Bounded Synthesis

Presentation: Steffen Metzger

- Given some specification (e.g. in LTL)
- Automatically synthesize a program that acts according to the specification
- We just saw this is possible in some cases

Decidability

 But, distributed synthesis in general undecidable

Idea: Use bounds to iteratively approach the problem, allowing larger and larger solutions and finally generate a minimal solution (if a solution exists at all).

Other Advantages

- Deal with real-world restrictions on implementations
- Obtain a smaller solution space as output by concentrating on a small (realizable) subset of solutions
- Can we still do it for distributed architectures?

Yes, we can!

Bounded Synthesis Overview

- Get specification as universal co-Büchi automaton (e.g. LTL→Büchi→co-Büchi)
- The acceptance of an implementation can be characterized by existence of some special annotation
- Finally synthesize by solving a constraint system representing the properties of that annotation (e.g. in SMT)

Example

- Consider a pedestrian crossing
- Environment can issue 2 different access requests
 - pedestrian pushing the pedestrian light button
 - car arriving on contact line
- Find an implementation that guarantees they are not granted access simultaneously

Architectures

- -V = set of boolean system variables
- $\{I_p \subseteq V \mid p \in P\}$ a family of Input variable sets
- $\{O_p \subseteq V \mid p \in P\}$ a family of Output variable sets

single process

- here: $O_{env} = \{r_1, r_2\}$

Distributed Architectures

2-process arbiter

2-process arbiter

fully informed

 $O_{env} \subseteq I_p$

Implementations

- represented as transition system
- each process represented by one independent transition system
- Merging of all process systems gives a composed system for overall properties/specification check

transition systems

- Given directions Υ and labels Σ , a Σ -labeled Υ -transition system is a tuple I = (T, t_0 , τ ,o) where:
 - T is a set of states
 - t_0 is an initial state
 - τ : $T \times \Upsilon \rightarrow T$ is a transition function
 - o: $T \rightarrow \Sigma$ is a labeling function

Single Process Example

2 Process Example

• O_{env} ={r1,r2}

2 Process Composition Example

Input-preserving

 Labels composed of process labels, but also contain current input from Env, e.g.

$$r1, r2 \rightarrow t1, s1, (r1, r2) \Rightarrow r1, r2, g1, g2$$

$$\overline{r1, r2} \rightarrow t0, s1, (\overline{r1, r2}) \Rightarrow \overline{r1}, r2, \overline{g1}, g2$$

input preserving

• We are only considering input-preserving transition systems in the following

Specification

A specification φ is (finite-state) *realizable* in an architecture with processes *P* iff it exists a family of (finite-state) implementations {*T*_p | p ∈ *P*} such that their composition *T_A* satisfies φ

Bounded realizable

- Given
 - architecture with processes P
 - family of bounds $\{b_p \in \mathbb{N} \mid p \in P\}$ for processes
 - bound b_A for the whole system T_A
- A specification φ is *bounded realizable* if there exists a family {*T*_p | p ∈ *P* } such that:
 - T_p has at most b_p states for all $p \in P$
 - T_A satisfies φ
 - T_A has at most b_A states

co-Büchi automaton

- A co-Büchi automaton B is given by a tuple
 (Σ, Υ, Q, q₀, δ, F) where:
 - Σ denotes a finite set of labels
 - Υ denotes a finite set of directions
 - Q denotes a finite set of states
 - q₀ denotes an initial state
 - δ: Q x Σ → \aleph^+ (QxΥ) denotes a transition function
 - $F \subseteq Q$ denote rejecting states

Universal co-Büchi automaton

- A co-Büchi automaton B = (Σ, Υ, Q, q₀, δ, F) is called *universal* iff for all states *q* and input letters *in*, δ(*q,in*) is a conjunction
- A run *R* in a co-Büchi automaton
 B = (Σ, Υ, Q, q₀, δ, F) is accepted iff
 rejecting states (*r* ∈ F) appear only finitely
 often in R

Specification as universal co-Büchi

Run graph

- A run graph of a co-Büchi automaton B on a transition system I is a minimal directed graph G=(V,E) that models all possible runs of B on I
- A run graph is accepting iff in every infinite path, states from F appear only finitely often

Run graph example

Check for accepting run graph

• Only need to decide if a path with infinitely many rejecting state appearances exists

Idea: Check if we can find a partial ordering on the run graph nodes, such that each path with rejecting nodes contains a maximal rejecting node, from which no further rejecting node is reachable.

Annotations

- An annotation of a transition system
 I = (T,t₀,τ,0) on a universal co-Büchi automaton U = (Σ, Υ, Q, q₀, δ, F)
 is a function λ: Q x T →{_} ∪ N.
- It is called *c-bounded* if its image is contained in {0,...,c} where c ∈ N
- It is *bounded* if it is c-bounded for some c.

Valid annotations

- An annotation is valid iff
 - all states reachable from the initial state $(q_{0,} t_0)$ are annotated with a natural number
 - Values are not decreasing along a possible path
 - Values are increasing from a state towards some rejecting successor state

Acceptance

Theorem:

A finite-state Σ -labeled Υ -transition system I = (T, t_0 , τ ,o) is accepted by a universal co-Büchi automaton U = (Σ , Υ , Q, q₀, δ , F) iff it has a valid (|T| • |F|)-bounded annotation.

How to find an implementation

- Given a specification and some architecture
- How do we efficiently find an implementation with a valid annotation?

Idea: Describe the properties of the specification and a valid annotation in a constraint system, such that solving the system provides an implementation.

Constraint system

- Given specification B = (Σ , Υ , Q, q₀, δ , F)
- Create a constraint system, such that any transition system $I = (T, t_0, \tau, o)$ satisfying the constraint system satisfies B
- For now we only consider the **fully informed case** (equivalent to only one process)

Constraint system – some tools

- Some abbreviations to describe the constraints:
 - $-\tau_{v}(t)=\tau(t,v)$
 - for all $\alpha \in V$. $\alpha(t)$ iff $\alpha \in o(t)$
 - for all q∈Q. $\lambda^{\#}_{q}(t)$ =λ(q,t) iff λ(q,t) ∈ ℕ
 - for all q∈Q. $\lambda^{\aleph}_{q}(t)$ iff $\lambda(q,t) \in \mathbb{N}$
- where $\lambda(q,t)$ represents some annotation

Constraints

- $\forall \alpha \in O_{env}, v \subseteq O_{env}, t \in T.$
 - $\alpha(\tau_v(t)) \text{ iff } \alpha \in V$
 - $\neg \alpha(\tau_v(t))$ otherwise

Input preserving

λ[∞]_{q0}(t₀)

Initial state annotated

• $\forall t. \ \lambda^{\otimes}_{q}(t) \land (q',v) \in \delta(q,o(t))$ $\rightarrow \lambda^{\otimes}_{q'}(\tau_{v}(t)) \land \ \lambda^{\#}_{q'}(\tau_{v}(t)) \geq_{q} (\lambda^{\#}_{q'}(t))$ where: \geq_{q} is > iff $q \in F, \geq_{q}$ is \geq otherwise

Valid Annotation

1. $\forall t \in T$.

Input preserving

 $- \mathbf{r}_{1}(\tau_{r_{1},r_{2}}(t)) \wedge \mathbf{r}_{1}(\tau_{r_{1},\overline{r_{2}}}(t)) \wedge \mathbf{r}_{2}(\tau_{r_{1},r_{2}}(t)) \wedge \mathbf{r}_{2}(\tau_{\overline{r_{1},r_{2}}}(t)) \\ - \neg \mathbf{r}_{1}(\tau_{\overline{r_{1},\overline{r_{2}}}}(t)) \wedge \neg \mathbf{r}_{1}(\tau_{\overline{r_{1},r_{2}}}(t)) \wedge \neg \mathbf{r}_{2}(\tau_{\overline{r_{1},\overline{r_{2}}}}(t)) \wedge \\ \neg \mathbf{r}_{2}(\tau_{r_{1},\overline{r_{2}}}(t))$

2.
$$\lambda^{\otimes}_{1}(t_{0}), \neg r_{1}(t_{0}), \neg r_{2}(t_{0})$$

3. $\forall t \in T$.

- $\lambda^{\aleph}_{1}(\tau_{\overline{r_{1}},\overline{r_{2}}}(t)), \lambda^{\#}_{1}(\tau_{\overline{r_{1}},\overline{r_{2}}}(t)) \geq \lambda^{\#}_{1}(t)$
- $\lambda^{\aleph}_{1}(\tau_{r_{1},r_{2}}(t)), \lambda^{\#}_{1}(\tau_{r_{1},r_{2}}(t)) \geq \lambda^{\#}_{1}(t)$
- $\lambda^{\aleph}_{1}(\tau_{\overline{r}_{1},r_{2}}(t)), \lambda^{\#}_{1}(\tau_{\overline{r}_{1},r_{2}}(t)) \geq \lambda^{\#}_{1}(t)$
- $\lambda^{\aleph}_{1}(\tau_{r_{1},\overline{r_{2}}}(t)), \lambda^{\#}_{1}(\tau_{r_{1},\overline{r_{2}}}(t)) \geq \lambda^{\#}_{1}(t)$

- 4. $\forall t. \lambda \gtrsim_1(t) \rightarrow \neg g_1(t) \lor \neg g_2(t)$
- 5. $\forall t \in T. \lambda^{\aleph}_{1}(t) \wedge r_{1}(t) \rightarrow$
 - $\lambda^{\aleph}_{2}(\tau_{\overline{r_{1},r_{2}}}(t)), \lambda^{\#}_{2}(\tau_{\overline{r_{1},r_{2}}}(t)) > \lambda^{\#}_{1}(t)$
 - $\lambda^{\aleph}_{2}(\tau_{\overline{r_{1}},r_{2}}(t)), \lambda^{\#}_{2}(\tau_{\overline{r_{1}},r_{2}}(t)) > \lambda^{\#}_{1}(t)$
 - $\lambda^{\aleph}_{2}(\tau_{r_{1},\overline{r_{2}}}(t)), \lambda^{\#}_{2}(\tau_{r_{1},\overline{r_{2}}}(t)) > \lambda^{\#}_{1}(t)$
 - $\lambda^{\aleph}_{2}(\tau_{r_{1},r_{2}}(t)), \lambda^{\#}_{2}(\tau_{r_{1},r_{2}}(t)) > \lambda^{\#}_{1}(t)$
- 6. ... analogous for r_2 and states (2,t)

7.
$$\forall t \in T. \lambda \gtrsim_2(t) \land \neg g_1(t) \rightarrow$$

$$- \lambda^{\aleph}_{2}(\tau_{\overline{r_{1}},\overline{r_{2}}}(t)), \, \lambda^{\#}_{2}(\tau_{\overline{r_{1}},\overline{r_{2}}}(t)) > \lambda^{\#}_{2}(t)$$

$$- \lambda^{\aleph}_{2}(\tau_{\overline{r}_{1},r_{2}}(t)), \lambda^{\#}_{2}(\tau_{\overline{r}_{1},r_{2}}(t)) > \lambda^{\#}_{2}(t)$$

$$- \lambda^{\aleph}_{2}(\tau_{r_{1},\overline{r_{2}}}(t)), \lambda^{\#}_{2}(\tau_{r_{1},\overline{r_{2}}}(t)) > \lambda^{\#}_{2}(t)$$

$$- \lambda^{\aleph}_{2}(\tau_{r_{1},r_{2}}(t)), \lambda^{\#}_{2}(\tau_{r_{1},r_{2}}(t)) > \lambda^{\#}_{2}(t)$$

8. analogous for $\lambda^{\otimes}_{3}(t) \wedge \neg g_{2}(t)$

Do we know which bound to choose?

- Not known how large bound need to be iff some specification realizable in general
- But, bound can be estimated for fully informed architectures (each process has complete knowledge of the environment)

Constraints for distributed system

• Find family of transition systems

{I_p = $(T_p, t_{0p}, \tau_p, o_p)$ |p \in P} such that their composition I = (T, t_0, τ, o) satisfies φ given by B = $(\Sigma, \Upsilon, Q, q_0, \delta, F)$

- I_p has to act equally on states it cannot distinguish
- Its output may only depend on its own state

Constraints for distributed system

- Let d_p map states $t \in T$ into T_p
- Let \textbf{p}_{α} refer to the process outputing α
- $\forall v, v' \subseteq O_{env}$ where $v \cap I_p = v' \cap I_p$. $d_p(\tau_v(t)) = d_p(\tau_v(t))$
- $\forall v \subseteq O_{env} \cap I_{\rho}$. $\forall t, u \in T$. $d_{p}(t) = d_{p}(u) \wedge_{\alpha \in I_{\rho} \setminus O_{env}} (\alpha(d_{p_{\alpha}}(t)) \leftrightarrow \alpha(d_{p_{\alpha}}(u)))$ $\rightarrow d_{p}(\tau_{v}(t)) = d_{p}(\tau_{v}(u))$

Distributed example constraints

- 1-3, 4-5 stay the same
- 4. $\forall t. \lambda \gtrsim_1(t) \rightarrow \neg g_1(d_1(t)) \lor \neg g_2(d_2(t))$
- 7. $\forall t \in T. \lambda \gtrsim_2(t) \land \neg g_1(d_1(t)) \rightarrow$
 - $\lambda^{\aleph}_{2}(\tau_{\overline{r_{1},r_{2}}}(t)), \lambda^{\#}_{2}(\tau_{\overline{r_{1},r_{2}}}) > \lambda^{\#}_{2}(t)$
 - $\lambda_{2}^{\otimes}(\tau_{\tau_{1},r_{2}}(t)), \lambda_{2}^{\#}(\tau_{\tau_{1},r_{2}}) > \lambda_{2}^{\#}(t)$
 - $\lambda^{\aleph}_{2}(\tau_{r_{1},\overline{r_{2}}}(t)), \lambda^{\#}_{2}(\tau_{r_{1},\overline{r_{2}}}) > \lambda^{\#}_{2}(t)$
 - $\lambda^{\aleph}_{2}(\tau_{r_{1},r_{2}}(t)), \lambda^{\#}_{2}(\tau_{r_{1},r_{2}}) > \lambda^{\#}_{2}(t)$
- 8. ... analogous for r_2

Distributed example constraints

9.
$$\forall t \in T$$
.

- $d_1(\tau_{r_1,r_2}(t)) = d_1(\tau_{r_1,r_2}(t))$
- $d_1(\tau_{\overline{r_1},r_2}(t)) = d_1(\tau_{\overline{r_1},\overline{r_2}}(t))$
- $d_{2}(\tau_{r_{1},r_{2}}(t)) = d_{2}(\tau_{\overline{r_{1}},r_{2}}(t))$
- $\quad \mathsf{d}_2\left(\tau_{r_1,\overline{r_2}}(t)\right) = \mathsf{d}_2\left(\tau_{\overline{r_1},\overline{r_2}}(t)\right)$
- 10. \forall t ,u∈*T*. d₁(u) ∧ (g₁(d₁(t)) ↔ g₁(d₁(u))) →
 - $d_1(\tau_{r_1,r_2}(t)) = d_1(\tau_{r_1,r_2}(u))$
 - $\quad \mathsf{d}_1(\tau_{\overline{r_1},r_2}(\mathsf{t})) = \mathsf{d}_1\left(\tau_{\overline{r_1},r_2}(\mathsf{u})\right)$
- 11. analogous for g_2

Experiments and results

- Several experiments with SMT solver Yices on a 2.6 Ghz Opteron system
- The simple arbiter specification can be solved in 7-8 seconds (if 8+ states allowed)
- Usually it takes much longer to show unsatisfiability than to compute a solution if there is one
- Good guessing of the needed states can significantly increase performance

Conclusions

- Constraint system gives us a comparatively quick synthesis by ignoring unnecessary large solutions in the search space
- Real world restrictions can be taken into account
- We can tackle undecidable problems by approaching them iteratively
- Performance may be increased by good guessing of the minimal bound(s)

Questions?

Annotation theorem proof

- Consider run graph G on I:
 - Case G not accepting: there is a lasso with rejecting state (q,t) in the loop (so q ∈ F).

Assume some valid annotation λ exists.

Then for the successor(s) (q',t') of (q,t) holds:

- $\lambda(q,t) < \lambda(q',t')$,
- along the loop it holds ,≤'
- After one "round" for some descendant (q'',t'') of (q',t') it holds $\lambda(q^{\prime\prime},t^{\prime\prime}) < \lambda(q,t)$

so $\lambda(q,t) < \lambda(q,t)$ while the image of λ is \mathbb{N} !!

Annotation theorem proof

Case G accepting: no lasso with rejecting state.
 A (|T|• |F|)-bounded annotation given by assigning to each vertex (q,t) ∈ V the highest number of rejecting states occuring on some path to it, while assigning '_' to all (q',t') not in G

Run graph

- A run graph of a co-Büchi automaton
 B = (Σ, Υ, Q, q₀, δ, F) on a
 Σ-labeled Υ-transition I = (T,t₀,τ,0)
 is a minimal directed graph G=(V,E) such that
 - $V \subseteq Q \times T$
 - $(q_0, t_0) \in \mathsf{V}$
 - $\forall (q,t) \in V: \{(q',v) \in Q \times \Upsilon | ((q,t),(q', \tau(t,v))) \in E\}$ satisfies δ(q,o(t))