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Overview

A model checking/synthesis approach:

( P r o g r a m  V e r i f i c a t i o n ) ( P r o g r a m  S y n t h e s i s )
M o d e l  C h e c k i n g  P r o b l e m S a t i s f i a b i l i t y  P r o b l e m
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Model checking approach

For a system S and a specification P, decide whether S satisfies P,
where:

models of systems are represented as Kripke structures, and

specifications are described in modal µ-calculus
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Kripke structures

Definition
A Kripke structure is a tuple K = (W, A, κ) where:

W is a set of worlds

A ⊆ W × W is an accessibility relation

κ: Q → 2W is an interpretation of the propositional variables, which assigns to
each propositional variable the set of worlds where it holds true

A pointed Kripke structure is a pair (K, ω) where K is a Kripke structure and ω a world

of it; a Kripke query is a class of pointed Kripke structures

Example

b l u e , g r e e n ,
r e d

r e d b l u e
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Modal µ-calculus

Modal µ-calculus is a temporal logic augmented by operators for least and
greatest fixed points

Used to express properties of Kripke structures

Very expressive

LTL, CTL and CTL* can be encoded in the µ-calculus
as expressive as alternating tree automata (later)
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Modal µ-calculus

Syntax

Let Var be a set of fixed point variables, Prop be a set of propositional variables:

ϕ, ψ ∈ Lµ ::= ⊥ | ⊤ | X | p | ¬p | ϕ ∧ ψ | ϕ ∨ ψ | 2ϕ | 3ϕ | µXϕ | νXϕ

where p ∈ Prop, X ∈ Var and µ (ν) is the least (greatest) fixed point operator
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Modal µ-calculus

Syntax

Let Var be a set of fixed point variables, Prop be a set of propositional variables:

ϕ, ψ ∈ Lµ ::= ⊥ | ⊤ | X | p | ¬p | ϕ ∧ ψ | ϕ ∨ ψ | 2ϕ | 3ϕ | µXϕ | νXϕ

where p ∈ Prop, X ∈ Var and µ (ν) is the least (greatest) fixed point operator

Let K be a Kripke structure, then ϕ ∈ Lµ is evaluated to ||ϕ||K ⊆ WK in K

Modal operators:

||2ϕ||K =
{

|w ∈ Wk |||ScsK (w) ⊆ ||ϕ||K |
}

||3ϕ||K =
{

|w ∈ Wk |||ScsK (w) ∩ ||ϕ||K 6= ∅|
}

(ScsK (w): is the set of all successors of w in K )

11 / 29



Modal µ-calculus - example

w 1 w 2

w 3 w 4

g r e e n

g r e e nb l u e

b l u e

ϕ0 = µx(2x)
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Modal µ-calculus - example

w 1 w 2

w 3 w 4

g r e e n

g r e e nb l u e

b l u e

ϕ0 = µx(2x)

||ϕ0||K = ∅

ϕ1 = νy(green ∧ 2y)

||ϕ1||K = {w4}, (CTL: ∀2 green)

ϕ2 = µx(νy(green ∧ 2y) ∨ 3x)

||ϕ2||K = {w1,w3,w4}, (CTL: ∃3∀2 green)
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Alternating Tree Automata

Alternating tree automata are finite-state devices designed to accept or
reject pointed Kripke structures

They can deal with arbitrary branching in a very natural way
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Alternating Tree Automata

Definition
An alternating tree automaton (ATA) is a tuple A = (S, sI , δ, Ω) where:

S is a finite set of states

sI is an initial state

δ is a transition function

Ω: S → ω is a priority function, which assigns a priority to each state

The transition function δ maps every state to a transition condition over S where the set
of all transition conditions over S contains conditions of the form:

0,1, q, ¬q, s, 2s, 3s, s ∧ s′, s ∨ s′

for every s, s′ ∈ S and for every q ∈ Q
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Alternating Tree Automata

Runs
A run of an ATA A on (K, w0) is a (W×S)-vertex labeled tree R = (V R , ER , λR) where the
initial vertex is labeled by (w0, s0) and every vertex v with label (w, s) the following conditions
are satisfied (δ(s) 6= 0):

δ(s) Condition

q w ∈ κK (q)

¬q w /∈ κK (q)

3s′ there exists v′ ∈ ScsR(v) such that
sR(v′) = s′ and wR(v ′) ∈ ScsK (w)

2s′ for every w′ ∈ ScsK (w) there exists
v′ ∈ ScsR(v) such that λ(v ′) = (w ′, s′)
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Alternating Tree Automata

Runs (contd.)

δ(s) Condition

s′ ∨ s′′ there exists v′ ∈ ScsR(v) such that
λ(v ′) = (w , s′) or λ(v ′) = (w , s′′)

s′ ∧ s′′ there exists v′, v′′ ∈ ScsR(v) such that
λ(v ′) = (w , s′) and λ(v ′′) = (w , s′′)
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Alternating Tree Automata

A run is accepting if the state labeling of every infinite branch through R

satisfies the parity acceptance condition determined by Ω

e v e n
c y c l e

e v e n
c y c l e

i n f i n i t e  b r a n c h e s

( w 0
, s

0 )
c o m p u t a t i o n  t r e e
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Translation: from µ-calculus to ATAs

Constructing an alternating tree automaton for every Lµ formula that recognizes
the exact query that the formula defines is straightforward (proof is more
complicated)

Example

Let ϕ = µq1(q0 ∨ 3q1). Construct the corresponding automaton A.

We construct a state 〈ψ〉 for every subformula ψ of ϕ:

〈µq1(q0 ∨ 3q1)〉, 〈q0 ∨ 3q1〉, 〈q0〉, 〈3q1〉, 〈q1〉
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We construct a state 〈ψ〉 for every subformula ψ of ϕ:

〈µq1(q0 ∨ 3q1)〉, 〈q0 ∨ 3q1〉, 〈q0〉, 〈3q1〉, 〈q1〉

The transition function is given by:

δ(〈µq1(q0 ∨ 3q1)〉) = 〈q0 ∨ 3q1〉,
δ(〈q0 ∨ 3q1〉) = 〈q0〉 ∨ 〈3q1〉,

δ(〈q0〉) = q0,
δ(〈3q1〉) = 3 〈q1〉,

δ(〈q1〉) = 〈µq1(q0 ∨ 3q1)〉
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Translation: from µ-calculus to ATAs

Example (contd.)

The definition of the transition function can be shortened to:

δ(〈µq1(q0 ∨ 3q1)〉) = 〈q0〉 ∨ 〈3q1〉,
δ(〈q0〉) = q0,

δ(〈3q1〉) = 3 〈µq1(q0 ∨ 3q1)〉

〈µq1(q0 ∨ 3q1)〉 is the initial state; it gets priority 1 (all other states get priority 0)
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Reduction to the acceptance problem (ATAs)

The model checking problem can be reduced to the acceptance problem
for alternating tree automata:

Model Checking: given a finite pointed Kripke structure (K, w) and an Lµ

formula ϕ, determine whether or not (K, w) |= ϕ
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Parity games

Definition
Formally, a parity game is a tuple P = (L0, L1, lI , M, Ω) where:

L0 and L1 are disjoint sets, the sets of Player 0’s and Player 1’s locations, resp.

lI ∈ L0 ∪ L1 is an initial location

M ⊆ (L0 ∪ L1) × (L0 ∪ L1) is a set of moves, and

Ω: (L0 ∪ L1) → ω is a priority function with a finite range.

G(P) is a directed graph called the game graph of P.

A partial play of P is a path through G(P) starting with lI

A play of P is a maximum path through G(P) starting with lI
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Parity games

A play p is winning for Player 0 if it is infinite and sup(pΩ) is even or it is finite
and p(*) ∈ L1

A play p is winning for Player 1 if it is infinite and sup(pΩ) is odd or it is finite and
p(*) ∈ L0

A winning strategy for Player 0 makes sure that whatever Player 1 does in a play,
it will be a win for Player 0
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Parity games

A strategy tree for Player 0 in P is a tree T satisfying the following conditions:

The root of T is labeled lI

Every v ∈ VT with λT (v) ∈ L0 has a successor in T labeled with a successor of
λT (v) in G(P) (Player 0 must move when it is his turn)

Every v ∈ VT with λT (v) ∈ L1 has, for every successor l of λT (v) in G(P) a
successor in T labeled l (all options of player 1 have to be taken into account)

Winning conditions:

A branch v of T is winning if its labeling, which is a play is winning

A strategy tree T for Player 0 is winning if every branch through T is winning

Player 0 wins a game P if there exists a winning strategy tree for him
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Reduction of the acceptance problem

Construct a game P = (A, K, wI ) such that Player 0 wins if and only if A accepts
(K, wI )

Choices of Player 0: correspond to the choices A has to make when in a
transition condition it has to satisfy a disjunction or a 3 requirement

Choices of Player 1: correspond to the choices A has to make when in a
transition condition it has to satisfy a conjunctions or 2 requirements
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Reduction of the acceptance problem

Formally, P(A, K, wI ) = (L0, L1, (wK

I , sA

I ), M, Ω) where:

L0 is the set of all pairs (w, s) where δ(s) is of the form 0, q with q /∈ κK (w), ¬ q
with q ∈ κK (w), s′ ∨ s ′′, or 3s; this also determines L1

The successors of a location (w,s) are determined by the following rules:

δ(s) Condition

0, 1, q or ¬q (w,s) has no successors

s′ (w,s) has one successor (w, s′)

s′ ∨ s′′(s′ ∧ s′′) (w,s) has two successors (w, s′) and (w, s′′)

3s′ (2s′) (w, s) has a successor (w′, s′) for every w′ ∈ ScsK (w)

The priority function Ω maps (w, s) to ΩA(s)
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Reduction of the acceptance problem

Accepting runs of A on (K, w) and winning strategy trees for Player 0 in
P(A, K, w) are identical; the acceptance problem for ATAs can be reduced to the
winner problem for parity games:

Accepts: given a finite pointed Kripke structure (K, w) and an alternating tree
automaton A, determine whether A accepts (K, w)
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Reduction of the acceptance problem

Accepting runs of A on (K, w) and winning strategy trees for Player 0 in
P(A, K, w) are identical; the acceptance problem for ATAs can be reduced to the
winner problem for parity games:

Accepts: given a finite pointed Kripke structure (K, w) and an alternating tree
automaton A, determine whether A accepts (K, w)

↓
Wins: given a finite parity game P, determine whether or not Player 0 wins the
game P
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Conclusion

Model checking modal µ-calculus can be reduced to the winner problem for
parity games

Wins (for finite parity games) is solvable in O(m(2n/b)⌊b/2⌋) (P-hard)
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THANK YOU!
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