## Model-checking Games

Seminar on Games in Verification and Synthesis (University of Saarland, Reactive Systems Group, Klaus Draeger)

Walid Haddad

May 29, 2008

## Outline

(1) Overview
(2) Kripke structures
(3) Modal $\mu$-Calculus
(9) Alternating Tree Automata
(3) Translation (Modal $\mu$-Calculus $\rightarrow$ ATAs)
(0) Reduction to the acceptance problem for ATAs
(1) Parity games
(3) Reduction of the acceptance problem
(0) Conclusion

## Overview

A model checking/synthesis approach:

> Model Checking Problem (Program Verification)

## Overview

## A model checking/synthesis approach:



## OvERVIEW

## A model checking/synthesis approach:



## Model checking Approach

For a system $\mathcal{S}$ and a specification $\mathcal{P}$, decide whether $\mathcal{S}$ satisfies $\mathcal{P}$, where:

- models of systems are represented as Kripke structures, and
- specifications are described in modal $\mu$-calculus


## Kripke structures

## Definition

A Kripke structure is a tuple $\mathcal{K}=(\mathrm{W}, \mathrm{A}, \kappa)$ where:

- W is a set of worlds
- $\mathrm{A} \subseteq \mathrm{W} \times \mathrm{W}$ is an accessibility relation
- $\kappa$ : $\mathcal{Q} \rightarrow 2^{W}$ is an interpretation of the propositional variables, which assigns to each propositional variable the set of worlds where it holds true

A pointed Kripke structure is a pair $(\mathcal{K}, \omega)$ where $\mathcal{K}$ is a Kripke structure and $\omega$ a world of it; a Kripke query is a class of pointed Kripke structures

## Example



## MODAL $\mu$-CALCULUS

Modal $\mu$-calculus is a temporal logic augmented by operators for least and greatest fixed points

- Used to express properties of Kripke structures
- Very expressive
- LTL, CTL and CTL* can be encoded in the $\mu$-calculus
- as expressive as alternating tree automata (later)


## MODAL $\mu$-CALCULUS

## Syntax

Let Var be a set of fixed point variables, Prop be a set of propositional variables:

$$
\varphi, \psi \in \mathcal{L}_{\mu}::=\perp|\top| X|p| \neg p|\varphi \wedge \psi| \varphi \vee \psi|\square \varphi| \diamond \varphi|\mu X \varphi| \nu X \varphi
$$

where $\mathrm{p} \in \operatorname{Prop}, X \in \operatorname{Var}$ and $\mu(\nu)$ is the least (greatest) fixed point operator

## MODAL $\mu$-CALCULUS

## Syntax

Let Var be a set of fixed point variables, Prop be a set of propositional variables:

$$
\varphi, \psi \in \mathcal{L}_{\mu}::=\perp|\top| X|p| \neg p|\varphi \wedge \psi| \varphi \vee \psi|\square \varphi| \diamond \varphi|\mu X \varphi| \nu X \varphi
$$

where $\mathrm{p} \in \operatorname{Prop}, X \in \operatorname{Var}$ and $\mu(\nu)$ is the least (greatest) fixed point operator

Let $K$ be a Kripke structure, then $\varphi \in \mathcal{L}_{\mu}$ is evaluated to $\|\varphi\|_{K} \subseteq \mathcal{W}^{K}$ in $K$

## Atomic formulas:

$$
\text { - }\|\perp\|_{K}=\emptyset, \quad\|T\|_{K}=\mathcal{W}^{K}
$$

## MODAL $\mu$-CALCULUS

## Syntax

Let Var be a set of fixed point variables, Prop be a set of propositional variables:

$$
\varphi, \psi \in \mathcal{L}_{\mu}::=\perp|\top| X|p| \neg p|\varphi \wedge \psi| \varphi \vee \psi|\square \varphi| \diamond \varphi|\mu X \varphi| \nu X \varphi
$$

where $\mathrm{p} \in \operatorname{Prop}, X \in \operatorname{Var}$ and $\mu(\nu)$ is the least (greatest) fixed point operator

Let $K$ be a Kripke structure, then $\varphi \in \mathcal{L}_{\mu}$ is evaluated to $\|\varphi\|_{K} \subseteq \mathcal{W}^{K}$ in $K$

## Atomic formulas:

- $\|\perp\|_{\kappa}=\emptyset$,

$$
\|T\|_{K}=\mathcal{W}^{K}
$$

- $\|p\|_{\kappa}=\kappa^{K}(p)$,
$\|\neg p\|_{\kappa}=\mathcal{W}^{K} \backslash \kappa^{K}(p)$


## MODAL $\mu$-CALCULUS

## Syntax

Let Var be a set of fixed point variables, Prop be a set of propositional variables:

$$
\varphi, \psi \in \mathcal{L}_{\mu}::=\perp|\top| X|p| \neg p|\varphi \wedge \psi| \varphi \vee \psi|\square \varphi| \diamond \varphi|\mu X \varphi| \nu X \varphi
$$

where $\mathrm{p} \in \operatorname{Prop}, X \in \operatorname{Var}$ and $\mu(\nu)$ is the least (greatest) fixed point operator

Let $K$ be a Kripke structure, then $\varphi \in \mathcal{L}_{\mu}$ is evaluated to $\|\varphi\|_{K} \subseteq \mathcal{W}^{K}$ in $K$ Disjunction and conjunction:

- $\|\varphi \vee \psi\|_{K}=\|\varphi\|_{K} \cup\|\psi\|_{K}$


## MODAL $\mu$-CALCULUS

## Syntax

Let Var be a set of fixed point variables, Prop be a set of propositional variables:
$\varphi, \psi \in \mathcal{L}_{\mu}::=\perp|\top| X|p| \neg p|\varphi \wedge \psi| \varphi \vee \psi|\square \varphi| \diamond \varphi|\mu X \varphi| \nu X \varphi$
where $\mathrm{p} \in \operatorname{Prop}, X \in \operatorname{Var}$ and $\mu(\nu)$ is the least (greatest) fixed point operator

Let $K$ be a Kripke structure, then $\varphi \in \mathcal{L}_{\mu}$ is evaluated to $\|\varphi\|_{K} \subseteq \mathcal{W}^{K}$ in $K$
Disjunction and conjunction:

- $\|\varphi \vee \psi\|_{K}=\|\varphi\|_{K} \cup\|\psi\|_{K}$
- $\|\varphi \wedge \psi\|_{K}=\|\varphi\|_{K} \cap\|\psi\|_{K}$


## MODAL $\mu$-CALCULUS

## Syntax

Let Var be a set of fixed point variables, Prop be a set of propositional variables:
$\varphi, \psi \in \mathcal{L}_{\mu}::=\perp|\top| X|p| \neg p|\varphi \wedge \psi| \varphi \vee \psi|\square \varphi| \diamond \varphi|\mu X \varphi| \nu X \varphi$
where $\mathrm{p} \in \operatorname{Prop}, X \in \operatorname{Var}$ and $\mu(\nu)$ is the least (greatest) fixed point operator

Let $K$ be a Kripke structure, then $\varphi \in \mathcal{L}_{\mu}$ is evaluated to $\|\varphi\|_{K} \subseteq \mathcal{W}^{K}$ in $K$ Modal operators:

- $\|\square \varphi\|_{K}=\left\{w \in \mathcal{W}^{k} \mid \operatorname{Scs_{K}}(w) \subseteq\|\varphi\|_{K}\right\}$
$\left(\operatorname{Scs}_{K}(w)\right.$ : is the set of all successors of $w$ in $\left.K\right)$


## MODAL $\mu$-CALCULUS

## Syntax

Let Var be a set of fixed point variables, Prop be a set of propositional variables:
$\varphi, \psi \in \mathcal{L}_{\mu}::=\perp|\top| X|p| \neg p|\varphi \wedge \psi| \varphi \vee \psi|\square \varphi| \diamond \varphi|\mu X \varphi| \nu X \varphi$
where $\mathrm{p} \in \operatorname{Prop}, X \in \operatorname{Var}$ and $\mu(\nu)$ is the least (greatest) fixed point operator

Let $K$ be a Kripke structure, then $\varphi \in \mathcal{L}_{\mu}$ is evaluated to $\|\varphi\|_{K} \subseteq \mathcal{W}^{K}$ in $K$ Modal operators:

- $\|\square \varphi\|_{K}=\left\{w \in \mathcal{W}^{k} \mid \operatorname{Scs_{K}}(w) \subseteq\|\varphi\|_{K}\right\}$
- $\|\diamond \varphi\|_{K}=\left\{w \in \mathcal{W}^{k} \mid \operatorname{Scs}_{K}(w) \cap\|\varphi\|_{K} \neq \emptyset\right\}$
$\left(\mathrm{Scs}_{K}(w)\right.$ : is the set of all successors of $w$ in $K$ )


## MODAL $\mu$-CALCULUS - EXAMPLE



- $\varphi_{0}=\mu \mathrm{x}(\square \mathrm{x})$


## MODAL $\mu$-CALCULUS - EXAMPLE



- $\varphi_{0}=\mu \mathrm{x}(\square \mathrm{x})$

$$
\text { - }\left\|\varphi_{0}\right\|_{\kappa}=\emptyset
$$

## MODAL $\mu$-CALCULUS - EXAMPLE



- $\varphi_{0}=\mu \mathrm{x}(\square \mathrm{x})$

$$
\text { - }\left\|\varphi_{0}\right\|_{\kappa}=\emptyset
$$

- $\varphi_{1}=\nu \mathrm{y}($ green $\wedge \square \mathrm{y})$


## MODAL $\mu$-CALCULUS - EXAMPLE



- $\varphi_{0}=\mu \mathrm{x}(\square \mathrm{x})$

$$
\text { - }\left\|\varphi_{0}\right\|_{\kappa}=\emptyset
$$

- $\varphi_{1}=\nu \mathrm{y}($ green $\wedge \square \mathrm{y})$
- $\left\|\varphi_{1}\right\|_{K}=\left\{w_{4}\right\},(C T L: ~ \forall \square$ green $)$


## MODAL $\mu$-CALCULUS - EXAMPLE



- $\varphi_{0}=\mu \mathrm{x}(\square \mathrm{x})$

$$
\text { - }\left\|\varphi_{0}\right\|_{\kappa}=\emptyset
$$

- $\varphi_{1}=\nu \mathrm{y}($ green $\wedge \square \mathrm{y})$
- $\left\|\varphi_{1}\right\|_{\kappa}=\left\{w_{4}\right\},(C T L: ~ \forall \square$ green $)$
- $\varphi_{2}=\mu \mathrm{x}(\nu \mathrm{y}($ green $\wedge \square \mathrm{y}) \vee \diamond \mathrm{x})$


## MODAL $\mu$-CALCULUS - EXAMPLE



- $\varphi_{0}=\mu \mathrm{x}(\square \mathrm{x})$
- $\left\|\varphi_{0}\right\|_{\kappa}=\emptyset$
- $\varphi_{1}=\nu \mathrm{y}($ green $\wedge \square \mathrm{y})$
- $\left\|\varphi_{1}\right\|_{\kappa}=\left\{w_{4}\right\},(C T L: ~ \forall \square$ green $)$
- $\varphi_{2}=\mu \mathrm{x}(\nu \mathrm{y}($ green $\wedge \square \mathrm{y}) \vee \diamond \mathrm{x})$
- $\left\|\varphi_{2}\right\|_{K}=\left\{w_{1}, w_{3}, w_{4}\right\},(C T L: \exists \diamond \forall \square$ green $)$


## Alternating Tree Automata

- Alternating tree automata are finite-state devices designed to accept or reject pointed Kripke structures
- They can deal with arbitrary branching in a very natural way


## Alternating Tree Automata

## Definition

An alternating tree automaton (ATA) is a tuple $\mathcal{A}=\left(\mathrm{S}, \mathrm{s}_{l}, \delta, \Omega\right)$ where:

- $S$ is a finite set of states
- $\mathrm{s}_{\prime}$ is an initial state
- $\delta$ is a transition function
- $\Omega: S \rightarrow \omega$ is a priority function, which assigns a priority to each state

The transition function $\delta$ maps every state to a transition condition over S where the set of all transition conditions over S contains conditions of the form:

$$
0,1, \mathrm{q}, \neg \mathrm{q}, \mathrm{~s}, \square \mathrm{~s}, \diamond \mathrm{~s}, \mathrm{~s} \wedge \mathrm{~s}^{\prime}, \mathrm{s} \vee \mathrm{~s}^{\prime}
$$

for every $\mathrm{s}, \mathrm{s}^{\prime} \in \mathrm{S}$ and for every $\mathrm{q} \in \mathcal{Q}$

## Alternating Tree Automata

## Runs

A run of an ATA $\mathcal{A}$ on $\left(\mathcal{K}, w_{0}\right)$ is a $(\mathrm{W} \times \mathrm{S})$-vertex labeled tree $R=\left(V^{R}, E^{R}, \lambda^{R}\right)$ where the initial vertex is labeled by $\left(w_{0}, s_{0}\right)$ and every vertex $v$ with label $(w, s)$ the following conditions are satisfied $(\delta(s) \neq 0)$ :

| $\delta(\mathrm{s})$ | Condition |
| :---: | :---: |
| q | $\mathrm{w} \in \kappa^{K}$ ( q ) |
| $\neg \mathrm{q}$ | $\mathrm{w} \notin \kappa^{k}$ ( q ) |
| $\diamond s^{\prime}$ | there exists $v^{\prime} \in \operatorname{Scs}_{R}(v)$ such that $s^{R}\left(v^{\prime}\right)=s^{\prime}$ and $w^{R}\left(v^{\prime}\right) \in \operatorname{Scs}_{K}(w)$ |
| $\square s^{\prime}$ | for every $w^{\prime} \in \operatorname{Scs}_{K}(w)$ there exists $\in \operatorname{Scs}_{R}(v)$ such that $\lambda\left(v^{\prime}\right)=\left(w^{\prime}, s^{\prime}\right)$ |

## Alternating Tree Automata

## Runs (contd.)

| $\delta(s)$ | Condition |
| :---: | :---: |
| $s^{\prime} \vee s^{\prime \prime}$ | there exists $v^{\prime} \in \operatorname{Scs}(v)$ such that <br> $\lambda\left(v^{\prime}\right)=\left(w, s^{\prime}\right)$ or $\lambda\left(v^{\prime}\right)=\left(w, s^{\prime \prime}\right)$ |
|  |  |
| $s^{\prime} \wedge s^{\prime \prime}$ | there exists $v^{\prime}, v^{\prime \prime} \in \operatorname{Scs}_{R}(v)$ such that <br> $\lambda\left(v^{\prime}\right)=\left(w, s^{\prime}\right)$ and $\lambda\left(v^{\prime \prime}\right)=\left(w, s^{\prime \prime}\right)$ |

## Alternating Tree Automata

- A run is accepting if the state labeling of every infinite branch through $R$ satisfies the parity acceptance condition determined by $\Omega$



## Translation: from $\mu$-CALCULUS TO ATAs

Constructing an alternating tree automaton for every $\mathcal{L}_{\mu}$ formula that recognizes the exact query that the formula defines is straightforward (proof is more complicated)

## Example

Let $\varphi=\mu q_{1}\left(q_{0} \vee \diamond q_{1}\right)$. Construct the corresponding automaton $\mathcal{A}$.

- We construct a state $\langle\psi\rangle$ for every subformula $\psi$ of $\varphi$ :

$$
\left\langle\mu q_{1}\left(q_{0} \vee \diamond q_{1}\right)\right\rangle,\left\langle q_{0} \vee \diamond q_{1}\right\rangle,\left\langle q_{0}\right\rangle,\left\langle\diamond q_{1}\right\rangle,\left\langle q_{1}\right\rangle
$$

## Translation: from $\mu$-CALCULUS TO ATAs

Constructing an alternating tree automaton for every $\mathcal{L}_{\mu}$ formula that recognizes the exact query that the formula defines is straightforward (proof is more complicated)

## Example

Let $\varphi=\mu q_{1}\left(q_{0} \vee \diamond q_{1}\right)$. Construct the corresponding automaton $\mathcal{A}$.

- We construct a state $\langle\psi\rangle$ for every subformula $\psi$ of $\varphi$ :

$$
\left\langle\mu q_{1}\left(q_{0} \vee \diamond q_{1}\right)\right\rangle,\left\langle q_{0} \vee \diamond q_{1}\right\rangle,\left\langle q_{0}\right\rangle,\left\langle\diamond q_{1}\right\rangle,\left\langle q_{1}\right\rangle
$$

- The transition function is given by:

$$
\begin{gathered}
\delta\left(\left\langle\mu q_{1}\left(q_{0} \vee \diamond q_{1}\right)\right\rangle\right)=\left\langle q_{0} \vee \diamond q_{1}\right\rangle, \\
\delta\left(\left\langle q_{0} \vee \diamond q_{1}\right\rangle\right)=\left\langle q_{0}\right\rangle \vee\left\langle\diamond q_{1}\right\rangle, \\
\delta\left(\left\langle q_{0}\right\rangle\right)=q_{0}, \\
\delta\left(\left\langle\diamond q_{1}\right\rangle\right)=\diamond\left\langle q_{1}\right\rangle, \\
\delta\left(\left\langle q_{1}\right\rangle\right)=\left\langle\mu q_{1}\left(q_{0} \vee \diamond q_{1}\right)\right\rangle
\end{gathered}
$$

## Translation: from $\mu$-calculus to ATAs

## Example (contd.)

- The definition of the transition function can be shortened to:

$$
\begin{gathered}
\delta\left(\left\langle\mu q_{1}\left(q_{0} \vee \diamond q_{1}\right)\right\rangle\right)=\left\langle q_{0}\right\rangle \vee\left\langle\diamond q_{1}\right\rangle, \\
\delta\left(\left\langle q_{0}\right\rangle\right)=q_{0}, \\
\delta\left(\left\langle\diamond q_{1}\right\rangle\right)=\diamond\left\langle\mu q_{1}\left(q_{0} \vee \diamond q_{1}\right)\right\rangle
\end{gathered}
$$

- $\left\langle\mu q_{1}\left(q_{0} \vee \diamond q_{1}\right)\right\rangle$ is the initial state; it gets priority 1 (all other states get priority 0 )


## Reduction to the acceptance problem (ATAs)

The model checking problem can be reduced to the acceptance problem for alternating tree automata:

Model Checking: given a finite pointed Kripke structure ( $\mathcal{K}, \mathrm{w}$ ) and an $\mathcal{L}_{\mu}$ formula $\varphi$, determine whether or not $(\mathcal{K}, w) \models \varphi$

## Reduction to the acceptance problem (ATAs)

The model checking problem can be reduced to the acceptance problem for alternating tree automata:

Model Checking: given a finite pointed Kripke structure ( $\mathcal{K}, \mathrm{w}$ ) and an $\mathcal{L}_{\mu}$ formula $\varphi$, determine whether or not $(\mathcal{K}, \mathrm{w}) \models \varphi$

$$
\downarrow
$$

Accepts: given a finite pointed Kripke structure ( $\mathcal{K}, w$ ) and an alternating tree automaton $\mathcal{A}$, determine whether $\mathcal{A}$ accepts ( $\mathcal{K}$, w)

## Parity games

## Definition

Formally, a parity game is a tuple $\mathcal{P}=\left(L_{0}, L_{1}, I_{1}, M, \Omega\right)$ where:

- $L_{0}$ and $L_{1}$ are disjoint sets, the sets of Player 0's and Player 1's locations, resp.
- $I_{\text {}} \in L_{0} \cup L_{1}$ is an initial location
- $M \subseteq\left(L_{0} \cup L_{1}\right) \times\left(L_{0} \cup L_{1}\right)$ is a set of moves, and
- $\Omega:\left(L_{0} \cup L_{1}\right) \rightarrow \omega$ is a priority function with a finite range.
$\mathcal{G}(\mathcal{P})$ is a directed graph called the game graph of $\mathcal{P}$.
- A partial play of $\mathcal{P}$ is a path through $\mathcal{G}(\mathcal{P})$ starting with $I_{\text {I }}$
- A play of $\mathcal{P}$ is a maximum path through $\mathcal{G}(\mathcal{P})$ starting with $I_{\text {, }}$


## Parity games

- A play p is winning for Player 0 if it is infinite and $\sup (\mathrm{p} \Omega)$ is even or it is finite and $p\left({ }^{*}\right) \in L_{1}$
- A play $p$ is winning for Player 1 if it is infinite and $\sup (p \Omega)$ is odd or it is finite and $\mathrm{p}\left({ }^{*}\right) \in \mathrm{L}_{0}$
- A winning strategy for Player 0 makes sure that whatever Player 1 does in a play, it will be a win for Player 0


## Parity games

A strategy tree for Player 0 in $\mathcal{P}$ is a tree $\mathcal{T}$ satisfying the following conditions:

- The root of $\mathcal{T}$ is labeled $\mathrm{I}_{\mathrm{I}}$
- Every $\mathrm{v} \in \mathrm{V}^{\top}$ with $\lambda^{T}(\mathrm{v}) \in \mathrm{L}_{0}$ has a successor in $\mathcal{T}$ labeled with a successor of $\lambda^{T}(\mathrm{v})$ in $\mathcal{G}(\mathcal{P})$ (Player 0 must move when it is his turn)
- Every $\mathrm{v} \in \mathrm{V}^{T}$ with $\lambda^{T}(\mathrm{v}) \in \mathrm{L}_{1}$ has, for every successor I of $\lambda^{T}(\mathrm{v})$ in $\mathcal{G}(\mathcal{P})$ a successor in $\mathcal{T}$ labeled I (all options of player 1 have to be taken into account)

Winning conditions:

- A branch $v$ of $\mathcal{T}$ is winning if its labeling, which is a play is winning
- A strategy tree $\mathcal{T}$ for Player 0 is winning if every branch through $\mathcal{T}$ is winning
- Player 0 wins a game $\mathcal{P}$ if there exists a winning strategy tree for him


## Reduction of The acceptance problem

- Construct a game $\mathcal{P}=\left(\mathcal{A}, \mathcal{K}, w_{l}\right)$ such that Player 0 wins if and only if $\mathcal{A}$ accepts ( $\mathcal{K}, w_{l}$ )
- Choices of Player 0: correspond to the choices $\mathcal{A}$ has to make when in a transition condition it has to satisfy a disjunction or a $\diamond$ requirement
- Choices of Player 1: correspond to the choices $\mathcal{A}$ has to make when in a transition condition it has to satisfy a conjunctions or $\square$ requirements


## REDUCTION OF THE ACCEPTANCE PROBLEM

Formally, $\mathcal{P}\left(\mathcal{A}, \mathcal{K}, w_{l}\right)=\left(\mathrm{L}_{0}, \mathrm{~L}_{1},\left(w_{l}^{K}, \mathrm{~s}_{l}^{A}\right), \mathrm{M}, \Omega\right)$ where:

- $\mathrm{L}_{0}$ is the set of all pairs $(\mathrm{w}, \mathrm{s})$ where $\delta(\mathrm{s})$ is of the form $0, \mathrm{q}$ with $\mathrm{q} \notin \kappa^{k}(\mathrm{w}), \neg \mathrm{q}$ with $\mathrm{q} \in \kappa^{K}(\mathrm{w}), \mathrm{s}^{\prime} \vee \mathrm{s}^{\prime \prime}$, or $\diamond \mathrm{s}$; this also determines $\mathrm{L}_{1}$
- The successors of a location $(w, s)$ are determined by the following rules:

| $\delta(\mathrm{s})$ | Condition |
| :---: | :---: |
| $0,1, \mathrm{q}$ or $\neg \mathrm{q}$ | $(\mathrm{w}, \mathrm{s})$ has no successors |
| $\mathrm{s}^{\prime}$ | $(\mathrm{w}, \mathrm{s})$ has one successor $\left(\mathrm{w}, \mathrm{s}^{\prime}\right)$ |
| $\mathrm{s}^{\prime} \vee \mathrm{s}^{\prime \prime}\left(\mathrm{s}^{\prime} \wedge \mathrm{s}^{\prime \prime}\right)$ | $(\mathrm{w}, \mathrm{s})$ has two successors $\left(\mathrm{w}, \mathrm{s}^{\prime}\right)$ and $\left(\mathrm{w}, \mathrm{s}^{\prime \prime}\right)$ |
| $\diamond \mathrm{s}^{\prime}\left(\square \mathrm{s}^{\prime}\right)$ | $(\mathrm{w}, \mathrm{s})$ has a successor $\left(\mathrm{w}^{\prime}, \mathrm{s}^{\prime}\right)$ for every $\mathrm{w}^{\prime} \in \operatorname{Scs}_{K}(\mathrm{w})$ |

- The priority function $\Omega$ maps ( $\mathrm{w}, \mathrm{s}$ ) to $\Omega^{A}(\mathrm{~s})$


## Reduction of The acceptance problem

Accepting runs of $\mathcal{A}$ on ( $\mathcal{K}, \mathrm{w}$ ) and winning strategy trees for Player 0 in $\mathcal{P}(\mathcal{A}, \mathcal{K}, \mathrm{w})$ are identical; the acceptance problem for ATAs can be reduced to the winner problem for parity games:

Accepts: given a finite pointed Kripke structure ( $\mathcal{K}, \mathrm{w}$ ) and an alternating tree automaton $\mathcal{A}$, determine whether $\mathcal{A}$ accepts ( $\mathcal{K}$, w)

## Reduction of The acceptance problem

Accepting runs of $\mathcal{A}$ on ( $\mathcal{K}, \mathrm{w}$ ) and winning strategy trees for Player 0 in $\mathcal{P}(\mathcal{A}, \mathcal{K}, \mathrm{w})$ are identical; the acceptance problem for ATAs can be reduced to the winner problem for parity games:

Accepts: given a finite pointed Kripke structure ( $\mathcal{K}, \mathrm{w}$ ) and an alternating tree automaton $\mathcal{A}$, determine whether $\mathcal{A}$ accepts ( $\mathcal{K}$, w)

$$
\downarrow
$$

Wins: given a finite parity game $\mathcal{P}$, determine whether or not Player 0 wins the game $\mathcal{P}$

## Conclusion

- Model checking modal $\mu$-calculus can be reduced to the winner problem for parity games
- Wins (for finite parity games) is solvable in $\mathcal{O}\left(m(2 n / b)^{\lfloor b / 2\rfloor}\right)$ (P-hard)


## References

(圊 T. Wilke, Alternating tree automata, parity games, and modal mu-calculus, Bull. Belg. Math. Soc., vol. 8, iss. 2, pp. 359391, 2002.

THANK YOU!

