
Summary

Bounded Synthesis

Steffen Metzger

June 26, 2008

1 Introduction

The general synthesis problem is to construct an implementation given some temporal logic
specification. On distributed architectures however, the synthesis problem is undecidable in
general. Additionally, even on simple architectures without an information fork the synthesis
problem is of nonelementary complexity. Bounded Synthesis takes a more practical view of
the synthesis problem. By introducing bounds on the size of individual processes considered
for an implementation as well as an overall bound on the size of the whole implementation,
the solution search space is reduced. Instead of searching for all possible implementations
only a fraction that satisfies the bounds are considered. This can be helpfull in different ways.
First of all real world restrictions may be considered when searching for a solution, such that
only implementations are synthesized that satisfy the bounds dictated by the physical world
(e.g. for applications on mobile devices efficiency is crucial). By restricting ourselves to a
subset of all possible implementations, the resulting description of the solutions can be quite
compact. Finally, in general undecidable problems can be tackled by iteratively increasing
the bounds and thereby searching for a minimal solution.

2 Overview

Given an architecture and a specification, the bounded synthesis problem is to find an (dis-
tributed) implementation that satisfies the specification and the bounds on the number of
states (for each process as well as for the overall implementation). In the following a solution
for this problem based on SAT constraint solving is presented. The outline to transform a
bounded synthesis problem into a constraint system is as follows:

1. Transform the specification given in LTL into a universal co-Büchi automaton

2. Characterize the existance of an implementation satisfying the specification and some
bounds by the existence of an annotation on the run-graph nodes

3. Synthesize by solving a constraint system that represents the properties of this anno-
tation on the given specification

1/8

Bounded Synthesis

Given any LTL specification ϕ, first we obtain ¬ϕ. Now, this can be turned into a nonde-
terministic Büchi automaton from which we can then construct a co-Büchi automaton that
specifies ϕ. The details of these transformations in the first step are sufficiently discussed
in standard literature. So in the following we will assume that the specification is given as
a co-Büchi automaton and inspect the remaining two steps. For a specification given as a
co-Büchi automaton, see figure 1.

Figure 1: A specification for the pedestrian crossing example or an arbitrary arbiter. The main prop-
erties are that any request will finally result in a grant and that it can never happen that both
grants are issued at the same time.

3 Preliminaries

Definition 3.1 (Architecture). An architecture A is a tuple (P, env, V, I, O), where P is a set of pro-
cesses including the environment process env. V is a set of boolean system variables, I = {Ip ⊆
V |p ∈ P} is a family of input variables while O = {Op ⊆ V |p ∈ P} is a set of output variables. So
if a variable x is in Op and in Ip′ this simulates broadcasting the value of x from p to p′.

Definition 3.2 (fully informed). If Oenv ⊆ Ip holds for all p ∈ P\{env}, the architecture is fully
informed.

Implementations are represented as transition systems.

Definition 3.3 (Transition system). For a given finite set of directions Υ and a finite set of labels Σ,
a Σ-labeled Υ-transition system is a tuple (T, t0, τ, o) where T is a set of states, to ∈ T is an initial
state, τ : T ×Υ→ T is a transition function and o : T → Σ is a labeling function.

So in a distributed implementation each system process is represented by a 2Op-labeled
2Ip-transition system (Tp, tp, τp, op). The complete system is then represented by their com-
position, the 2V -labeled 2Oenv -transition system (T, t0, τ, o) where:

• T =
⊗

p∈P\{env}
Tp × 2Oenv

2/8

Bounded Synthesis

Figure 2: 2 single processes and the composed system - the labels are not shown here for the sake of
simiplicity.

• t0 =
⊗

p∈P\{env}
tp × r where r is a freely chosen root direction in 2Oenv

• τ updates for each p the Tp part in some state t according to τp and updates the 2Oenv
part of the state with the current output of env.

• o labels each state t with the union of t’s 2Oenv part with the results of all op applied to
the corresponding Tp part of t

Definition 3.4 (input-preserving). We call a transition system input preserving, if at all states the label
reflects the input received from the environment process.

Be aware that by construction all composed systems are input-preserving and in the fol-
lowing we are only concerned with input-preserving transition systems.

Definition 3.5 (co-Büchi automaton). A co-Büchi automaton is denoted by a tuple (Σ,Υ, Q, q0, δ, F),
where:

• Σ is a set of labels,

• Υ is a set of directions,

• Q is a finite set of states,

• q0 is an initial state,

• δ : Q× Σ→ B+(Q×Υ) is a transition function

• and F ⊆ Q denotes the set of rejecting states.

A run on a co-Büchi automaton is accepting if and only if any rejecting state appears only finitely
often (or does not appear at all).

Definition 3.6 (universal co-Büchi automaton). We call a co-Büchi automaton universal iff for all
q ∈ Q and x ∈ Σ, δ(q, x) is a conjunction.

3/8

Bounded Synthesis

Figure 3: 2 single processes and the composed system

Definition 3.7 (run graph). A run graph of a co-Büchi automaton B = (Σ,Υ, Q, q0, δ, F) on a Σ-
labeled Υ-transition system (T, t0, τ, o) is a minimal directed graph G = (V,E) that satisfies the
following constraints:

• V ⊆ Q× T

• (q0, t0) ∈ V

• for all q, t ∈ V the set {(q′, v) ∈ Q×Υ|((q, t), (q′, τ(t, v))) ∈ E} satisfies δ(q, o(t)).

A run graph is accepting if in every infinite path (q1, t1), (q2, t2), ... in the run graph there is a position
i such that no node (qj , tj) where qj is rejecting and j > i exists (or in other words, there is a finite
number of appearances of rejecting states in every possible path).

4 Annotations

In order to decide if an accepting run graph exists, annotations on the run graph vertices
are introduced. Annotations provide an ordering on the states of the run graph enforcing
rejecting nodes to be strictly greater than their predecessors. If an annotation is valid then
on every path there is a maximal rejecting state such that none can follow after this one
(because it would have to be annotated higher than any predecessor). Finally this will give
us the theorem that if and only if a valid annotation exists, then there is an accepting run
graph.

4/8

Bounded Synthesis

Definition 4.1 (Annotation). An annotation of a transition system (T, t0, τ, o) on a universal co-Büchi
automaton (Σ,Υ, Q, q0, δ, F) is a function λ : Q× T → {_} ∪ N.
We call an annotation c-bounded iff there is a maximal value c such that it holds for all q ∈ Q, t ∈ T
λ(q, t) ≤ c ∨ λ(q, t) = _.

Definition 4.2 (valid annotation). An annotation is called valid iff it satisfies the following conditions:

• λ(q0, t0) 6= _

• for all q ∈ Q, t ∈ T it holds:
From λ(q, t) = n ∈ N follows λ(q′, τ(t, v)) ≥q′ n
where (q′, v) ∈ δ(q, o(t))
and ≥q′ is > in case q′ ∈ F while ≥q′ is ≥ otherwise

So the two conditions simply say that the annotation value along a path starting from the initial node
does not decrease. Additionally whenever some rejecting state is part of some node on a path from
the root node, this node has to have a strictly greater annotation value than its predecessor(s). Finally
this means any node reachable from the initial node is assigned a natural number as annotation value.

Theorem 4.1. A finite state Σ-labeled Υ-transition (T, t0, τ, o) is accepted by a universal co-Büchi
automaton (Σ,Υ, Q, q0, δ, F) iff it has a valid (|T | · |F |)-bounded annotation.

5 Constraint system

The previous theorem states that, to decide whether there is an accepting run graph it is
sufficient to decide whether there is a valid annotation. Thereby given a specification as
a co-Büchi automaton (Σ,Υ, Q, q0, δ, F), the synthesis problem can be described as a con-
straint system specifying the existence of a valid annotation λ on some Σ-labeled Υ-transition
(T, t0, τ, o). To specify the constraint system the following predicates are introduced:

• τv(t) = τ(t, v)

• for each α ∈ V there is a unary predicate α such that α(t)⇔ α ∈ o(t)

• ∀q ∈ Q.λ#
q (t) = λ(q, t) iff λ(q, t) ∈ N

• ∀q ∈ Q.λB
q (t) is true iff λ(q, t) ∈ (N)

5.1 Fully informed architectures

First we consider fully informed architectures. In this case the constraint system can be
specified by the following constraints:

1. ∀t ∈ T.∀α ∈ V.∀v ⊆ Υ.

α(τv(t)) iff α ∈ v
¬α(τv(t)) otherwise

2. λB
q0(t0)

5/8

Bounded Synthesis

3. ∀t ∈ T.∀q ∈ Q.λB
q (t) ∧ (q′, v) ∈ δ(q, o(t))→ λB

q′(τv(t)) ∧ λ
#
q′ (τv(t)) ≥q λ

#
q (t)

where:

≥q≡> iff q′ ∈ F
≥q≡≥ otherwise

The first constraint ensures that the transition system is input-preserving. The other two
conditions represent the annotation properties. The second condition ensures that the initial
state is annotated with a natural number while the third constraint ensures that the annotation
does not decrease along a path and strictly increases whenever a rejecting node is visited.
An example is given in figure 4.

5.2 Distributed synthesis

To solve the distributed synthesis problem for arbitrary distributed architectures, we have to
take into account that single processes may have only partial knowledge about the environ-
ment and act independently of each other. So instead of a composed/single system we have
to specify the family of transition systems {Tp, t0p , τp, op}. Hence a unary function dp is intro-
duced which decomposes a global state into a particular state of a process p. So it maps
from some t ∈ TA to the p-component tp ∈ Tp. To adapt the constraint system, some addi-
tional properties need to be specified. First a process has to act only accordingly to its own
knowledge, e.g. it has to act equally on any two histories it cannot distinguish. Secondly any
output of a certain process may only depend on the state of this process, so any occurence
of α(t) is replaced by α(dp(t)). This results in the following constraints:

1. ∀t.dp(τv(t)) = dp(τv′(t)) for all v, v′ ⊆ Oenv where v ∩ Ip = v′ ∩ Ip (for p the input v and
v′ looks equal)

2. ∀t, u ∈ T.dp(t) = dp(u)
∧

α∈Ip\Oenv
(α(dpα(t))↔ α(dpα(u)))→ dp(τv(t)) = dp(τv(u)) for all

v ∈ Oenv ∩ Ip. (pa denotes the process responsible for output variable α (α ∈ Opα))

References

[SF] Sven Schewe and Bernd Finkbeiner, Bounded Synthesis.

[SF07] , Smt-based synthesis of distributed systems.

6/8

Bounded Synthesis

1. ∀t.r1(τr1r2(t)) ∧ r2(τr1r2(t)) ∧ r1(τr1r2(t)) ∧ ¬r2(τr1r2(t)) ∧ ¬r1(τr1r2(t)) ∧ ¬r2(τr1r2(t)) ∧
¬r1(τr1r2(t)) ∧ r2(τr1r2(t))

2. λB
1 (t0) ∧ ¬r1(t0) ∧ ¬r2(t0)

3. ∀t.λB
1 (t)→

λB
1 (τr1,r2(t)) ∧ λ#

1 (τr1,r2(t)) ≥ λ#
1 (t)

∧ λB
1 (τr1,r2(t)) ∧ λ#

1 (τr1,r2(t)) ≥ λ#
1 (t)

∧ λB
1 (τr1,r2(t)) ∧ λ#

1 (τr1,r2(t)) ≥ λ#
1 (t)

∧ λB
1 (τr1,r2(t)) ∧ λ#

1 (τr1,r2(t)) ≥ λ#
1 (t)

4. ∀t.λB
1 (t)→ ¬g1(t) ∨ ¬g2(t)

5. ∀t.λB
1 (t) ∧ r1(t)→

λB
2 (τr1,r2(t)) ∧ λ#

2 (τr1,r2(t)) > λ#
1 (t)

∧ λB
2 (τr1,r2(t)) ∧ λ#

2 (τr1,r2(t)) > λ#
1 (t)

∧ λB
2 (τr1,r2(t)) ∧ λ#

2 (τr1,r2(t)) > λ#
1 (t)

∧ λB
2 (τr1,r2(t)) ∧ λ#

2 (τr1,r2(t)) > λ#
1 (t)

6. ∀t.λB
1 (t) ∧ r2(t)→

λB
3 (τr1,r2(t)) ∧ λ#

3 (τr1,r2(t)) > λ#
1 (t)

∧ λB
3 (τr1,r2(t)) ∧ λ#

3 (τr1,r2(t)) > λ#
1 (t)

∧ λB
3 (τr1,r2(t)) ∧ λ#

3 (τr1,r2(t)) > λ#
1 (t)

∧ λB
3 (τr1,r2(t)) ∧ λ#

3 (τr1,r2(t)) > λ#
1 (t)

7. ∀t.λB
2 (t) ∧ ¬g1(t)→

λB
2 (τr1,r2(t)) ∧ λ#

2 (τr1,r2(t)) > λ#
2 (t)

∧ λB
2 (τr1,r2(t)) ∧ λ#

2 (τr1,r2(t)) > λ#
2 (t)

∧ λB
2 (τr1,r2(t)) ∧ λ#

2 (τr1,r2(t)) > λ#
2 (t)

∧ λB
2 (τr1,r2(t)) ∧ λ#

2 (τr1,r2(t)) > λ#
2 (t)

8. ∀t.λB
3 (t) ∧ ¬g2(t)→

λB
3 (τr1,r2(t)) ∧ λ#

3 (τr1,r2(t)) > λ#
2 (t)

∧ λB
3 (τr1,r2(t)) ∧ λ#

3 (τr1,r2(t)) > λ#
3 (t)

∧ λB
3 (τr1,r2(t)) ∧ λ#

3 (τr1,r2(t)) > λ#
3 (t)

∧ λB
3 (τr1,r2(t)) ∧ λ#

3 (τr1,r2(t)) > λ#
3 (t)

Figure 4: Constraint system example for a fully informed architecture. The constraint system repre-
sents the specification shown in figure 1 on the fully informed architecture shown in 2.

7/8

Bounded Synthesis

4. ∀t.λB
1 (t)→ ¬g1(d1(t)) ∨ ¬g2(d2(t))

7. ∀t.λB
2 (t) ∧ ¬g1(d1(t))→

λB
2 (τr1,r2(t)) ∧ λ#

2 (τr1,r2(t)) > λ#
2 (t)

∧ λB
2 (τr1,r2(t)) ∧ λ#

2 (τr1,r2(t)) > λ#
2 (t)

∧ λB
2 (τr1,r2(t)) ∧ λ#

2 (τr1,r2(t)) > λ#
2 (t)

∧ λB
2 (τr1,r2(t)) ∧ λ#

2 (τr1,r2(t)) > λ#
2 (t)

8. ∀t.λB
3 (t) ∧ ¬g2(d2(t))→

λB
3 (τr1,r2(t)) ∧ λ#

3 (τr1,r2(t)) > λ#
2 (t)

∧ λB
3 (τr1,r2(t)) ∧ λ#

3 (τr1,r2(t)) > λ#
3 (t)

∧ λB
3 (τr1,r2(t)) ∧ λ#

3 (τr1,r2(t)) > λ#
3 (t)

∧ λB
3 (τr1,r2(t)) ∧ λ#

3 (τr1,r2(t)) > λ#
3 (t)

9. ∀t.d1(τr1,r2(t)) = d1(τr1,r2(t))∧d1(τr1,r2(t)) = d1(τr1,r2(t))∧d2(τr1,r2(t)) = d2(τr1,r2(t))∧
d2(τr1,r2(t)) = d2(τr1,r2(t))

10. ∀t, u.d1(t) = d1(u) ∧ (g2(d2(t)) ↔ g2(d2(u))) → d1(τr1,r2(t)) = d1(τr1,r2(u)) ∧
d1(τr1,r2(t)) = d1(τr1,r2(u))

11. ∀t, u.d2(t) = d2(u) ∧ (g1(d1(t)) ↔ g1(d1(u))) → d2(τr1,r2(t)) = d2(τr1,r2(u)) ∧
d2(τr1,r2(t)) = d2(τr1,r2(u))

Figure 5: Constraint system example for a distributed synthesis. The figure shows the constraints that
have to be modified or added with respect to the example in figure 4. The resulting constraint
system represents the specification shown in figure 1 on the distributed architecture shown
in figure 2 (the left architecture).

8/8

	1 Introduction
	2 Overview
	3 Preliminaries
	4 Annotations
	5 Constraint system
	5.1 Fully informed architectures
	5.2 Distributed synthesis

