
Bounded Synthesis

Presentation: Steffen Metzger

Same problem as before

Given some specification (e.g. in LTL)

Automatically synthesize a program that acts
according to the specification

We just saw this is possible in some cases

Decidability

But, distributed synthesis in general
undecidable

Idea: Use bounds to iteratively approach the problem,
allowing larger and larger solutions
and finally generate a minimal solution
(if a solution exists at all).

Other Advantages

Deal with real-world restrictions on
implementations
Obtain a smaller solution space as output by
concentrating on a small (realizable) subset
of solutions
Can we still do it for distributed architectures?

Yes, we can!

Bounded Synthesis Overview

Get specification as universal co-Büchi
automaton (e.g. LTL→Büchi→co-Büchi)
The acceptance of an implementation can be
characterized by existence of some special
annotation
Finally synthesize by solving a constraint
system representing the properties of that
annotation (e.g. in SMT)

Example

Consider a pedestrian crossing
Environment can issue 2 different access
requests
– pedestrian pushing the pedestrian light button
– car arriving on contact line

Find an implementation that guarantees they
are not granted access simultaneously

Architectures

env p1r1,r2 g1,g2 single process

– V = set of boolean system variables
– {Ip ⊆ V | p ∈ P} a family of Input variable sets
– {Op ⊆ V | p ∈ P} a family of Output variable sets

– here: Oenv={r1,r2}

Distributed Architectures

env

p1

r1

p2

r2

env

p1

r1,r2

p2

r1,r2

2-process arbiter

2-process arbiter
with complete knowledge

about environment variables
Oenv ⊆ Ip

g2

g1

g2

g1

fully informed

Implementations

represented as transition system
each process represented by one
independent transition system
Merging of all process systems gives a
composed system for overall
properties/specification check

transition systems

Given directions ϒ and labels Σ, a Σ-labeled
ϒ-transition system is a tuple Ι = (T,t0,τ,o)
where:
– T is a set of states
– t0 is an initial state
– τ: T x ϒ → T is a transition function
– o: T → Σ is a labeling function

Single Process Example

t0

t1

⇒ g1,g2

⇒ g1, g2

2 Process Example

Oenv ={r1,r2}

t0

r1

t1

⎯r1

s0

r2

s1

⎯r2

⇒ g1, g2⇒g1,g2

⇒⇒

2 Process Composition Example

Oenv ={r1,r2}, root direction⎯r1,⎯r2

t0,s0,(r1,r2)

⎯r1,⎯r2

t1,s0,(r1,r2)

⎯r1, r2

t0,s1,(r1,r2)

r1, ⎯r2

t1,s1,(r1,r2)

r1, r2

⎯r1,⎯r2

⎯r1,r2
r1,⎯r2

⎯r1,⎯r2

⎯r1,⎯r2

⎯r1,r2

r1,⎯r2

r1, r2r1, r2

r1,⎯r2 ⎯r1,r2

Input-preserving

Labels composed of process labels,
but also contain current input from Env,
e.g.

We are only considering input-preserving
transition systems in the following

t1,s1,(r1,r2) ⇒r1, r2, g1, g2

t0,s1,(r1,r2) ⇒⎯r1,r2,⎯g1, g2

input preserving
r1, r2

⎯r1,r2

Specification

A specification ϕ is (finite-state) realizable in
an architecture with processes P iff
it exists a family of (finite-state)
implementations {Tp | p ∈ P} such that their
composition TA satisfies ϕ

Bounded realizable

Given
– architecture with processes P
– family of bounds {bp ∈ ℕ | p ∈ P } for processes
– bound bA for the whole system TA

A specification ϕ is bounded realizable if
there exists a family {Tp | p ∈ P } such that:
– Tp has at most bp states for all p ∈ P
– TA satisfies ϕ
– TA has at most bA states

co-Büchi automaton

A co-Büchi automaton B is given by a tuple
(Σ, ϒ, Q, q0, δ, F) where:
– Σ denotes a finite set of labels
– ϒ denotes a finite set of directions
– Q denotes a finite set of states
– q0 denotes an initial state
– δ: Q x Σ → +(Qxϒ) denotes a transition function
– F ⊆ Q denote rejecting states

Universal co-Büchi automaton

A co-Büchi automaton B = (Σ, ϒ, Q, q0, δ, F)
is called universal iff for all states q and
input letters in, δ(q,in) is a conjunction

A run R in a co-Büchi automaton
B = (Σ, ϒ, Q, q0, δ, F) is accepted iff
rejecting states (r ∈ F) appear only finitely
often in R

Specification as universal co-Büchi

1

r1

⊥

*

2 3

⎯g1

r2

⎯g2

g1,g2

Run graph

A run graph of a co-Büchi automaton B on a
transition system I is a minimal directed graph
G=(V,E) that models all possible runs of B on I

A run graph is accepting iff
in every infinite path,

states from F appear only finitely often

Run graph Example

1

r1
⊥

*

2 3

⎯g1

r2

⎯g2

g1,g2

t0

t1

⇒ g1,g2

⇒ g1, g2

Run graph example

1 t0

t12 t13

1 t1

t02 t03

r1,r2
r1,r2

r1,r2
r1,r2

r1,r2
r1,r2

r1,r2
r1,r2

*

*

* *

Check for accepting run graph

Only need to decide if a path with infinitely
many rejecting state appearances exists

Idea: Check if we can find a partial ordering on the
run graph nodes, such that each path with rejecting
nodes contains a maximal rejecting node, from which
no further rejecting node is reachable.

Annotations

1 t0

t12 t13

1 t1

t02 t03

< >

0 0

1 2 12

Annotations

An annotation of a transition system
Ι = (T,t0,τ,o) on a universal co-Büchi
automaton U = (Σ, ϒ, Q, q0, δ, F)
is a function λ: Q x T →{ַ} ∪ ℕ.
It is called c-bounded if its image is
contained in {0,…,c} where c ∈ ℕ
It is bounded if it is c-bounded for some c.

Valid annotations

An annotation is valid iff
– all states reachable from the initial state (q0, t0)

are annotated with a natural number
– Values are not decreasing along a possible path
– Values are increasing from a state towards

some rejecting successor state

Acceptance

Theorem:
A finite-state Σ-labeled ϒ-transition system
Ι = (T,t0,τ,o) is accepted by a universal co-Büchi
automaton U = (Σ, ϒ, Q, q0, δ, F)
iff it has a valid (|T| • |F|)-bounded annotation.

How to find an implementation

Given a specification and some architecture
How do we efficiently find an implementation
with a valid annotation?

Idea: Describe the properties of the specification
and a valid annotation
in a constraint system, such that
solving the system provides an implementation.

Constraint system

Given specification B = (Σ, ϒ, Q, q0, δ, F)
Create a constraint system, such that any
transition system Ι = (T,t0,τ,o) satisfying the
constraint system satisfies B
For now we only consider the fully informed
case (equivalent to only one process)

Constraint system – some tools

Some abbreviations to describe the
constraints:
– τv(t)= τ(t,v)
– for all α∈V. α(t) iff α ∈ o(t)
– for all q∈Q. λ#

q(t)=λ(q,t) iff λ(q,t) ∈ ℕ
– for all q∈Q. λ q(t) iff λ(q,t) ∈ ℕ

where λ(q,t) represents some annotation

Constraints

∀ α ∈ Oenv, v ⊆ Oenv, t ∈T.
– α(τv(t)) iff α ∈ v
– ¬α(τv(t)) otherwise

λ q0
(t0)

∀t. λ q(t) ∧ (q‘,v) ∈ δ(q,o(t))
→ λ q‘(τv(t)) ∧ λ#

q‘(τv(t))≥q (λ#
q‘(t))

where: ≥q is > iff q ∈ F, ≥q is ≥ otherwise

Initial state annotated

Valid Annotation

Input preserving

Single process example constraints

1. ∀ t ∈T.
– r1(τr1,r2

(t)) ∧ r1(τr1,r2
(t)) ∧ r2(τr1,r2

(t)) ∧ r2(τr1,r2
(t))

– ¬r1(τr1,r2
(t)) ∧ ¬r1(τr1,r2

(t)) ∧ ¬r2(τr1,r2
(t)) ∧

¬r2(τr1,r2
(t))

Input preserving

t ⇒ r1,r2r1,r2

Single process example constraints

2. λ 1(t0), ¬r1(t0), ¬r2(t0)

3. ∀ t ∈T.
– λ 1(τr1,r2

(t)), λ#
1(τr1,r2

(t))≥ λ#
1(t)

– λ 1(τr1,r2
(t)), λ#

1(τr1,r2
(t))≥ λ#

1(t)
– λ 1(τr1,r2

(t)), λ#
1(τr1,r2

(t))≥ λ#
1(t)

– λ 1(τr1,r2
(t)), λ#

1(τr1,r2
(t))≥ λ#

1(t)

Single process example constraints

1 t0

t12 t13

1 t1

t02 t03

r1,r2
r1,r2

r1,r2
r1,r2

r1,r2
r1,r2

r1,r2
r1,r2

*

*

* *

n n

Single process example constraints

4. ∀t. λ 1(t) → ¬g1(t)∨ ¬g2(t)
5. ∀ t ∈T. λ 1(t) ∧ r1(t) →

– λ 2(τr1,r2
(t)), λ#

2 (τr1,r2
(t))> λ#

1(t)
– λ 2 (τr1,r2

(t)), λ#
2 (τr1,r2

(t))> λ#
1(t)

– λ 2 (τr1,r2
(t)), λ#

2 (τr1,r2
(t))> λ#

1(t)
– λ 2 (τr1,r2

(t)), λ#
2 (τr1,r2

(t))> λ#
1(t)

6. … analogous for r2 and states (2,t)

Single process example constraints

1 t0

t12 t13

1 t1

t02 t03

r1,r2
r1,r2

r1,r2
r1,r2

r1,r2
r1,r2

r1,r2
r1,r2

*

*

* *

n n

nn

nn

Single process example constraints

7. ∀ t ∈T. λ 2(t) ∧ ¬g1(t) →
– λ 2(τr1,r2

(t)), λ#
2 (τr1,r2

(t))> λ#
2(t)

– λ 2 (τr1,r2
(t)), λ#

2 (τr1,r2
(t))> λ#

2 (t)
– λ 2 (τr1,r2

(t)), λ#
2 (τr1,r2

(t))> λ#
2 (t)

– λ 2 (τr1,r2
(t)), λ#

2 (τr1,r2
(t))> λ#

2 (t)
8. analogous for λ 3(t) ∧ ¬g2(t)

Single process example constraints

1 t0

t12 t13

1 t1

t02 t03

r1,r2
r1,r2

r1,r2
r1,r2

r1,r2
r1,r2

r1,r2
r1,r2

*

*

* *

n n

nn

nn

< >

Do we know which bound to choose?

Not known how large bound need to be iff
some specification realizable in general
But, bound can be estimated for fully
informed architectures (each process has
complete knowledge of the environment)

Constraints for distributed system

Find family of transition systems
{Ιp = (Tp,t0p,τp,op) |p ∈ P} such that their
composition Ι = (T,t0,τ,o) satisfies ϕ given by
B = (Σ, ϒ, Q, q0, δ, F)
Ιp has to act equally on states it cannot
distinguish
Its output may only depend on its own state

Constraints for distributed system

Let dp map states t ∈T into Tp

Let pα refer to the process outputing α

∀ v,v’ ⊆ Oenv where v∩Ip= v’∩Ip.
dp(τv(t)) = dp(τv’(t))

∀v ⊆ Oenv ∩Ip. ∀ t,u ∈T.
dp(t) = dp(u) ∧α∈Ip\Oenv

(α(dpα
(t)) ↔ α(dpα

(u)))
→ dp(τv(t)) = dp(τv(u))

Distributed example constraints

1-3, 4-5 stay the same
4. ∀t. λ 1(t) → ¬g1(d1(t))∨ ¬g2(d2(t))
7. ∀ t ∈T. λ 2(t) ∧ ¬g1(d1(t)) →

– λ 2(τr1,r2
(t)), λ#

2 (τr1,r2
)> λ#

2(t)
– λ 2 (τr1,r2

(t)), λ#
2 (τr1,r2

)> λ#
2 (t)

– λ 2 (τr1,r2
(t)), λ#

2 (τr1,r2
)> λ#

2 (t)
– λ 2 (τr1,r2

(t)), λ#
2 (τr1,r2

)> λ#
2 (t)

8. … analogous for r2

Distributed example constraints

9. ∀ t ∈T.
– d1(τr1,r2

(t))=d1(τr1,r2
(t))

– d1(τr1,r2
(t))=d1(τr1,r2

(t))
– d2(τr1,r2

(t))=d2 (τr1,r2
(t))

– d2 (τr1,r2
(t))=d2 (τr1,r2

(t))

10. ∀ t ,u∈T. d1(u) ∧ (g1(d1(t)) ↔g1(d1(u))) →
– d1(τr1,r2

(t))=d1 (τr1,r2
(u))

– d1(τr1,r2
(t))=d1 (τr1,r2

(u))
11. analogous for g2

Experiments and results

Several experiments with SMT solver Yices on
a 2.6 Ghz Opteron system
The simple arbiter specification can be solved
in 7-8 seconds (if 8+ states allowed)
Usually it takes much longer to show
unsatisfiability than to compute a solution if
there is one
Good guessing of the needed states can
significantly increase performance

Conclusions

Constraint system gives us a comparatively
quick synthesis by ignoring unnecessary large
solutions in the search space
Real world restrictions can be taken into account
We can tackle undecidable problems by
approaching them iteratively
Performance may be increased by good
guessing of the minimal bound(s)

Questions?

Annotation theorem proof

Consider run graph G on Ι:
– Case G not accepting: there is a lasso with

rejecting state (q,t) in the loop (so q ∈ F).
Assume some valid annotation λ exists.
Then for the successor(s) (q’,t’) of (q,t) holds:

λ(q,t)< λ(q‘,t‘),
along the loop it holds ‚≤‘
After one „round“ for some descendant (q‘‘,t‘‘) of (q‘,t‘) it
holds λ(q‘‘,t‘‘) < λ(q,t)

so λ(q,t) < λ(q,t) while the image of λ is ℕ !!

Annotation theorem proof

– Case G accepting: no lasso with rejecting state.
A (|T|• |F|)-bounded annotation given by
assigning to each vertex (q,t) ∈ V the highest
number of rejecting states occuring on some path
to it, while assigning ' ַ' to all (q‘,t‘) not in G

Run graph

A run graph of a co-Büchi automaton
B = (Σ, ϒ, Q, q0, δ, F) on a
Σ-labeled ϒ-transition Ι = (T,t0,τ,o)
is a minimal directed graph G=(V,E) such that
– V ⊆ Q x T
– (q0, t0) ∈ V
– ∀ (q,t) ∈ V: {(q’,v) ∈ Q x ϒ|((q,t),(q’, τ(t,v))) ∈ E}

satisfies δ(q,o(t))

