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Same problem as before

Given some specification (e.g. in LTL)

Automatically synthesize a program that acts
according to the specification

We just saw this is possible in some cases



Decidability

But, distributed synthesis in general 
undecidable

Idea: Use bounds to iteratively approach the problem, 
allowing larger and larger solutions 
and finally generate a minimal solution 
(if a solution exists at all).



Other Advantages

Deal with real-world restrictions on 
implementations
Obtain a smaller solution space as output by 
concentrating on a small (realizable) subset 
of solutions
Can we still do it for distributed architectures?

Yes, we can!



Bounded Synthesis Overview

Get specification as universal co-Büchi
automaton (e.g. LTL→Büchi→co-Büchi)
The acceptance of an implementation can be 
characterized by existence of some special 
annotation
Finally synthesize by solving a constraint 
system representing the properties of that 
annotation (e.g. in SMT)



Example

Consider a pedestrian crossing
Environment can issue 2 different access 
requests 
– pedestrian pushing the pedestrian light button
– car arriving on contact line 

Find an implementation that guarantees they 
are not granted access simultaneously 



Architectures

env p1r1,r2 g1,g2 single process

– V = set of boolean system variables
– {Ip ⊆ V | p ∈ P}   a family of Input variable sets
– {Op ⊆ V | p ∈ P} a family of Output variable sets

– here: Oenv={r1,r2}
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Implementations

represented as transition system
each process represented by one 
independent transition system
Merging of all process systems gives a 
composed system for overall 
properties/specification check



transition systems

Given directions ϒ and labels Σ, a Σ-labeled
ϒ-transition system is a tuple Ι = (T,t0,τ,o) 
where:
– T is a set of states 
– t0 is an initial state
– τ: T x ϒ → T is a transition function
– o: T → Σ is a labeling function



Single Process Example
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2 Process Example
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2 Process Composition Example

Oenv ={r1,r2}, root direction⎯r1,⎯r2
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Input-preserving

Labels composed of process labels,            
but also contain current input from Env,     
e.g.

We are only considering input-preserving 
transition systems in the following

t1,s1,(r1,r2) ⇒r1, r2, g1, g2

t0,s1,(r1,r2) ⇒⎯r1,r2,⎯g1, g2

input preserving
r1, r2

⎯r1,r2



Specification

A specification ϕ is (finite-state) realizable in 
an architecture with processes P iff
it exists a family of (finite-state) 
implementations {Tp | p ∈ P} such that their 
composition TA satisfies ϕ



Bounded realizable

Given 
– architecture with processes P
– family of bounds {bp ∈ ℕ | p ∈ P } for processes
– bound bA for the whole system TA

A specification ϕ is bounded realizable if 
there exists a family {Tp | p ∈ P } such that:
– Tp has at most bp states  for all p ∈ P
– TA satisfies ϕ
– TA has at most bA states



co-Büchi automaton

A co-Büchi automaton B is given by a tuple
(Σ, ϒ, Q, q0, δ, F) where:
– Σ denotes a finite set of labels
– ϒ denotes a finite set of directions
– Q denotes a finite set of states
– q0 denotes an initial state
– δ: Q x Σ → +(Qxϒ) denotes a transition function
– F ⊆ Q denote rejecting states



Universal co-Büchi automaton

A co-Büchi automaton B = (Σ, ϒ, Q, q0, δ, F)
is called universal iff for all states q and 
input letters in, δ(q,in) is a conjunction

A run R in a co-Büchi automaton
B = (Σ, ϒ, Q, q0, δ, F) is accepted iff
rejecting states (r ∈ F) appear only finitely 
often in R



Specification as universal co-Büchi
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Run graph

A run graph of a co-Büchi automaton B on a          
transition system I is a minimal directed graph 
G=(V,E) that models all possible runs of B on I

A run graph is accepting iff
in every infinite path,                                         

states from F appear only finitely often



Run graph Example
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Run graph example
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Check for accepting run graph

Only need to decide if a path with infinitely 
many rejecting state appearances exists

Idea: Check if we can find a partial ordering on the 
run graph nodes, such that each path with rejecting 
nodes contains a maximal rejecting node, from which 
no further rejecting node is reachable.



Annotations

1 t0
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Annotations

An annotation of a transition system             
Ι = (T,t0,τ,o) on a universal co-Büchi
automaton U = (Σ, ϒ, Q, q0, δ, F)                   
is a function λ: Q x T →{ַ} ∪ ℕ.
It is called c-bounded if its image is 
contained in {0,…,c} where c ∈ ℕ
It is bounded if it is c-bounded for some c.



Valid annotations

An annotation is valid iff
– all states reachable from the initial state (q0, t0) 

are annotated with a natural number
– Values are not decreasing along a possible path
– Values are increasing from a state towards 

some rejecting successor state



Acceptance

Theorem:
A finite-state Σ-labeled ϒ-transition system 
Ι = (T,t0,τ,o) is accepted by a universal co-Büchi
automaton U = (Σ, ϒ, Q, q0, δ, F) 
iff it has a valid (|T| • |F|)-bounded annotation.



How to find an implementation

Given a specification and some architecture
How do we efficiently find an implementation 
with a valid annotation? 

Idea: Describe the properties of the specification 
and a valid annotation 
in a constraint system, such that 
solving the system provides an implementation.



Constraint system

Given specification B = (Σ, ϒ, Q, q0, δ, F)
Create a constraint system, such that any 
transition system Ι = (T,t0,τ,o) satisfying the 
constraint system satisfies B
For now we only consider the fully informed 
case (equivalent to only one process)



Constraint system – some tools

Some abbreviations to describe the 
constraints:
– τv(t)= τ(t,v)
– for all α∈V. α(t) iff α ∈ o(t)
– for all q∈Q. λ#

q(t)=λ(q,t) iff λ(q,t) ∈ ℕ
– for all q∈Q. λ q(t) iff λ(q,t) ∈ ℕ

where λ(q,t) represents some annotation



Constraints

∀ α ∈ Oenv, v ⊆ Oenv, t ∈T. 
– α(τv(t)) iff α ∈ v
– ¬α(τv(t)) otherwise

λ q0
(t0)

∀t. λ q(t) ∧ (q‘,v) ∈ δ(q,o(t)) 
→ λ q‘(τv(t)) ∧ λ#

q‘(τv(t))≥q (λ#
q‘(t))

where: ≥q is > iff q ∈ F, ≥q is ≥ otherwise

Initial state annotated

Valid Annotation

Input preserving



Single process example constraints

1. ∀ t ∈T.
– r1(τr1,r2

(t)) ∧ r1(τr1,r2
(t)) ∧ r2(τr1,r2

(t)) ∧ r2(τr1,r2
(t))

– ¬r1(τr1,r2
(t)) ∧ ¬r1(τr1,r2

(t)) ∧ ¬r2(τr1,r2
(t)) ∧

¬r2(τr1,r2
(t))

Input preserving

t ⇒ r1,r2r1,r2



Single process example constraints

2. λ 1(t0), ¬r1(t0), ¬r2(t0)

3. ∀ t ∈T.
– λ 1(τr1,r2

(t)), λ#
1(τr1,r2

(t))≥ λ#
1(t)

– λ 1(τr1,r2
(t)), λ#

1(τr1,r2
(t))≥ λ#

1(t)
– λ 1(τr1,r2

(t)), λ#
1(τr1,r2

(t))≥ λ#
1(t)

– λ 1(τr1,r2
(t)), λ#

1(τr1,r2
(t))≥ λ#

1(t)



Single process example constraints
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Single process example constraints

4. ∀t. λ 1(t) → ¬g1(t)∨ ¬g2(t)
5. ∀ t ∈T. λ 1(t) ∧ r1(t) →

– λ 2(τr1,r2
(t)), λ#

2 (τr1,r2
(t))> λ#

1(t)
– λ 2 (τr1,r2

(t)), λ#
2 (τr1,r2

(t))> λ#
1(t)

– λ 2 (τr1,r2
(t)), λ#

2 (τr1,r2
(t))> λ#

1(t)
– λ 2 (τr1,r2

(t)), λ#
2 (τr1,r2

(t))> λ#
1(t)

6. … analogous for r2 and states (2,t)



Single process example constraints
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Single process example constraints

7. ∀ t ∈T. λ 2(t) ∧ ¬g1(t) →
– λ 2(τr1,r2

(t)), λ#
2 (τr1,r2

(t))> λ#
2(t)

– λ 2 (τr1,r2
(t)), λ#

2 (τr1,r2
(t))> λ#

2 (t)
– λ 2 (τr1,r2

(t)), λ#
2 (τr1,r2

(t))> λ#
2 (t)

– λ 2 (τr1,r2
(t)), λ#

2 (τr1,r2
(t))> λ#

2 (t)
8. analogous for λ 3(t) ∧ ¬g2(t) 



Single process example constraints
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Do we know which bound to choose?

Not known how large bound need to be iff
some specification realizable in general
But, bound can be estimated for fully 
informed architectures (each process has 
complete knowledge of the environment)



Constraints for distributed system

Find family of transition systems 
{Ιp = (Tp,t0p,τp,op) |p ∈ P} such that their 
composition Ι = (T,t0,τ,o) satisfies ϕ given by 
B = (Σ, ϒ, Q, q0, δ, F)
Ιp has to act equally on states it cannot 
distinguish
Its output may only depend on its own state



Constraints for distributed system

Let dp map states t ∈T into Tp

Let pα refer to the process outputing α

∀ v,v’ ⊆ Oenv where v∩Ip= v’∩Ip.
dp(τv(t)) = dp(τv’(t))

∀v ⊆ Oenv ∩Ip. ∀ t,u ∈T.
dp(t) = dp(u) ∧α∈Ip\Oenv 

(α(dpα
(t))  ↔ α(dpα

(u)))
→ dp(τv(t)) = dp(τv(u)) 



Distributed example constraints

1-3, 4-5 stay the same
4. ∀t. λ 1(t) → ¬g1(d1(t))∨ ¬g2(d2(t))
7. ∀ t ∈T. λ 2(t) ∧ ¬g1(d1(t)) →

– λ 2(τr1,r2
(t)), λ#

2 (τr1,r2
)> λ#

2(t)
– λ 2 (τr1,r2

(t)), λ#
2 (τr1,r2

)> λ#
2 (t)

– λ 2 (τr1,r2
(t)), λ#

2 (τr1,r2
)> λ#

2 (t)
– λ 2 (τr1,r2

(t)), λ#
2 (τr1,r2

)> λ#
2 (t)

8. … analogous for r2



Distributed example constraints

9. ∀ t ∈T.
– d1(τr1,r2

(t))=d1(τr1,r2
(t)) 

– d1(τr1,r2
(t))=d1(τr1,r2

(t))
– d2(τr1,r2

(t))=d2 (τr1,r2
(t)) 

– d2 (τr1,r2
(t))=d2 (τr1,r2

(t))

10. ∀ t ,u∈T. d1(u) ∧ (g1(d1(t)) ↔g1(d1(u))) →
– d1(τr1,r2

(t))=d1 (τr1,r2
(u)) 

– d1(τr1,r2
(t))=d1 (τr1,r2

(u)) 
11. analogous for g2



Experiments and results

Several experiments with SMT solver Yices on 
a 2.6 Ghz Opteron system
The simple arbiter specification can be solved 
in 7-8 seconds (if 8+ states allowed)
Usually it takes much longer to show 
unsatisfiability than to compute a solution if 
there is one
Good guessing of the needed states can 
significantly increase performance 



Conclusions

Constraint system gives us a comparatively 
quick synthesis by ignoring unnecessary large 
solutions in the search space
Real world restrictions can be taken into account
We can tackle undecidable problems by 
approaching them iteratively
Performance may be increased by good 
guessing of the minimal bound(s)



Questions? 



Annotation theorem proof

Consider run graph G on Ι:
– Case G not accepting: there is a lasso with 

rejecting state (q,t) in the loop (so q ∈ F). 
Assume some valid annotation λ exists. 
Then for the successor(s) (q’,t’) of (q,t) holds:

λ(q,t)< λ(q‘,t‘), 
along the loop it holds ‚≤‘
After one „round“ for some descendant (q‘‘,t‘‘) of (q‘,t‘) it
holds λ(q‘‘,t‘‘) < λ(q,t) 

so λ(q,t) < λ(q,t) while the image of λ is ℕ !! 



Annotation theorem proof

– Case G accepting: no lasso with rejecting state.  
A (|T|• |F|)-bounded annotation given by
assigning to each vertex (q,t) ∈ V the highest 
number of rejecting states occuring on some path 
to it, while assigning ' ַ' to all (q‘,t‘) not in G



Run graph

A run graph of a co-Büchi automaton             
B = (Σ, ϒ, Q, q0, δ, F) on a                              
Σ-labeled ϒ-transition Ι = (T,t0,τ,o)                  
is a minimal directed graph G=(V,E) such that
– V ⊆ Q x T
– (q0, t0) ∈ V
– ∀ (q,t) ∈ V: {(q’,v) ∈ Q x ϒ|((q,t),(q’, τ(t,v))) ∈ E} 

satisfies δ(q,o(t))


