
Model-checking Games (handout)
Seminar on Games in Verification and Synthesis

(University of Saarland, Reactive Systems Group, Klaus Dräger)
By Walid Haddad

1 Overview

[1] presents two approaches which reduce the model checking problem and the satisfiability
problem of µ-calculus to the winner problem in parity games. We focus on the model
checking approach; the model checking problem is reduced to the acceptance problem for
alternating tree automata (ATAs) which is then reduced to the winner problem for parity
games.

Some facts are decisive for this approach:

• Alternating tree automata are equivalent to the modal µ-calculus with respect to
expressive power

• Parity games are powerful tools that can solve the acceptance problem for ATAs
with an acceptable complexity

Modal µ-calculus model checking requires that models of systems be represented as
Kripke structures:

1.1 Kripke structures

Formally, a Kripke structure is a tuple K = (W, A, κ) where:

• W is a set of worlds

• A ⊆ W × W is an accessibility relation

• κ: Q → 2W is an interpretation of the propositional variables, which assigns to
each propositional variable the set of worlds where it holds true

A pointed Kripke structure is a pair (K, ω) where K is a Kripke structure and ω a world
of it. A Kripke query is a class of pointed Kripke structures.

1.2 Modal µ-calculus

Modal µ-calculus is a temporal logic augmented by operators for least and greatest fixed
points. It is very expressive (any formula in LTL, CTL and CTL* can be encoded in the
µ-calculus) and it is as expressive as alternating tree automata; in other words, for any
formula in modal µ-calculus there is an equivalent ATA and vice versa.

1

1.2.1 Syntax

Let Var be a set of fixed point variables, Prop be a set of propositional variables:

ϕ, ψ ∈ Lµ ::= ⊥ | ⊤ | X | p | ¬p | ϕ ∧ ψ | ϕ ∨ ψ | 2ϕ | 3ϕ | µXϕ | νXϕ

where p ∈ Prop, X ∈ Var and µ (ν) is the least (greatest) fixed point operator.

1.2.2 Semantics

Let K be a Kripke structure, then ϕ ∈ Lµ is evaluated to ||ϕ||K ⊆ WK in K

• ||⊥||K = ∅, ||⊤||K = WK

• ||p||K = κK(p), ||¬p||K = WK \ κK(p)

• ||ϕ ∨ ψ||K = ||ϕ||K ∪ ||ψ||K

• ||ϕ ∧ ψ||K = ||ϕ||K ∩ ||ψ||K

• ||2ϕ||K =
{

w ∈ Wk|ScsK(w) ⊆ ||ϕ||K
}

• ||3ϕ||K =
{

w ∈ Wk|ScsK(w) ∩ ||ϕ||K 6= ∅
}

where ScsK(w) is the set of all successors of w in K.

Let K [q 7→ W] = (WK , AK , κK [q 7→ W]) where κK [q 7→ W] is given by
κK [q 7→ W](q′) = W if q′ = q; otherwise, κK [q 7→ W](q′) = κK(q′).

• ||µqϕ||K =
⋂

{

W ⊆ Wk|||ϕ||K[q 7→W] ⊆W
}

• ||νqϕ||K =
⋃

{

W ⊆ Wk|||ϕ||K[q 7→W] ⊇W
}

For more details, we refer to [1] which also presents a semantics from a different view;
a query-based semantics.

1.3 Alternating tree automata

Alternating tree automata are finite-state devices designed to accept or reject pointed
Kripke structures. They can deal with arbitrary branching in a very natural way.

1.3.1 Definition

An alternating tree automaton (ATA) is a tuple A = (S, sI , δ, Ω) where:

• S is a finite set of states

• sI is an initial state

2

• δ is a transition function

• Ω: S → ω is a priority function, which assigns a priority to each state

The transition function δ maps every state to a transition condition over S where the
set of all transition conditions over S contains conditions of the form:

0,1, q, ¬q, s, 2s, 3s, s ∧ s′, s ∨ s′

for every s, s′ ∈ S and for every q ∈ Q.

1.3.2 Runs

A run of an ATA A on (K, w0) is a (W×S)-vertex labeled tree R = (V R, ER, λR) where
the initial vertex is labeled by (w0, s0) and every vertex v with label (w, s) the following
conditions are satisfied (δ(s) 6= 0):

δ(s) Condition

q w ∈ κK(q)

¬q w /∈ κK(q)

3s′ there exists v′ ∈ ScsR(v) such that sR(v′) = s′ and wR ∈ ScsK(w)

2s′ for every w′ ∈ ScsK(w) there exists v′ ∈ ScsR(v) such that λ(v′) = (w′, s′)

s′ ∨ s′′ there exists v′ ∈ ScsR(v) such that λ(v′) = (w, s′) or λ(v′) = (w, s′′)

s′ ∧ s′′ there exists v′, v′′ ∈ ScsR(v) such that λ(v′) = (w, s′) and λ(v′′) = (w, s′′)

A run is accepting if the state labeling of every infinite branch through R satisfies the
parity acceptance condition determined by Ω.

1.3.3 Translation

Constructing an alternating tree automaton for every Lµ formula ϕ that recognizes the
exact query that the formula defines is straightforward (proof is more complicated).

Let A(ϕ) be the ATA of ϕ. The subformulas of ϕ build the states of A(ϕ); ϕ itself
is the initial state. The transition function reflects the structure of the formula and the
priority function reflects the alternation structure of the formula.

We define a normal form for Lµ formulas. An Lµ formula is in normal form if every
propositional variable q is only quantified at most once and if in this case all occurrences

3

of q are in the scope of this quantification. Every formula is equivalent to a formula in
normal form of the same size and alternation depth.

Given an Lµ formula ϕ in normal form and a propositional variable q occurring in ϕ.
Either every occurrence of q in ϕ is free or every occurrence of q in ϕ is quantified by
the same fixed point operator (it is bound in the same subformula denoted by ϕq). Let

ϕ be an Lµ formula in normal form. A(ϕ) is defined by A(ϕ) = (S, sI , δ, Ω) where:

• S the set which contains for each subformula ψ in ϕ a corresponding state

• sI = 〈ϕ〉 is the initial state

• the transition function is defined by:

– δ(〈⊥〉) = 0, δ(〈⊤〉) = 1,

– δ(〈q〉) = q if q ∈ free(ϕ), otherwise δ(〈q〉) = 〈ϕq〉; δ(〈¬q〉) = ¬ q,

– δ(〈ψ ∧ χ〉) = 〈ψ〉 ∧ 〈χ〉, δ(〈ψ ∨ χ〉) = 〈ψ〉 ∨ 〈χ〉,

– δ(〈3ψ〉) = 3 〈ψ〉, δ(〈2ψ〉) = 2 〈ψ〉,

– δ(〈µqψ〉) = 〈ψ〉, δ(〈νqψ〉) = 〈ψ〉.

• for every ψ ∈ Fµ with alternation depth > 0, Ω(〈ψ〉) = 2⌈α(ψ)⌉ − 1,

• for every ψ ∈ Fν with alternation depth > 0, Ω(〈ψ〉) = 2⌊α(ψ)⌋.

More details and a correctness proof are presented in [1].

2 Reduction to the acceptance problem for ATAs

The model checking problem can be reduced to the acceptance problem for alternating
tree automata:

Model Checking: given a finite pointed Kripke structure (K, w) and an Lµ formula
ϕ, determine whether or not (K, w) |= ϕ.

Accepts: given a finite pointed Kripke structure (K, w) and an alternating tree
automaton A, determine whether A accepts (K, w).

3 Parity games

Formally, a parity game is a tuple P = (L0, L1, lI , M, Ω) where:

• L0 and L1 are disjoint sets, the sets of Player 0’s and Player 1’s locations, resp.

• lI ∈ L0 ∪ L1 is an initial location

• M ⊆ (L0 ∪ L1) × (L0 ∪ L1) is a set of moves, and

4

• Ω: (L0 ∪ L1) → ω is a priority function with a finite range.

G(P) is a directed graph called the game graph of P. A partial play of P is a path
through G(P) starting with lI . A play of P is a maximum path through G(P) starting
with lI .

A play p is winning for Player 0 if it is infinite and sup(pΩ) is even or it is finite and
p(*) ∈ L1. A play p is winning for Player 1 if it is infinite and sup(pΩ) is odd or it is
finite and p(*) ∈ L0. A winning strategy for Player 0 makes sure that whatever Player 1
does in a play, it will be a win for Player 0. A strategy tree for Player 0 in P is a tree T
satisfying the following conditions:

• The root of T is labeled lI

• Every v ∈ VT with λT (v) ∈ L0 has a successor in T labeled with a successor of
λT (v) in G(P) (Player 0 must move when it is his turn)

• Every v ∈ VT with λT (v) ∈ L1 has, for every successor l of λT (v) in G(P) a successor
in T labeled l (all options of player 1 have to be taken into account)

A branch v of T is winning if its labeling, which is a play is winning. A strategy tree
T for Player 0 is winning if every branch through T is winning. Player 0 wins a game P
if there exists a winning strategy tree for him.

4 Reduction to the winner problem for parity games

The acceptance problem for ATAs can be reduced to the winner problem for parity games:

Wins: given a finite parity game P, determine whether or not Player 0 wins the game P.

• Construct a game P = (A, K, wI) such that Player 0 wins if and only if A accepts
(K, wI)

• Choices of Player 0: correspond to the choices A has to make when in a transition
condition it has to satisfy a disjunction or a 3 requirement

• Choices of Player 1: correspond to the choices A has to make when in a transition
condition it has to satisfy a conjunctions or 2 requirements

Formally, P(A, K, wI) = (L0, L1, (wK
I , sA

I), M, Ω) where L0 is the set of all pairs (w,
s) where δ(s) is of the form 0, q with q /∈ κK(w), ¬ q with q ∈ κK(w), s′ ∨ s′′, or 3s;
this also determines L1. The successors of a location (w,s) are determined by the rules
in Table 2. The priority function Ω maps (w, s) to ΩA(s).

Theorem 1: [1] Let (K, w) be a pointed Kripke structure and A an alternating tree
automaton. A accepts (K, w) if and only if Player 0 has a winning strategy.

5

- Table 2 -

δ(s) Condition

0, 1, q or ¬q (w,s) has no successors

s′ (w,s) has one successor (w, s′)

s′ ∨ s′′(s′ ∧ s′′) (w,s) has two successors (w, s′) and (w, s′′)

3s′ (2s′) (w, s) has a successor (w′, s′) for every w′ ∈ ScsK(w)

Proof. Just observe that accepting runs of A on (K, w) and winning strategy trees for
player 0 in P(A, K, w) are identical.

Theorem 2: [1] Wins is in UP ∪ co-UP

5 References

[1] T. Wilke, Alternating tree automata, parity games, and modal mu-calculus, Bull. Belg.
Math. Soc., vol. 8, iss. 2, pp. 359391, 2002.

6

