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Same problem as before
-

e Given some specification (e.g. in LTL)

e Automatically synthesize a program that acts
according to the specification

e \We just saw this is possible in some cases



Decidability
S

e But, distributed synthesis in general
undecidable

Idea: Use bounds to iteratively approach the problem,
allowing larger and larger solutions
and finally generate a minimal solution
(if a solution exists at all).




Other Advantages
.

e Deal with real-world restrictions on
implementations

e ODbtain a smaller solution space as output by
concentrating on a small (realizable) subset
of solutions

e Can we still do it for distributed architectures?

Yes, we can!




Bounded Synthesis Overview
c—

e Get specification as universal co-Buchi
automaton (e.g. LTL—Buchi—co-Buchi)

e [he acceptance of an implementation can be
characterized by existence of some special
annotation

e Finally synthesize by solving a constraint
system representing the properties of that
annotation (e.g. in SMT)



Example
-

e Consider a pedestrian crossing
e Environment can issue 2 different access
requests

— pedestrian pushing the pedestrian light button
— car arriving on contact line

e Find an implementation that guarantees they
are not granted access simultaneously



Architectures
« " /——////7

- V = set of boolean system variables
- {l,cV|p e P} afamily of Input variable sets
- {O, c V| p € P} afamily of Output variable sets

@ ez 5q-9l02 single process

- here: O, ,={r,ry}



Distributed Architectures

4
4

2-process arbiter

2-process arbiter fully informed

Oenv € 1,



Implementations
c

e represented as transition system

e each process represented by one
independent transition system

e Merging of all process systems gives a
composed system for overall
properties/specification check



transition systems
.

e Given directions Y and labels %, a >-labeled
Y-transition system is a tuple I = (T,t,,7,0)
where:

- T is a set of states

- tyIs an initial state

- 1. TXY — T is a transition function
- 0: T — X is a labeling function



Single Process Example



2 Process Example

¢ Oy, =(r1,r2}




2 Process Composition Example

e O, ={r1,r2}, root direction r1, r2
1, r2
T @) M, r2
r r1, r2
t1,s0,(r1,r2 A2 .12 t0,$1,(F1,lr2
r1, r2 1, r2 1,r2

r1,r2



Input-preserving
-

e Labels composed of process labels,
but also contain current input from Env,

e.g.

.12 ,G1,51,(r1,r2)=r1, 2, g1, g2
input preserving

:> r1,r2, g1, g2

e \We are only considering input-preserving
transition systems in the following



Specification
«
e A specification ¢ is (finite-state) realizable in
an architecture with processes P iff

it exists a family of (finite-state)

implementations {T,| p € P} such that their
composition T, satisfies ¢



Bounded realizable
« " /——////7

e Given
— architecture with processes P
- family of bounds {b, e N | p € P } for processes
- bound b, for the whole system T,

e A specification ¢ is bounded realizable if
there exists a family {T, | p € P } such that:
- T,has at most b, states forallp e P
- T, satisfies ¢
- T, has at most b, states



co-Buchi automaton
« /7

e A co-Buchi automaton B is given by a tuple
(2, Y, Q, g4, 0, F) where:
- X2 denotes a finite set of labels
— Y denotes a finite set of directions
- Q denotes a finite set of states
- g, denotes an initial state
- 0:Qx X — &*(QxY) denotes a transition function
- F < Q denote rejecting states



Universal co-Buchi automaton

c- |
e A co-Buchi automaton B = (%, Y, Q, q,, 0, F)

is called universal iff for all states g and

input letters in, &(q,in) is a conjunction

e A run R in a co-Buchi automaton
B=(% Y, Q,qg 0, F)is accepted iff
rejecting states (r € F) appear only finitely
often in R



Specification as universal co-Buchi




Run graph
S

e A run graph of a co-Buchi automaton B on a
transition system | is a minimal directed graph
G=(V,E) that models all possible runs of B on |

e A run graph is accepting iff

In every infinite path,
states from F appear only finitely often



Run graph Example

t0




Run graph example




Check for accepting run graph

e Only need to decide if a path with infinitely
many rejecting state appearances exists

Idea: Check if we can find a partial ordering on the
run graph nodes, such that each path with rejecting
nodes contains a maximal rejecting node, from which
no further rejecting node is reachable.




Annotations




Annotations

c- |
e An annotation of a transition system
[ = (T,ty,7,0) on a universal co-Buchi
automaton U = (%, Y, Q, q,, O, F)
is a function A: Qx T —>{}UN.

e |t is called c-bounded if its image is
contained in {0,...,c} wherec ¢ N

e It is bounded if it is c-bounded for some c.



Valid annotations
« " /——////7

e An annotation is valid iff

- all states reachable from the initial state (q, t,)
are annotated with a natural number

— Values are not decreasing along a possible path

- Values are increasing from a state towards
some rejecting successor state



Acceptance
S

Theorem:

A finite-state X-labeled Y-transition system

[ = (T,t,,7,0) is accepted by a universal co-Buchi
automaton U = (%, Y, Q, q,, O, F)

iIff it has a valid (| T| e |F|)-bounded annotation.




How to find an implementation
-

e Given a specification and some architecture

e How do we efficiently find an implementation
with a valid annotation?

Idea: Describe the properties of the specification
and a valid annotation
In a constraint system, such that
solving the system provides an implementation.




Constraint system

o]
e Given specification B = (X, Y, Q, q,, O, F)
e Create a constraint system, such that any
transition system I = (T,t,,7,0) satisfying the
constraint system satisfies B

e For now we only consider the fully informed
case (equivalent to only one process)



Constraint system — some tools
S

e Some abbreviations to describe the
constraints:

- 1,(t)=

— for a
— for a
— fora

T(t,v)

oeV. a(t) iff a € o(t)
qeQ. N (t)=A(q.t) iff A(q,t) e N
qeQ. A% (1) iff A(q,t) e N

e where A(q,t) represents some annotation



Constraints
_

® VO € Oenv’ vV C O Input preserving

env’
— aft,(t)iffa € V

— —o(t,(t)) otherwise

® )\%qo(tO) Initial state annotated

o V. )\%q(t) A (q',v) € 0(q,o(t)) Valid Annotation

= Mg (1) A Mo (r,(t)2g (WG (1))

where: > |s >iff q € F, >4 IS > otherwise



Single process example constraints
S

1. VtieT. Input preserving

- r1( Trq, rz(t)) A r1( Tr5 z(t)) N\ r2( rl,rz(t)) N\ rZ(Tq,rz(t))

— —|r1( rl rz(t)) A\ —|I’1 (’Crl r /\ —er(Tr—]-’Tz(t)) A\
oty (1)

ri,r2 ,( : ):> r1,r2



Single process example constraints

c- |
2. )\%1(1[0), —|r1 (to), —|r2(t0)

3. VteTl
- NS (T (D), M (7, (0)= N (1)
- NS (T, (D), M (T (0)2 N (1)
NSt (1), N (L (D)2 N (1)
- NS (1, (D), A (1, S (0)2 M (1)



Single process example constraints




Single process example constraints

c- |

4. YEAY(1) = =g (v —g,(t)

5. VteT.A\® (t)/\r1()—>
- Ny(tr 5, (1), M (tr 5(0)> A4(1)
- Ay(t ), N (5 1, (1)> A% (1)
- A (T, 5 (1) N (T, 5, (0)> Ny (1)
- N (T (1) N (T 1 (0)> Ny (1)

6. ... analogous for r, and states (2,t)

(1)
)



Single process example constraints




Single process example constraints

c....
7. VteT. Ao(t) A =gq(t) -
- N5t (1), N (7, (1)> A¥A(1)

r1.12 r1.12
a )\%2 (Trl r2( )) ( rl r2( )) )\#2 (t)
a )\%2 (Trl rz(t)) )\# ( rl rz(t)) 2 (t)
- )\& ( rl r2( )) ( rl r2( )) ( )

8. analogous for A*5(t) A —g,(t)



Single process example constraints




Do we know which bound to choose?
«_

e Not known how large bound need to be iff
some specification realizable in general

e But, bound can be estimated for fully
informed architectures (each process has
complete knowledge of the environment)



Constraints for distributed system
c—

e Find family of transition systems
{l, = (Ty,top,70,0p) [P € P} such that their
composition I = (T,t,,7,0) satisfies ¢ given by
B=(%Y,Q,q0,F)

e [, has to act equally on states it cannot
distinguish

e |ts output may only depend on its own state



Constraints for distributed system
c—

e Letd, map statest €T into T
e Let p, refer to the process outputing a

e V Vv,V ¢ O, Where vl = vinl,.
d (1) = do(z, (1)
o Vv Oyl VtueT.
dp(t) = do(U) Agerogy, ((dp, (1) <> aldy (U)))
— dp(z,(1)) = dy(t(u))



Distributed example constraints

c- |
1-3, 4-5 stay the same

VE A% (1) = —g4(d4(1))v —ga(dy(t))
vVt eT. A5,(t) A —=g,(d4(t) -

7.

8.

Ao (tr 7, (1), N (17, 7,)> Ao(1)
)\&2 (Tr'l,rz(t))’ )\#2 (Tr'l,rz)> )\#2 (t)
)\%2 (Trl,TZ(t))a )\#2 (Tr1,72)> )\#2 (t)
)\%2 (Trl,rz(t))a )\#2 (Trl,r2)> )\#2 (t)

. analogous for r,



Distributed example constraints
-

9. Vtel.
N d1(Tr1,r2(t))=d1( r, r—(t))
- d1(Tr—1,r2(t))=d1(Tr—1 r§(t))
- d<r1r2<t>>=d2< ()

10. Vt,u eT. d1(u) A (91(d1(t)) <g4(d4(u))) >
- dy(t, r,(1))=dq (1, (1))
- dy(tg,,(1)=dy (17 (1))

11. analogous for g,



Experiments and results
c

e Several experiments with SMT solver Yices on
a 2.6 Ghz Opteron system

e The simple arbiter specification can be solved
in 7-8 seconds (if 8+ states allowed)

e Usually it takes much longer to show
unsatisfiability than to compute a solution if
there is one

e Good guessing of the needed states can
significantly increase performance



Conclusions

e Constraint system gives us a comparatively
quick synthesis by ignoring unnecessary large
solutions in the search space

e Real world restrictions can be taken into account

e \We can tackle undecidable problems by
approaching them iteratively

e Performance may be increased by good
guessing of the minimal bound(s)



Questions?
.



Annotation theorem proof
-

e Consider run graph G on I

— Case G not accepting: there is a lasso with
rejecting state (q,t) in the loop (so g € F).
Assume some valid annotation A exists.

Then for the successor(s) (q’,t") of (q,t) holds:

® A(Q,t)< Ma'.t),
e along the loop it holds ,<'

e After one ,round” for some descendant (q“,t") of (q',t") it
holds A(q",t") < A(q,t)

so A(q,t) < A(q,t) while the image of Ais N !



Annotation theorem proof

— Case G accepting: no lasso with rejecting state.
A (|T|e |F|)-bounded annotation given by
assigning to each vertex (q,t) € V the highest
number of rejecting states occuring on some path
to it, while assigning ' " to all (q',t') notin G



Run graph
S

e A run graph of a co-Buchi automaton
B=(2Y,Q,qy0,F)ona
2-labeled Y-transition I = (T,t,,t,0)
Is a minimal directed graph G=(V,E) such that
- VcQxT

- (q01 tO) < V

- V(q,1) e V:{(q,v) € Qx Y[((q,t),(q’, t(t,v))) € E}
satisfies 0(q,0(t))



