Synthesis under incomplete information

Andreas Augustin

June 12, 2008

Contents
1 Outline 1
1.1 Opensystems o e e 1
1.2 Specification and synthesis oL 1
1.2.1 Synthesis for LTL 2
1.2.2 Synthesis for branching-time logics 2
1.3 Incomplete information 2
2 Automata types 2
2.1 Word automata e e 2
2.2 From nondeterministic and universal to alternating automata 3
2.3 Tree Automata 3
2.4 Acceptance 3
2.5 Alternating tree automata L L L 3
3 Incomplete information 4
3.1 hide, wide, xray and cover functions, 4
3.2 Putting it all together)
3.3 Solution 5
3.4 Final statements 6

1 Outline

1.1 Open systems

We know automata that read input and make transitions for both, the finite and the infinite
case. In basic lectures, there’s an introduction to automata, that read input, produce output
and make transitions, too. The most prominent examples are Moore and Mealy automata.
Those come close to the behaviour of a reactive system, which is basically a program P that
maps inputs I and the history of previously seen inputs to outputs O: P : (27)* — 20, P is
state-based and the history is available only in the states.

1.2 Specification and synthesis

The specification of a program can be done in form of a formula ¢, e.g. in LTL, CTL, CTL* or
pu-calculus. Given such a formula ¢, realizability corresponds to the question, whether there

exists a program P that satisfies ¢ and synthesis is the problem to transform the specification
© into a program P that is guaranteed to satisfy ¢.

1.2.1 Synthesis for LTL

For LTL, the specification yields allowed combinations of sequences of inputs and outputs and
the whole problem can be reduced to a non-emptiness test of a tree-automaton, that can be
constructed out of the specification. Synthesis is proven to be 2EXPTIME complete in this
case.

1.2.2 Synthesis for branching-time logics

For branching-time logics like CTL and CTL*, P associates with each input sequence an
infinite computation over 27991 Although P deterministic, P induces a computation tree
due to external nondeterminism caused by different possible inputs in /. Branching temporal
logics give us the required expressive power because of path quantifiers: In LTL we can’t
express possibility requirements. And again, realizability correlates to a non-emptiness-test
for a tree-atomaton that can be constructed out of the specification.

1.3 Incomplete information

For incomplete information, let’s now assume that the environment knows more than the
program P: This can be modelled using signals E that are known to the environment, but
unknown to P in addition to the signals I of readable input and signals O of output.

This directly leads to the question how big the impact on realizability and complexity is,
compared with synthesis under complete information.

2 Automata types

Let’s first have a look at the required automata: We’ll go from the well-known word automata
over both, alternating word and non-alternating tree-automata to alternating tree automata.

2.1 Word automata

Word automata are considered to be well-known for the purpose of this summary. Notation-
ally, we assume an automaton to consist of an alphabet X, states (), an initial state ig € @) or
several initial states I C (), a transition-relation or -function ¢ and an acceptance condition
c. 6 may vary depending on the type of atomaton, determinism and so forth. ¢ may be
something like Muller-Acceptance or Rabin-Acceptance.

A word automaton can be...

e Deterministic. Then ¢ is a function d : QQ x X — Q.
e Nondeterministic. Then § is a relation 6 : Q x ¥ — 29,

e Universal. Then again, § is a relation ¢ : Q x ¥ — 29, but the automaton forks for each
additional successor and we demand that all automatons accept.

Since T and O are disjoint, 27Y° = 27 x 29 holds. Both notations are commonly used the literature.

Instead of writing d(q1,0) = {q2, g3} we can write 6(q1,0) = g2 V g3 for the nondeterministic
case and d(q1,0) = g2 A g3 for the universal case. This can be understood like follows: The
automaton spawns copies, the copies proceed into the succeeding states (g2 and g3 in the
example), and for the nondeterministic case, the automaton accepts if copy 1 or copy 2
accepts and in the universal case, it acceps only if both copies, the copy proceeding in ¢ and
the copy proceeding in g3 accept.

Since several copies may proceed from a single node, the computation of the automaton
spans up a tree, a computation tree.

2.2 From nondeterministic and universal to alternating automata

For nondeterministic and universal branching, we restricted ourselves to using either “or”
or “and”. We could use more than one “V” in a nondeterministic formula, e.g. d(q1,0) =
q2 V q3 V q4, but in a nondeterminstic automaton, we’re not allowed to use “A” and in a
universal automaton, we’re not allowed to use “V”.

For the alternating automaton, we now combine the 2 possibilities, but we still forbid “—=”.
Therefore, we allow arbitrary positive boolean formulas.

2.3 Tree Automata

Tree Automata read trees instead of words. In an input tree, a symbol may have more than
one successor, but still only finitely many. In this sense, a word is a tree in that each symbol
has at most one successor. If we consider infinite words, we have to furtheron restrict this
to “exactly one successor”. For a general tree with possibly more than one successor-symbol,
the automaton forks much like a universal word atomaton: It spawns one copy per child and
all copies must accept. What’s new is that each child-automaton runs on a different subtree,
not on the same input. We demand that, given a symbol ¢ with n successors, Let ¢ € Q,
0(q,0) € Q™.

We can also construct nondeterministic tree automata, there we allow more than one
possible successor-set: §(q,0) C Q™. The automaton selects a possible set of successor-states,
then spawns copies of itself and the copies run on the elements of the chosen successor set.

2.4 Acceptance

Acceptance conditions for tree automata are similar to those of word-automata, we have
final states for the finate case and acceptance condisions like Biichi, Muller, Rabin, Street or
Parity acceptance for the infinite case. For the infinite case, we demand that the acceptance
condition is met for all paths from each node in the computation tree backwards to the root of
the tree, e.g. each such path must contain infinitely many final states for a Biichi acceptance
condition to hold.

2.5 Alternating tree automata

Like non-alternating tree automata, alternating tree automata run on trees and like alternat-
ing word automata, they allow arbitrary positive boolean expressions for successors, but this
time these expressions are combined with information about which branch to take. Therefore,
branches are enumerated, starting with 0, or more generally, we have directions. For each

node, there’s a unique direction for each of its children. When using numbers, we speak of
direction 0, direction 1 a.s.f.

For example, §(qo,a) = (q1, q2) becomes §(qg,a) = (0,q1) A (1, g2),
and d(qo,a) = {(q1,92), (g3, q2)} becomes §(go,a) = (0,q1) A (1,q2) V (0,g3) A (1, q2).

Several copies may proceed in the same direction, while other directions may be ignored
entirely. But still, all running copies of a universal branch must accept!

3 Incomplete information

To get back to incomplete information, let’s have a look at the following theorem:
Theorem (taken from [5]): Given a CTL* formula ¢ over a set AP =1UEUQO of atomic
propositions and a set T = 219F of directions, there exists an alternating Rabin tree automaton
A, over 24P _labeled T-trees, with 2002 states and two pairs®, such that L(Ar) is exactly
the set of trees satisfying .

Unfortunately, there are still 2 problems to solve:

1. Although the input trees are 7-trees, they needn’t be I U E-exhaustive, i.e. when going
into direction ¢e, we may find a set of atomic propositions that is completely independent
of ie. What we want is that, given ¢ and e, if we go into direction ie, then we want to
find the propositions for 7 and e there, such that we can derive an output o for ¢ and e
by going into direction ie.

2. Since P doesn’t know E, it must behave independently of E. If the history of 2 states
p and ¢ differs only in values in F, then P must behave identical in p and ¢q. However,
the signals F are reflected in the computation tree of P. So we have to make sure that
P still behaves independently of them.

3.1 hide, wide, xray and cover functions

To solve these problems, we introduce some functions. The hide- and wide-functions help us
to get rid of inconsistencies w.r.t signals in F and xray and cover help us to deal with the
problem of trees possibly not being I U E-exhaustive.

hide removes the information that is invisible to P: hidey (X,Y) = X. We can apply hide
to a path in a tree by applying it to each node on that path. This yields hidey : (X xY)* —
X*. wide defines the other direction, but builds consistently labelled trees: widey ((X*,V)) =
((X xY)*, V') where for every node w € (X x Y)*, we have V'(w) = V(hidey (w)).

Example: Consider this 4-ary tree. Assume the first input is ¢ € I and the second is
e € E. Assume arbitrary, potentially inconsistent labels. 2 binary signals i € [and e € E
span up a 4-ary tree. Visible to P is only the binary, red part of the tree:

//VXM

A AN W

0000 0001 0010 0011 0100 0101 0110 0111 -eeeevee eeeeeee
Hide extracts the binary I-part out of the 4-ary tree. Entire subtrees “fall off”. Based on this

2«Two pairs” refers to the Rabin-acceptance-condition.

result, wide yields a consistently labelled tree, e.g. the nodes in directions 00 and 01 must
carry the same label, since they only differ in e.

Anyway, we haven’t dealt yet with I U F-exhaustiveness. Therefore, we introduce the
zray-function: The zray-function adds a labelled tree’s (skeletal) structure to it’s labels:

a (e,a)
b c (0,b) (1

cover(zray(T)) = .

)

Similarly to hide and wide, cover reverses zray:

3.2 Putting it all together

1. From a specification (logic formula), we get an automaton A over 2/YFYO labelled
2IUE trees. A tree accepted by this automaton does not have to be consistent w.r.t.
incomplete information, nor does it have to be I U E exhaustive

2. So we must construct some automaton A’ over 20-labelled 2/YF-trees out of A, s.t. A’
accepts a tree (T, V) iff A accepts zray((T,V)).

3. Then, we still have to deal with incomplete information, so we construct an automaton
A" over 29-labelled 2/-trees out of A, s.t. A” accepts a tree (T, V) iff A’ accepts
wideqr ((T,V))

All these goals are achievable, as stated in the following theorems:
Theorem (taken from [1]): Given an alternating tree automaton A over (1 x X)-labelled
T-trees, we can construct an alternating tree automaton A’ over X-labelled T-trees such that

1. A" accepts a labelled tree (7%, V) iff A accepts zray((r*,V)).
2. A’ and A have the same acceptance condition.
3. A= O(JA])

Theorem (taken from [1]): Let X, Y and Z be finite sets. Given an alternating tree
automaton A over Z-labelled (X x Y')-trees, we can construct an alternating tree automaton
A’ over Z-labelled X -trees such that

1. A" accepts a labelled tree (X* V) iff A accepts widey ((X*,V)).
2. A’ and A have the same acceptance condition.

3. |A'] = O(JAl)

3.3 Solution

Given A", we can test whether £(A") is empty. ¢ is realizable iff A” is not empty and the
emptiness-check can be extended s.t. it actually produces a finite state program P. Given
the 2 previous theorems, we can already guess that the given transformations didn’t make
the process more complex and the following theorem confirms this intuition:

Theorem (taken from [1]): The synthesis problem for LTL and CTL*, with either com-
plete or incomplete information, is 2EXPTIME complete.

3.4 Final statements

We saw that alternation is an apropriate machanism to cope with incomplete information.
Something that was not shown here: For the special case of CTL formulas, the algorithm
is modifiable, s.t. the obtained algorithm runs in exponential time. An extension of the
presented result is that u-calculus synthesis under incomplete information is EXPTIME com-
plete[2], but the extension is not as straightforward as the extension for CTL.

References

[1] Main paper: Orna Kupferman, Moshe Y. Vardi. Synthesis with incomplete information.
[2] Broader overview: Orna Kupferman, Moshe Y. Vardi. p-calculus synthesis.

[3] LTL, CTL, Alternating tree automata: Moshe Y. Vardi. Alternating automata and
program verification.

[4] S1S: Madhavan Mukund. Finite-state automata on infinite inputs.

[5] From Logics to alternating automata: O. Bernholtz, M. Y. Vardi and P. Wolper. An
automata-theoretic approach to branching-time model checking

