MODEL-CHECKING GAMES

Seminar on Games in Verification and Synthesis (University of Saarland, Reactive Systems Group, Klaus Draeger)

Walid Haddad

May 29, 2008

OVERVIEW

- **2** Kripke structures
- **3** Modal μ -Calculus
- Alternating Tree Automata
- **③** Translation (Modal μ -Calculus \rightarrow ATAs)
- **1** Reduction to the acceptance problem for ATAS
- PARITY GAMES
- **1** Reduction of the acceptance problem
- ONCLUSION

A model checking/synthesis approach:

Model Checking Problem (Program Verification) Satisfiability Problem (Program Synthesis) A model checking/synthesis approach:

A model checking/synthesis approach:

For a system ${\cal S}$ and a specification ${\cal P},$ decide whether ${\cal S}$ satisfies ${\cal P},$ where:

- models of systems are represented as Kripke structures, and
- specifications are described in modal μ -calculus

KRIPKE STRUCTURES

Definition

- A Kripke structure is a tuple $\mathcal{K} = (W, A, \kappa)$ where:
 - W is a set of worlds
 - $\bullet \ A \subseteq W \times W \text{ is an } \textit{accessibility relation}$
 - κ: Q → 2^W is an *interpretation* of the propositional variables, which assigns to each propositional variable the set of worlds where it holds true

A pointed Kripke structure is a pair (\mathcal{K} , ω) where \mathcal{K} is a Kripke structure and ω a world of it; a Kripke query is a class of pointed Kripke structures

 $\textit{Modal}\ \mu\text{-}\textit{calculus}$ is a temporal logic augmented by operators for least and greatest fixed points

- Used to express properties of Kripke structures
- Very expressive
 - LTL, CTL and CTL* can be encoded in the μ -calculus
 - as expressive as alternating tree automata (later)

Let Var be a set of fixed point variables, Prop be a set of propositional variables:

 $\varphi, \psi \in \mathcal{L}_{\mu} ::= \bot \mid \top \mid X \mid p \mid \neg p \mid \varphi \land \psi \mid \varphi \lor \psi \mid \Box \varphi \mid \diamond \varphi \mid \mu X \varphi \mid \nu X \varphi$

where $p \in Prop$, $X \in Var$ and $\mu(\nu)$ is the least (greatest) fixed point operator

Let *Var* be a set of fixed point variables, *Prop* be a set of propositional variables: $\varphi, \psi \in \mathcal{L}_{\mu} ::= \bot | \top | X | p | \neg p | \varphi \land \psi | \varphi \lor \psi | \Box \varphi | \Diamond \varphi | \mu X \varphi | \nu X \varphi$ where $p \in Prop, X \in Var$ and $\mu(\nu)$ is the least (greatest) fixed point operator

Let K be a Kripke structure, then $\varphi \in \mathcal{L}_{\mu}$ is evaluated to $||\varphi||_{\mathcal{K}} \subseteq \mathcal{W}^{\mathcal{K}}$ in K

Atomic formulas:

•
$$||\perp||_{\kappa} = \emptyset$$
, $||\top||_{\kappa} = \mathcal{W}^{\kappa}$

Let *Var* be a set of fixed point variables, *Prop* be a set of propositional variables: $\varphi, \psi \in \mathcal{L}_{\mu} ::= \bot | \top | X | p | \neg p | \varphi \land \psi | \varphi \lor \psi | \Box \varphi | \Diamond \varphi | \mu X \varphi | \nu X \varphi$ where $p \in Prop, X \in Var$ and $\mu(\nu)$ is the least (greatest) fixed point operator

Let K be a Kripke structure, then $\varphi \in \mathcal{L}_{\mu}$ is evaluated to $||\varphi||_{\mathcal{K}} \subseteq \mathcal{W}^{\mathcal{K}}$ in K

Atomic formulas:

•
$$||\perp||_{\kappa} = \emptyset,$$
 $||\top||_{\kappa} = \mathcal{W}^{\kappa}$
• $||p||_{\kappa} = \kappa^{\kappa}(p),$ $||\neg p||_{\kappa} = \mathcal{W}^{\kappa} \setminus \kappa^{\kappa}(p)$

Let *Var* be a set of fixed point variables, *Prop* be a set of propositional variables: $\varphi, \psi \in \mathcal{L}_{\mu} ::= \bot | \top | X | p | \neg p | \varphi \land \psi | \varphi \lor \psi | \Box \varphi | \Diamond \varphi | \mu X \varphi | \nu X \varphi$ where $p \in Prop, X \in Var$ and $\mu(\nu)$ is the least (greatest) fixed point operator

Let K be a Kripke structure, then $\varphi \in \mathcal{L}_{\mu}$ is evaluated to $||\varphi||_{\mathcal{K}} \subseteq \mathcal{W}^{\mathcal{K}}$ in K

Disjunction and conjunction:

• $||\varphi \lor \psi||_{\kappa} = ||\varphi||_{\kappa} \cup ||\psi||_{\kappa}$

Let *Var* be a set of fixed point variables, *Prop* be a set of propositional variables: $\varphi, \psi \in \mathcal{L}_{\mu} ::= \bot | \top | X | p | \neg p | \varphi \land \psi | \varphi \lor \psi | \Box \varphi | \Diamond \varphi | \mu X \varphi | \nu X \varphi$ where $p \in Prop, X \in Var$ and $\mu(\nu)$ is the least (greatest) fixed point operator

Let K be a Kripke structure, then $\varphi \in \mathcal{L}_{\mu}$ is evaluated to $||\varphi||_{\mathcal{K}} \subseteq \mathcal{W}^{\mathcal{K}}$ in K

Disjunction and conjunction:

- $||\varphi \lor \psi||_{\kappa} = ||\varphi||_{\kappa} \cup ||\psi||_{\kappa}$
- $||\varphi \wedge \psi||_{\kappa} = ||\varphi||_{\kappa} \cap ||\psi||_{\kappa}$

Let *Var* be a set of fixed point variables, *Prop* be a set of propositional variables: $\varphi, \psi \in \mathcal{L}_{\mu} ::= \bot | \top | X | p | \neg p | \varphi \land \psi | \varphi \lor \psi | \Box \varphi | \diamond \varphi | \mu X \varphi | \nu X \varphi$ where $p \in Prop, X \in Var$ and $\mu(\nu)$ is the least (greatest) fixed point operator

Let K be a Kripke structure, then $\varphi \in \mathcal{L}_{\mu}$ is evaluated to $||\varphi||_{\mathcal{K}} \subseteq \mathcal{W}^{\mathcal{K}}$ in K

Modal operators:

$$\bullet \ ||\Box \varphi||_{\mathcal{K}} = \left\{ \ w \in \mathcal{W}^k \mid \mathit{Scs}_{\mathcal{K}}(w) \subseteq ||\varphi||_{\mathcal{K}} \right\}$$

 $(Scs_{K}(w))$: is the set of all successors of w in K)

Let *Var* be a set of fixed point variables, *Prop* be a set of propositional variables: $\varphi, \psi \in \mathcal{L}_{\mu} ::= \bot | \top | X | p | \neg p | \varphi \land \psi | \varphi \lor \psi | \Box \varphi | \Diamond \varphi | \mu X \varphi | \nu X \varphi$ where $p \in Prop, X \in Var$ and $\mu(\nu)$ is the least (greatest) fixed point operator

Let K be a Kripke structure, then $\varphi \in \mathcal{L}_{\mu}$ is evaluated to $||\varphi||_{\mathcal{K}} \subseteq \mathcal{W}^{\mathcal{K}}$ in K

Modal operators:

•
$$||\Box \varphi||_{\mathcal{K}} = \left\{ w \in \mathcal{W}^k \mid \mathit{Scs}_{\mathcal{K}}(w) \subseteq ||\varphi||_{\mathcal{K}} \right\}$$

•
$$|| \diamond \varphi ||_{\kappa} = \{ w \in \mathcal{W}^k \mid \mathit{Scs}_{\kappa}(w) \cap || \varphi ||_{\kappa} \neq \emptyset \}$$

 $(Scs_{\kappa}(w))$: is the set of all successors of w in K)

•
$$\varphi_0 = \mu \mathbf{x}(\Box \mathbf{x})$$

•
$$\varphi_0 = \mu \mathbf{x}(\Box \mathbf{x})$$

• $||\varphi_0||_{\mathcal{K}} = \emptyset$

•
$$\varphi_0 = \mu x(\Box x)$$

•
$$||\varphi_0||_{\mathcal{K}} = \emptyset$$

• $\varphi_1 = \nu y (\text{green} \land \Box y)$

• $\varphi_0 = \mu x(\Box x)$

•
$$||\varphi_0||_{\mathcal{K}} = \emptyset$$

- $\varphi_1 = \nu y (\text{green} \land \Box y)$
 - $||\varphi_1||_{\mathcal{K}} = \{w_4\}$, (CTL: $\forall \Box$ green)

• $\varphi_0 = \mu x(\Box x)$

- $||\varphi_0||_{\mathcal{K}} = \emptyset$
- $\varphi_1 = \nu y (\text{green} \land \Box y)$
 - $||\varphi_1||_{\mathcal{K}} = \{w_4\}$, (CTL: $\forall \Box$ green)
- $\varphi_2 = \mu x (\nu y (\text{green} \land \Box y) \lor \diamondsuit x)$

• $\varphi_0 = \mu x(\Box x)$

- $||\varphi_0||_{\mathcal{K}} = \emptyset$
- $\varphi_1 = \nu y (\text{green} \land \Box y)$
 - $||\varphi_1||_{\mathcal{K}} = \{w_4\}, (CTL: \forall \Box \text{ green})$
- φ₂ = μx(νy(green ∧ □y) ∨ ◊x)
 ||φ₂||_κ = {w₁, w₃, w₄}, (CTL: ∃◊∀□ green)

- Alternating tree automata are finite-state devices designed to accept or reject pointed Kripke structures
- They can deal with arbitrary branching in a very natural way

Definition

An alternating tree automaton (ATA) is a tuple $\mathcal{A} = (S, s_I, \delta, \Omega)$ where:

- S is a finite set of *states*
- s₁ is an *initial state*
- δ is a transition function
- Ω : S $\rightarrow \omega$ is a *priority function*, which assigns a *priority* to each state

The transition function δ maps every state to a transition condition over S where the set of all *transition conditions* over S contains conditions of the form:

0,1, q, \neg q, s, \Box s, \diamondsuit s, s \land s', s \lor s'

for every s, $s'\in S$ and for every $q\in \mathcal{Q}$

Runs

A run of an ATA \mathcal{A} on (\mathcal{K}, w_0) is a $(W \times S)$ -vertex labeled tree $R = (V^R, E^R, \lambda^R)$ where the initial vertex is labeled by (w_0, s_0) and every vertex v with label (w, s) the following conditions are satisfied $(\delta(s) \neq 0)$:

$\delta(s)$	Condition
q	$w\in \kappa^{K}(q)$
¬q	$w \notin \kappa^K(q)$
⊘s ′	there exists $v' \in Scs_R(v)$ such that $s^R(v') = s'$ and $w^R(v') \in Scs_K(w)$
⊡s′	for every $w' \in Scs_{\mathcal{K}}(w)$ there exists $v' \in Scs_{\mathcal{R}}(v)$ such that $\lambda(v') = (w', s')$

Runs (contd.)

$\delta(s)$	Condition
$s' \lor s''$	there exists $v'\inScs_R(v)$ such that $\lambda(v')=(w,s')$ or $\lambda(v')=(w,s'')$
$s^\prime \wedge s^{\prime\prime}$	there exists v', $v'' \in Scs_R(v)$ such that $\lambda(v') = (w, s')$ and $\lambda(v'') = (w, s'')$

 A run is accepting if the state labeling of every infinite branch through R satisfies the parity acceptance condition determined by Ω

Translation: from μ -calculus to ATAs

Constructing an alternating tree automaton for every \mathcal{L}_{μ} formula that recognizes the exact query that the formula defines is straightforward (proof is more complicated)

Example

Let $\varphi = \mu q_1(q_0 \lor \Diamond q_1)$. Construct the corresponding automaton A.

• We construct a state $\langle\psi\rangle$ for every subformula ψ of φ :

 $\langle \mu q_1(q_0 \lor \diamondsuit q_1)
angle, \langle q_0 \lor \diamondsuit q_1
angle, \langle q_0
angle, \langle \diamondsuit q_1
angle, \langle q_1
angle$

Translation: from μ -calculus to ATAs

Constructing an alternating tree automaton for every \mathcal{L}_{μ} formula that recognizes the exact query that the formula defines is straightforward (proof is more complicated)

Example

Let $\varphi = \mu q_1(q_0 \lor \Diamond q_1)$. Construct the corresponding automaton A.

• We construct a state $\langle\psi\rangle$ for every subformula ψ of φ :

 $\langle \mu q_1(q_0 \lor \Diamond q_1)
angle$, $\langle q_0 \lor \Diamond q_1
angle$, $\langle q_0
angle$, $\langle \Diamond q_1
angle$, $\langle q_1
angle$

• The transition function is given by:

$$egin{aligned} &\delta(\langle \mu q_1(q_0 \lor \diamond q_1)
angle) = \langle q_0 \lor \diamond q_1
angle, \ &\delta(\langle q_0 \lor \diamond q_1
angle) = \langle q_0
angle \lor \langle \diamond q_1
angle, \ &\delta(\langle q_0
angle) = q_0, \ &\delta(\langle \diamond q_1
angle) = \diamond \langle q_1
angle, \ &\delta(\langle q_1
angle) = \langle \mu q_1(q_0 \lor \diamond q_1)
angle \end{aligned}$$

Example (contd.)

• The definition of the transition function can be shortened to:

$$egin{aligned} &\delta(\langle \mu q_1(q_0 \lor \Diamond q_1)
angle) = \langle q_0
angle \lor \langle \Diamond q_1
angle, \ &\delta(\langle q_0
angle) = q_0, \ &\delta(\langle \Diamond q_1
angle) = \diamond \langle \mu q_1(q_0 \lor \Diamond q_1)
angle \end{aligned}$$

• $\langle \mu q_1(q_0 \lor \Diamond q_1) \rangle$ is the initial state; it gets priority 1 (all other states get priority 0)

The model checking problem can be reduced to the acceptance problem for alternating tree automata:

MODEL CHECKING: given a finite pointed Kripke structure (\mathcal{K} , w) and an \mathcal{L}_{μ} formula φ , determine whether or not (\mathcal{K} , w) $\models \varphi$

The model checking problem can be reduced to the acceptance problem for alternating tree automata:

MODEL CHECKING: given a finite pointed Kripke structure (\mathcal{K} , w) and an \mathcal{L}_{μ} formula φ , determine whether or not (\mathcal{K} , w) $\models \varphi$

ACCEPTS: given a finite pointed Kripke structure (\mathcal{K} , w) and an alternating tree automaton \mathcal{A} , determine whether \mathcal{A} accepts (\mathcal{K} , w)

Definition

Formally, a *parity game* is a tuple $\mathcal{P} = (L_0, L_1, I_I, M, \Omega)$ where:

- L_0 and L_1 are disjoint sets, the sets of Player 0's and Player 1's locations, resp.
- $I_I \in L_0 \cup L_1$ is an initial location
- $\mathsf{M} \subseteq (L_0 \cup L_1) \times (L_0 \cup L_1)$ is a set of *moves*, and
- Ω : $(L_0 \cup L_1) \rightarrow \omega$ is a *priority function* with a finite range.

 $\mathcal{G}(\mathcal{P})$ is a directed graph called the *game graph* of \mathcal{P} .

- A partial play of \mathcal{P} is a path through $\mathcal{G}(\mathcal{P})$ starting with I_I
- A *play* of \mathcal{P} is a maximum path through $\mathcal{G}(\mathcal{P})$ starting with I_I

- A play p is winning for Player 0 if it is infinite and sup(p Ω) is even or it is finite and p(*) $\in L_1$
- A play p is winning for Player 1 if it is infinite and $sup(p\Omega)$ is odd or it is finite and $p(\textbf{*})\in L_0$
- A *winning strategy* for Player 0 makes sure that whatever Player 1 does in a play, it will be a win for Player 0

A strategy tree for Player 0 in ${\cal P}$ is a tree ${\cal T}$ satisfying the following conditions:

- The root of \mathcal{T} is labeled I₁
- Every $v \in V^T$ with $\lambda^T(v) \in L_0$ has a successor in \mathcal{T} labeled with a successor of $\lambda^T(v)$ in $\mathcal{G}(\mathcal{P})$ (Player 0 must move when it is his turn)
- Every $v \in V^T$ with $\lambda^T(v) \in L_1$ has, for every successor I of $\lambda^T(v)$ in $\mathcal{G}(\mathcal{P})$ a successor in \mathcal{T} labeled I (all options of player 1 have to be taken into account)

Winning conditions:

- A branch v of \mathcal{T} is *winning* if its labeling, which is a play is winning
- A strategy tree $\mathcal T$ for Player 0 is *winning* if every branch through $\mathcal T$ is winning
- $\bullet\,$ Player 0 wins a game ${\cal P}$ if there exists a winning strategy tree for him

- Construct a game $\mathcal{P} = (\mathcal{A}, \mathcal{K}, w_l)$ such that Player 0 wins if and only if \mathcal{A} accepts (\mathcal{K}, w_l)
- Choices of Player 1: correspond to the choices *A* has to make when in a transition condition it has to satisfy a conjunctions or □ requirements

REDUCTION OF THE ACCEPTANCE PROBLEM

Formally, $\mathcal{P}(\mathcal{A}, \mathcal{K}, w_l) = (L_0, L_1, (w_l^{\mathcal{K}}, s_l^{\mathcal{A}}), M, \Omega)$ where:

- L₀ is the set of all pairs (w, s) where δ(s) is of the form 0, q with q ∉ κ^K(w), ¬ q with q ∈ κ^K(w), s' ∨ s", or ◊s; this also determines L₁
- The successors of a location (w,s) are determined by the following rules:

$\delta(s)$	Condition
0, 1, q or ¬q	(w,s) has no successors
s′	(w,s) has one successor (w, s')
$s' \lor s''(s' \land s'')$	(w,s) has two successors (w, s') and (w, s")
<pre>◇s' (□s')</pre>	(w, s) has a successor (w', s') for every $w' \in Scs_{\mathcal{K}}(w)$

• The priority function Ω maps (w, s) to $\Omega^A(s)$

Accepting runs of \mathcal{A} on (\mathcal{K} , w) and winning strategy trees for Player 0 in $\mathcal{P}(\mathcal{A}, \mathcal{K}, w)$ are identical; the acceptance problem for ATAs can be reduced to the winner problem for parity games:

ACCEPTS: given a finite pointed Kripke structure (\mathcal{K} , w) and an alternating tree automaton \mathcal{A} , determine whether \mathcal{A} accepts (\mathcal{K} , w)

Accepting runs of \mathcal{A} on (\mathcal{K} , w) and winning strategy trees for Player 0 in $\mathcal{P}(\mathcal{A}, \mathcal{K}, w)$ are identical; the acceptance problem for ATAs can be reduced to the winner problem for parity games:

ACCEPTS: given a finite pointed Kripke structure (\mathcal{K} , w) and an alternating tree automaton \mathcal{A} , determine whether \mathcal{A} accepts (\mathcal{K} , w)

 $\rm WINS:$ given a finite parity game ${\cal P},$ determine whether or not Player 0 wins the game ${\cal P}$

- Model checking modal µ-calculus can be reduced to the winner problem for parity games
- Wins (for finite parity games) is solvable in $\mathcal{O}(m(2n/b)^{\lfloor b/2 \rfloor})$ (P-hard)

T. Wilke, Alternating tree automata, parity games, and modal mu-calculus, Bull. Belg. Math. Soc., vol. 8, iss. 2, pp. 359391, 2002.

THANK YOU!