MODEL-CHECKING (GAMES

Seminar on Games in Verification and Synthesis
(University of Saarland, Reactive Systems Group, Klaus Draeger)

Walid Haddad

May 29, 2008

1/29

OUTLINE

0000000 O0COC

OVERVIEW

KRIPKE STRUCTURES

MobpAL u-CALCULUS

ALTERNATING TREE AUTOMATA

TRANSLATION (MODAL p-CALCULUS — ATAS)
REDUCTION TO THE ACCEPTANCE PROBLEM FOR ATAS
PARITY GAMES

REDUCTION OF THE ACCEPTANCE PROBLEM
CONCLUSION

2/29

OVERVIEW

A model checking/synthesis approach:

Model Checking Problem Satisfiability Problem
(Program Verification) (Program Synthesis)

3/29

OVERVIEW

A model checking/synthesis approach:

Model Checking Problem Satisfiability Problem

(Program Verification) (Program Synthesis)

Acceptance Problem (Non-)emptiness Problem
for for
Alternating Tree Automata Alternating Tree Automata

4/29

OVERVIEW

A model checking/synthesis approach:

Model Checking Problem Satisfiability Problem

(Program Verification) (Program Synthesis)

Acceptance Problem (Non-)emptiness Problem
for for
Alternating Tree Automata Alternating Tree Automata
A, v
Winner Problem
for

Parity Games

5/29

MODEL CHECKING APPROACH

For a system S and a specification P, decide whether S satisfies P,
where:

@ models of systems are represented as Kripke structures, and

@ specifications are described in modal p-calculus

6/29

KRIPKE STRUCTURES

Definition
A Kripke structure is a tuple K = (W, A, k) where:

@ W is a set of worlds
@ A CW x W is an accessibility relation
@ x: Q — 2% is an interpretation of the propositional variables, which assigns to

each propositional variable the set of worlds where it holds true

A pointed Kripke structure is a pair (K, w) where K is a Kripke structure and w a world

of it; a Kripke query is a class of pointed Kripke structures

7/29

MODAL p-CALCULUS

Modal p-calculus is a temporal logic augmented by operators for least and
greatest fixed points

@ Used to express properties of Kripke structures

@ Very expressive

o LTL, CTL and CTL* can be encoded in the p-calculus
@ as expressive as alternating tree automata (later)

8/29

MODAL p-CALCULUS

Let Var be a set of fixed point variables, Prop be a set of propositional variables:

pYeLy,=L|T|X[pl-pleAy|eVy|Op|Op|uXe | vXe
where p € Prop, X € Var and p (v) is the least (greatest) fixed point operator

9/29

MODAL p-CALCULUS

Let Var be a set of fixed point variables, Prop be a set of propositional variables:

pYeLy,=L|T|X[pl-pleAy|eVy|Op|Op|uXe | vXe
where p € Prop, X € Var and p (v) is the least (greatest) fixed point operator

Let K be a Kripke structure, then ¢ € L, is evaluated to ||¢||[x € WX in K
Atomic formulas:

o [l Lflx =0, 1Tl =W

9/29

MODAL p-CALCULUS

Let Var be a set of fixed point variables, Prop be a set of propositional variables:

pYeLy,=L|T|X[pl-pleAy|eVy|Op|Op|uXe | vXe
where p € Prop, X € Var and p (v) is the least (greatest) fixed point operator

Let K be a Kripke structure, then ¢ € L, is evaluated to ||¢||[x € WX in K
Atomic formulas:

@ || Lk =0, [Tk = WX
o |Ipllk = "(p). ll=pllk = WK\ £"(p)

9/29

MODAL p-CALCULUS

Let Var be a set of fixed point variables, Prop be a set of propositional variables:

pYeLy,=L|T|X[pl-pleAy|eVy|Op|Op|uXe | vXe
where p € Prop, X € Var and p (v) is the least (greatest) fixed point operator

Let K be a Kripke structure, then ¢ € L, is evaluated to ||¢||[x € WX in K

Disjunction and conjunction:

9 [l vellk = [lellx U [k

10/29

MODAL p-CALCULUS

Let Var be a set of fixed point variables, Prop be a set of propositional variables:

pYeLy,=L|T|X[pl-pleAy|eVy|Op|Op|uXe | vXe
where p € Prop, X € Var and p (v) is the least (greatest) fixed point operator

Let K be a Kripke structure, then ¢ € L, is evaluated to ||¢||[x € WX in K

Disjunction and conjunction:

9 |l VYllk = llellk U ll¥llk
@ e Ak = llellk N I[¥llk

10/29

MODAL p-CALCULUS

Let Var be a set of fixed point variables, Prop be a set of propositional variables:

pop €Ly = LIT[X|pl-pleAy|eVy|Dp|Op|uXe | vXe
where p € Prop, X € Var and p (v) is the least (greatest) fixed point operator

Let K be a Kripke structure, then ¢ € L, is evaluated to ||¢||[x € WX in K

Modal operators:

o |logllk = { w e W Sesk(w) C llellx }

(Sesk(w): is the set of all successors of win K)

11/29

MODAL p-CALCULUS

Let Var be a set of fixed point variables, Prop be a set of propositional variables:

pop €Ly = LIT[X|pl-pleAy|eVy|Dp|Op|uXe | vXe
where p € Prop, X € Var and p (v) is the least (greatest) fixed point operator

Let K be a Kripke structure, then ¢ € L, is evaluated to ||¢||[x € WX in K

Modal operators:

o [[opllk = { w e W* | Sese(w) C llgllx }
o [[opllk = { w e W | Sesk(w) Nlellx # 0 }

(Scsk(w): is the set of all successors of win K)

11/29

MODAL p-CALCULUS - EXAMPLE

wl

w3

blue

9 o = px(Ox)

12/29

MODAL p-CALCULUS - EXAMPLE

wl

w3

blue

9 o = px(Ox)
o |[pollk =0

12/29

MODAL p-CALCULUS - EXAMPLE

wl

w3

blue

9 o = px(Ox)
o |[pollk =0

@ 1 = vy(green A Oy)

12/29

MODAL p-CALCULUS - EXAMPLE

wl

w3

blue

9 o = px(Ox)
o |[pollk =0

@ 1 = vy(green A Oy)
9 ||oil|lk = {ws}, (CTL: VO green)

12/29

MODAL p-CALCULUS - EXAMPLE

wl

w3

blue

9 o = px(Ox)
o |[pollk =0

@ 1 = vy(green A Oy)
9 ||oil|lk = {ws}, (CTL: VO green)

@ o = pux(vy(green A Oy) V Ox)

12/29

MODAL p-CALCULUS - EXAMPLE

wl

w3

blue

9 o = px(Ox)
o [[eollk =0
@ 1 = vy(green A Oy)
o ligallx = {wa}, (CTL: VO green)
@ o = pux(vy(green A Oy) V Ox)
@ ||lp2]lk = {wa, w3, ws}, (CTL: 3OVO green)

12/29

ALTERNATING TREE AUTOMATA

@ Alternating tree automata are finite-state devices designed to accept or
reject pointed Kripke structures

@ They can deal with arbitrary branching in a very natural way

13/29

Definition
An alternating tree automaton (ATA) is a tuple A = (S, s/, §, Q) where:

@ S is a finite set of states

@ s/ is an initial state

@ 0 is a transition function

@ Q: S — w is a priority function, which assigns a priority to each state
The transition function 6 maps every state to a transition condition over S where the set
of all transition conditions over S contains conditions of the form:

0,1,q,—q,s Os, s, s As',sVs

for every s, s’ € S and for every q € O

14/29

A run of an ATA A on (K, wg) is a (WxS)-vertex labeled tree R = (VR, ER AR) where the
initial vertex is labeled by (wg, so) and every vertex v with label (w, s) the following conditions
are satisfied (6(s) # 0):

o(s) Condition
q w € £K(q)
~q w ¢ k" (q)
Os! there exists v/ € Scsg(v) such that

sR(V/) = s’ and wR(v') € Scsk(w)

for every w' € Scsi(w) there exists
v/ € Scsg(v) such that A(v') = (w/,s’)

15/29

ALTERNATING TREE AUTOMATA

Runs (contd.)

o(s) Condition

s’ vs” there exists v/ € Scsg(v) such that
A(v') = (w,s’) or A(V') = (w,s"”)

s’ As’” there exists v/, v/ € Scsg(v) such that
A(v') = (w,s’) and A\(v"') = (w,s”)

16/29

ALTERNATING TREE AUTOMATA

@ A run is accepting if the state labeling of every infinite branch through R
satisfies the parity acceptance condition determined by Q

AN /—computation tree

’ \ ’ N
/ even / even
| cycle | o | cycle)
N , . /

17/29

TRANSLATION: FROM u-CALCULUS TO ATAS

Constructing an alternating tree automaton for every £, formula that recognizes

the exact query that the formula defines is straightforward (proof is more
complicated)

Example

Let ¢ = pqgi(qo V ©q1). Construct the corresponding automaton A.

@ We construct a state () for every subformula ¢ of :

(rqi(qo V ©q1)), (qo V Oqi), {qo), (Cqi), (qu)

18/29

TRANSLATION: FROM u-CALCULUS TO ATAS

Constructing an alternating tree automaton for every £, formula that recognizes

the exact query that the formula defines is straightforward (proof is more
complicated)

Example

Let ¢ = pqgi(qo V ©q1). Construct the corresponding automaton A.

@ We construct a state () for every subformula ¢ of :
(Hai(qo V ©q1)), {qo V ©q1), (qo), (Cq1), (qu)

@ The transition function is given by:

d((rar(qo vV ©q1))) = (qo V Oqu),
5((qo0 vV ©q1)) = (qo) V (Oqu),
5({q0)) = qo.
5((Cq1)) = O (aq),
6((q1)) = (nqi(qo vV ©qu))

18/29

TRANSLATION: FROM u-CALCULUS TO ATAS

Example (contd.)

@ The definition of the transition function can be shortened to:

3({uaqi(go V ©q1))) = (qo) V (Oaqu),
5({q0)) = qo,
5((Cq1)) = ¢ (uqi(qo V Oqu))

@ (uqgi(go V ©qi)) is the initial state; it gets priority 1 (all other states get priority 0)

v

19/29

REDUCTION TO THE ACCEPTANCE PROBLEM (ATAS)

The model checking problem can be reduced to the acceptance problem
for alternating tree automata:

MODEL CHECKING: given a finite pointed Kripke structure (IC, w) and an £,
formula ¢, determine whether or not (K, w) E ¢

20/29

REDUCTION TO THE ACCEPTANCE PROBLEM (ATAS)

The model checking problem can be reduced to the acceptance problem
for alternating tree automata:

MODEL CHECKING: given a finite pointed Kripke structure (IC, w) and an £,
formula ¢, determine whether or not (K, w) E ¢

l

ACCEPTS: given a finite pointed Kripke structure (K, w) and an alternating tree
automaton A, determine whether A accepts (K, w)

20/29

PARITY GAMES

Formally, a parity game is a tuple P = (Lo, L1, I;, M, Q) where:
@ Lo and L; are disjoint sets, the sets of Player 0's and Player 1's locations, resp.

@ |, € Lo U Ly is an initial location

@ M C (LoU L1) x (LoU Ly) is a set of moves, and

@ : (LoU L) — wis a priority function with a finite range.

G(P) is a directed graph called the game graph of P.
@ A partial play of P is a path through G(P) starting with [,
@ A play of P is a maximum path through G(P) starting with [,

21/29

PARITY GAMES

@ A play p is winning for Player 0 if it is infinite and sup(p£2) is even or it is finite
and p(*) € Ly

@ A play p is winning for Player 1 if it is infinite and sup(p2) is odd or it is finite and
p(*) € Lo

@ A winning strategy for Player 0 makes sure that whatever Player 1 does in a play,
it will be a win for Player 0

22/29

PARITY GAMES

A strategy tree for Player 0 in P is a tree 7 satisfying the following conditions:

@ The root of 7 is labeled |,

@ Every v € V7 with A7(v) € Lo has a successor in 7 labeled with a successor of
AT(v) in G(P) (Player 0 must move when it is his turn)

@ Every v € VT with A7(v) € Ly has, for every successor | of A7 (v) in G(P) a
successor in 7 labeled | (all options of player 1 have to be taken into account)

Winning conditions:

@ A branch v of 7 is winning if its labeling, which is a play is winning
@ A strategy tree 7 for Player 0 is winning if every branch through 7 is winning

@ Player 0 wins a game P if there exists a winning strategy tree for him

23/29

REDUCTION OF THE ACCEPTANCE PROBLEM

@ Construct a game P = (A, K, w;) such that Player 0 wins if and only if A accepts
(K, wi)

@ Choices of Player 0: correspond to the choices A has to make when in a
transition condition it has to satisfy a disjunction or a & requirement

@ Choices of Player 1: correspond to the choices A has to make when in a
transition condition it has to satisfy a conjunctions or O requirements

24 /29

REDUCTION OF THE ACCEPTANCE PROBLEM

Formally, P(A, K, wi) = (Lo, L1, (W[, s}'), M, Q) where:

@ Lo is the set of all pairs (w, s) where §(s) is of the form 0, q with q ¢ *(w), - g
with g € k%(w), ' Vs”, or Os; this also determines L;

@ The successors of a location (w,s) are determined by the following rules:

o(s) Condition
0,1, qor—q (w,s) has no successors
s’ (w,s) has one successor (w, s')
s vs'(s AS") (w,s) has two successors (w, s’) and (w, s”)
Os' (Os') (w, s) has a successor (W', s’) for every w' € Scsk(w)

@ The priority function Q maps (w, s) to Q%(s)

25/29

REDUCTION OF THE ACCEPTANCE PROBLEM

Accepting runs of A on (K, w) and winning strategy trees for Player 0 in
P(A, K, w) are identical; the acceptance problem for ATAs can be reduced to the
winner problem for parity games:

ACCEPTS: given a finite pointed Kripke structure (K, w) and an alternating tree
automaton A, determine whether A accepts (K, w)

26 /29

REDUCTION OF THE ACCEPTANCE PROBLEM

Accepting runs of A on (K, w) and winning strategy trees for Player 0 in
P(A, K, w) are identical; the acceptance problem for ATAs can be reduced to the
winner problem for parity games:

ACCEPTS: given a finite pointed Kripke structure (K, w) and an alternating tree
automaton A, determine whether A accepts (K, w)

l

WINS: given a finite parity game P, determine whether or not Player 0 wins the
game P

26 /29

CONCLUSION

@ Model checking modal p-calculus can be reduced to the winner problem for
parity games

@ Wins (for finite parity games) is solvable in O(m(2n/b)L/2]) (P-hard)

27/29

REFERENCES

@ T. Wilke, Alternating tree automata, parity games, and modal
mu-calculus, Bull. Belg. Math. Soc., vol. 8, iss. 2, pp. 3569391, 2002.

28/29

THANK YOU!

29/29

	Overview
	Overview

	Kripke structures
	Kripke structures

	Modal -calculus
	Modal -Calculus

	Alternating Tree Automata
	Translation: from -calculus to ATAs
	Reduction to the acceptance problem (ATAs)
	Parity Games
	Conclusion
	References

