) ≥p(v) Prog(ρ, v ,w)
I v ∈ VB ⇒ ∃(v ,w) ∈ E : ρ(v) ≥p(v) Prog(ρ, v ,w)
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Game Parity Progress Measure
Game Parity Progress Measure is a function ρ : V −→ MT

G such
that for all v ∈ V :

I v ∈ VA ⇒ ∀(v ,w) ∈ E : ρ(v) ≥p(v) Prog(ρ, v ,w)
I v ∈ VB ⇒ ∃(v ,w) ∈ E : ρ(v) ≥p(v) Prog(ρ, v ,w)
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Strategy from Game Parity Progress Measure

Given ρ player B forms strategy sB by minimalising its value.
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Winning sets from Game Parity Progress Measure
If ρ is a minimal Game Parity Progress Measure:

WB = {v ∈ V : ρ(v) 6= T}
WA = {v ∈ V : ρ(v) = T}

q1
1(0, 1, 0, 0, 0)

q2
2 (0, 0, 0, 0, 0)

q3
4(0, 0, 0, 1, 0) q4

3 (0, 0, 0, 2, 0)

q5
3 (0, 0, 0, 1, 0)

q6
1T

q7
4 T
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Computing the minimal Game Parity Progress Measure

I Start by assigning ρ(v) := (0, 0, ..., 0) to all vertices

I Increment each vertex which violates the Game Parity
Progress Measure constraints

Lift(ρ, v)(u) :=


ρ(u)⇐ u 6= v
max

(
ρ(v),min(v ,w)∈E Prog(ρ, v ,w)

)
⇐ u = v ∈ VB

max
(
ρ(v),max(v ,w)∈E Prog(ρ, v ,w)

)
⇐ u = v ∈ VA
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Run of Jurdzinski’s Algorithm
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Run of Jurdzinski’s algorithm (step 0)

q1
1(0, 0, 0, 0, 0)

q2
2 (0, 0, 0, 0, 0)

q3
4(0, 0, 0, 0, 0) q4

3 (0, 0, 0, 0, 0)

q5
3 (0, 0, 0, 0, 0)

q6
1(0, 0, 0, 0, 0) q7

4 (0, 0, 0, 0, 0)
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Run of Jurdzinski’s algorithm (step 1)

Lift(ρ, q1)(q1) = max

(
(0, 0, 0, 0, 0) , max

(v ,w)∈E
Prog(ρ, q1,w)

)
Prog(ρ, q1,w) := least m ∈ MT

G : m >1 ρ(w)

q1
1(0, 1, 0, 0, 0)

q2
2 (0, 0, 0, 0, 0)

q3
4(0, 0, 0, 0, 0) q4

3 (0, 0, 0, 0, 0)

q5
3 (0, 0, 0, 0, 0)

q6
1(0, 0, 0, 0, 0) q7

4 (0, 0, 0, 0, 0)
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Run of Jurdzinski’s algorithm (step 2)

Lift(ρ, q5)(q5) = max

(
(0, 0, 0, 0, 0) , min

(v ,w)∈E
Prog(ρ, q5,w)

)
Prog(ρ, q5,w) := least m ∈ MT

G : m >3 ρ(w)

q1
1(0, 1, 0, 0, 0)

q2
2 (0, 0, 0, 0, 0)

q3
4(0, 0, 0, 0, 0) q4

3 (0, 0, 0, 0, 0)

q5
3 (0, 0, 0, 1, 0)

q6
1(0, 0, 0, 0, 0) q7

4 (0, 0, 0, 0, 0)
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Run of Jurdzinski’s algorithm (step 3)

Lift(ρ, q6)(q6) = max

(
(0, 0, 0, 0, 0) , max

(v ,w)∈E
Prog(ρ, q6,w)

)
Prog(ρ, q6,w) := least m ∈ MT

G : m >1 ρ(w)

q1
1(0, 1, 0, 0, 0)

q2
2 (0, 0, 0, 0, 0)

q3
4(0, 0, 0, 0, 0) q4

3 (0, 0, 0, 0, 0)

q5
3 (0, 0, 0, 1, 0)

q6
1(0, 1, 0, 0, 0) q7

4 (0, 0, 0, 0, 0)
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Run of Jurdzinski’s algorithm (step 4)

Lift(ρ, q7)(q7) = max

(
(0, 0, 0, 0, 0) , min

(v ,w)∈E
Prog(ρ, q7,w)

)
Prog(ρ, q7,w) := least m ∈ MT

G : m≥4ρ(w)

q1
1(0, 1, 0, 0, 0)

q2
2 (0, 0, 0, 0, 0)

q3
4(0, 0, 0, 0, 0) q4

3 (0, 0, 0, 0, 0)

q5
3 (0, 0, 0, 1, 0)

q6
1(0, 1, 0, 0, 0) q7

4 (0, 1, 0, 0, 0)
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Run of Jurdzinski’s algorithm (step 5)

Lift(ρ, q4)(q4) = max

(
(0, 0, 0, 0, 0) , min

(v ,w)∈E
Prog(ρ, q4,w)

)
Prog(ρ, q4,w) := least m ∈ MT

G : m>3ρ(w)

q1
1(0, 1, 0, 0, 0)

q2
2 (0, 0, 0, 0, 0)

q3
4(0, 0, 0, 0, 0) q4

3 (0, 0, 0, 2, 0)

q5
3 (0, 0, 0, 1, 0)

q6
1(0, 1, 0, 0, 0) q7

4 (0, 1, 0, 0, 0)
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Run of Jurdzinski’s algorithm (step 6)

Lift(ρ, q3)(q3) = max

(
(0, 0, 0, 0, 0) , min

(v ,w)∈E
Prog(ρ, q3,w)

)
Prog(ρ, q3,w) := least m ∈ MT

G : m≥4ρ(w)

q1
1(0, 1, 0, 0, 0)

q2
2 (0, 0, 0, 0, 0)

q3
4(0, 0, 0, 1, 0) q4

3 (0, 0, 0, 2, 0)

q5
3 (0, 0, 0, 1, 0)

q6
1(0, 1, 0, 0, 0) q7

4 (0, 1, 0, 0, 0)
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Run of Jurdzinski’s algorithm (step 7)

Lift(ρ, q6)(q6) = max

(
(0, 1, 0, 0, 0) , max

(v ,w)∈E
Prog(ρ, q6,w)

)
Prog(ρ, q6,w) := least m ∈ MT

G : m >1 ρ(w)

q1
1(0, 1, 0, 0, 0)

q2
2 (0, 0, 0, 0, 0)

q3
4(0, 0, 0, 1, 0) q4

3 (0, 0, 0, 2, 0)

q5
3 (0, 0, 0, 1, 0)

q6
1(0, 2, 0, 0, 0) q7

4 (0, 1, 0, 0, 0)
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Run of Jurdzinski’s algorithm (step 8)

Lift(ρ, q7)(q7) = max

(
(0, 1, 0, 0, 0) , min

(v ,w)∈E
Prog(ρ, q7,w)

)
Prog(ρ, q7,w) := least m ∈ MT

G : m ≥4 ρ(w)

q1
1(0, 1, 0, 0, 0)

q2
2 (0, 0, 0, 0, 0)

q3
4(0, 0, 0, 1, 0) q4

3 (0, 0, 0, 2, 0)

q5
3 (0, 0, 0, 1, 0)

q6
1(0, 2, 0, 0, 0) q7

4 (0, 2, 0, 0, 0)
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Run of Jurdzinski’s algorithm (step 9)

Lift(ρ, q6)(q6) = max

(
(0, 2, 0, 0, 0) , max

(v ,w)∈E
Prog(ρ, q6,w)

)
MT

G = N0 × N2 × N0 × N2 × N0 ∪ {T}

q1
1(0, 1, 0, 0, 0)

q2
2 (0, 0, 0, 0, 0)

q3
4(0, 0, 0, 1, 0) q4

3 (0, 0, 0, 2, 0)

q5
3 (0, 0, 0, 1, 0)

q6
1T

q7
4 (0, 2, 0, 0, 0)
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Run of Jurdzinski’s algorithm (step 10)

Lift(ρ, q7)(q7) = max

(
(0, 2, 0, 0, 0) , min

(v ,w)∈E
Prog(ρ, q7,w)

)
MT

G = N0 × N2 × N0 × N2 × N0 ∪ {T}

q1
1(0, 1, 0, 0, 0)

q2
2 (0, 0, 0, 0, 0)

q3
4(0, 0, 0, 1, 0) q4

3 (0, 0, 0, 2, 0)

q5
3 (0, 0, 0, 1, 0)

q6
1T

q7
4 T
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Run of Jurdzinski’s algorithm (step 11)

Observe Lift operation cannot perform any more changes.
End of run.

q1
1(0, 1, 0, 0, 0)

q2
2 (0, 0, 0, 0, 0)

q3
4(0, 0, 0, 1, 0) q4

3 (0, 0, 0, 2, 0)

q5
3 (0, 0, 0, 1, 0)

q6
1T

q7
4 T
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Space complexity of Jurdzinski’s algorithm

O(c |V |)
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Time complexity of Jurdzinski’s algorithm

Time per single lift operation: O(c deg v)
Total time:
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There are other algorithms, for example:

I McNaughton’s algorithm

I Sven’s algorithm
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We know that Parity Games problem

I is NP ∩ co-NP

I is UP ∩ co-UP

I it is unlikely to be NP-complete

I it is not known to be P
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