
Simulation Games

Motivation

There are at least two distinct purposes for which it is useful to compute simulation
relationships between the states of automata.
Firstly, with the use of simulation relations it is possible to mimick the behaviour of another
automaton and also to establish language containment among nondeterministic automata.
Secondly, simulation relations can be used to reduce the state space of an automaton by
obtaining its quotient with respect to the equivalence relation underlying the simulation
preorder.

4 Different kinds of simulations

In the following there are presented four different kinds of simulation games for a given
Büchi automaton A = :

1) The ordinary simulation game, denoted ,
2) The direct (strong) simulation game, denoted ,
3) The delayed simulation game, denoted ,
4) The fair simulation game, denoted .

Each of the games is played by two players, Spoiler and Duplicator, in rounds as follows. At
the start, round 0, two pebbles, Red and Blue, are placed on the two vertices q0 and q’0. Then
Spoiler chooses a transition and moves Red to qi+1.
Duplicator, responding, must choose a transition and moves Blue to q’i+1.
Here it can be the case that no a-transition starting from q’i exists. In this case the game halts
and Spoiler wins.

Either the game halts, in which case Spoiler wins, or the games produces two infinite runs:

 and , built from the transitions taken by the two
pebbles.
For each of the 4 simulation games there exist different rules to determine the winner:

1.) Ordinary simulation: Duplicator wins in any case as long as the game does not halt.
(Fairness conditions are ignored)

2.) Direct simulation: Duplicator wins, iff, for all i, if , then also
3.) Delayed simulation: Duplicator wins, iff, for all i, if , then there exists j ≥ i

such that
4.) Fair simulation: Duplicator wins iff there are infinitely many j such that

or there are only finitely many i such that

A strategy for Duplicator in one of the 4 simulation games from above is a function:

 which, given the history of the game (actually the choices of Spoiler) up to a
certain point, determines the next move of Duplicator. A strategy f for Duplicator is a winning
strategy if, no matter how Spoiler plays, Duplicator always wins.

Simulation Relation

A state q’ ordinary, direct, delayed, fair simulates a state q if there is a winning strategy for
Duplicator. The simulation relation, a reflexive, transitive relation (preorder or quasi-order),
is denoted by , where * stands for one of the 4 simulations ordinary(o), direct(di),
delayed(de) and fair(f).
The relations are ordered by containment:

For direct, delayed and fair holds: if then .

Bisimulation Relations

For all the mentioned simulations there are corresponding notions of bisimulation, defined via
a modification of the simulation games.
The bisimulation game differs from the simulation game in that Spoiler gets to choose in each
round which of the two pebbles, Red or Blue, to move and Duplicator has to respond with the
move of the other pebble.
Bisimulations define the following equivalence relation containment:

For bisimulations there are also winning rules for the bisimulation games that are similar to
the rules for the 4 different simulation games:

1.) Ordinary: the same rules as for the ordinary simulation game
2.) Fair: If an accept state appears infinitely often on one of the two runs π and π’, then an

accept state must appear infinitely often on the other as well.
3.) Delayed: If an accept state is seen at position i of either run, then an accept state must

be seen thereafter at some position j ≥ i of the other run.
4.) Direct: If an accept state is seen at position i of either run, it must be seen at position I

of both runs.

Quotienting

A major motivation for studying relations is state-space reduction, the basic idea being that
states that simulate each other are merged leading to a reduction of the number of states. This
process is usually called quotienting.
Quotienting with respect to delayed simulation preserves the recognized language, but this is
not true for with fair simulation as we will see later on.
For a Büchi automaton A, and an equivalence relation ≈ on the states of A, let [q] denote the
equivalence class of with respect to ≈.
The quotient of A with respect to ≈ is the automaton , where

For applying the simulation relations, corresponding to each simulation preorder, an
equivalence relation ≈o, ≈di, ≈de, ≈f is defined, where , iff and .
The quotient with respect to ≈di , ≈de preserves the language of any automaton.

An example shows quotienting for delayed simulation. In this example both automata, the
original one and the quotient, accept the same language.

The obtained quotient is smaller than the original automaton and accepts the same language as
the first one. The states around the middle state are in one equivalence class, because one can
stay there with infinitely many a’s. With a b one comes to another state and there, if reading
again another b, one comes to the first state. Whenever Spoilers makes an a-move, Duplicator
can make one as well. If Spoiler then makes a b-move to the outside, Duplicator answers with
a move to the upper accepting state. In this case Duplicator visits infinitely often an accepting
state and everything is fine. Thus the quotient automaton has only two states.

The quotient with respect to ≈o , ≈f does not preserve the language of any automaton, which is
shown in the example below:

Quotienting is done in this example via the equivalence relation q ≈f q’ that holds for all states
q, q’ from the set Q. The left automaton is accepting words with a and b infinitely alternating.
The right automaton accepts words like aω or bω, but the original automaton doesn’t.

a,b

b

b

a

a
a,b

Quotienting

by fair

b b

b

b

b

b

a
a

a

a
b

b

Quotienting

by delayed

So here it can be seen, that the quotient of the original automaton with respect to ≈f does not
preserve the language of the original automaton.

Parity Games

A parity game graph has two disjoint sets of vertices V0 and V1, whose
union is V. It also has an edge set and a priority function
that assigns a priority to each vertex.
Such a parity game is played by two players, Zero and One. The play starts by placing a
pebble on vertex v0. Thereafter, the pebble is moved according to the following rule:
With the pebble currently on a vertex vi and , Zero (One, respectively) plays and
moves the pebble to a neighbour vi+1, such that .
If ever the rule above cannot be applied, i.e., someone can’t move because there are no
outgoing edges, the game ends and the player who cannot move loses.
Otherwise, the game goes on forever, and defines a path , called a play of
the game.
The winner of the game is determined as follows. Let kπ be the minimum priority that occurs
infinitely often in the play π; Zero wins if kπ is even, whereas One wins if kπ is odd.

Now the game graphs G*

A are built, following the same general pattern, with some minor
alterations. The first game graph will be with only three priorities
(0,1,2).
Formally Gf

A is defined by

The set of vertices for Zero:

,
This set of vertices contains all vertices, where Spoiler has moved the turn before and it is
now Duplicator’s turn to imitate the label on the 3rd position of the tupel, because Spoiler has
taken this label the move before. So this label remembers the move of Spoiler, q is the
position of the Spoiler-pebble and q’ is the position of the Duplicator-pebble.

The set of vertices for One:

,
This set of vertices contains all vertices, where Duplicator has moved the turn before and it is
now Spoiler’s turn. Here is no 3rd position in the tupel, because Spoiler does not have to
imitate a run move from Duplicator, that has to answer to the moves of Spoiler.

The set of the edges for Zero and One:

,
The moves of the first set are the moves of Duplicator. Duplicator is in state v(q1,q1’,a) and
has to take a transition with a label a to move from state q1’ to a state q2’ if there exists the
transition (q1’,a, q2’). Only the state of Duplicator changes here, the Spoiler’s state q1 remains
the same.
The second set contains all the moves of Spoiler. Spoiler s in state v(q1,q1’) and can choose
any transition (q1,a,q2) form the transition set to move his pebble to another state. In this case
only the Spoiler’s state is changed.

The priority function:

.
This function means, that if neither Spoiler nor Duplicator have infinitely often an accepting
state in their runs that the minimum parity number that occurs infinitely often is the 2. In this
case Duplicator wins.
If Spoiler has seen infinitely often an accept state but not Duplicator, the minimum parity
number that occurs infinitely often is the 1 and so in this case Spoiler wins.
Last but not least, if Duplicator sees infinitely often an accepting state no matter what Spoiler
does, the minimum parity number occurring is the 0 and here also Duplicator wins.

The graph Gf

A can be modified to obtain Go
A and Gdi

A, both of which require only trivial
modification to Gf

A. The parity game graph Go
A is exactly the same as Gf

A, except that all
nodes will receive priority 0. This means, that Duplicator wins as long as he can mimick the
moves of Spoiler and he only loses, if he comes to a dead-end and can’t move anymore.

The parity game graph Gdi

A is just like Go
A, meaning every vertex has priority 0, but some

edges are eliminated:

Finally to define Gde

A the game graph has to be modified somewhat more. For each vertex of
Gf

A there will be at most two corresponding vertices in Gde
A:

The extra bit b encodes whether or not, thus far in the simulation game, the Red pebble was
witnessed an accept state without Blue having witnessed one since then.
The edges of Gde

A are as follows:

.

Last but not least the priority function of Gde

A is described as:

.
Here, priority 1 will be assigned to only those vertices in V1 that signify that an “unmatched”
accept has been encountered by Red.

References

 Carsten Fritz, Thomas Wilke: Simulation Relations for Alternating Parity Automata
and Parity Games. DLT 2006, LNCS 4036, pp. 59-70, Springer-Verlag (2006)

 Kousha Etessami, Thomas Wilke, Rebecca A. Schuller: Fair Simulation Relations,

Parity Games and State Space Reduction for Büchi Automata. ICALP 2001, LNCS
2076, pp. 694-707, Springer-Verlag (2001)

 Carsten Fritz: Simulation-Based Simplification of omega-Automata. PhD thesis,

Technische Fakultät der Christian Albrecht Universität zu Kiel (2005) available at
http:/e-diss.uni-kiel.de/diss_1644/

