
Outline
Automata types

Incomplete information

Synthesis under incomplete information

Andreas Augustin

June 12, 2008

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Overview

1 Outline
Background
Incomplete information

2 Automata types
Word automata
Alternating automata
Tree Automata
Alternating tree automata

3 Incomplete information
Overview
hide, wide and xray functions
Putting it all together
Final statements

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Background
Incomplete information

Background: Open systems

We know automata that read input and make transitions

finite
infinite

You probably heard of automata that read input, produce
output and make transitions (e.g. Moore, Mealy)

Behaviour of a reactive system

Program P maps inputs I and history to outputs O:
P : (2I)∗ → 2O

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Background
Incomplete information

Specification and synthesis

Specification as formula ϕ in LTL, CTL, CTL∗, µ-calculus

Realizability: Does there exist a program P that satisfies ϕ?

Synthesis: Transform specification ϕ in program P that is
guaranteed to satisfy ϕ

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Background
Incomplete information

Synthesis for LTL

Specification yields allowed combinations of sequences of
inputs and outputs

Problem can be reduced to non-emptiness test of
tree-automaton

Synthesis is proven to be 2EXPTIME complete in this case

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Background
Incomplete information

Synthesis for branching-time logics

P associates with each input sequence infinite computation
over 2I∪O

I and O are disjoint, so 2I∪O = 2I × 2O

Although P deterministic, P induces a computation tree due
to external nondeterminism caused by different possible inputs
in I

Branching temporal logics (CTL, CTL∗) give us the required
expressive power because of path quantifiers: In LTL we can’t
express possibility requirements.

Realizability correlates to non-emptiness-test for
tree-atomaton

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Background
Incomplete information

From complete to incomplete information

Now assume the environment knows more than the program
P:

Signals I of readable input
Signals E that are known to the environment, but unknown to
P
Signals O as before

What’s the impact of this on

Realizability?
Complexity?

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Background
Incomplete information

Example

An adapted example from the paper[1]: Assume a printer
scheduler shall only print a paper if it doesn’t contain bugs.
Unfortunately, it can’t decide whether the paper contains a
bug.

We have:

I = {i}; i = 1⇔ User wants to print a paper
E = {e}; e = 1⇔ Paper is buggy
O = {o}; o = 1⇔ Paper scheduled for printing

We want A�(o ⇒ i ∧ ¬e)

Since we can’t destinguish between i ∧ ¬e and i ∧ e, the only
safe way to handle this is never to print anything at all

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Word automata
Alternating automata
Tree Automata
Alternating tree automata

Word- and Tree-Automata and their alternating versions

Alternating Tree Automata

Tree Automata Alternating Word A.

Word Automata

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Word automata
Alternating automata
Tree Automata
Alternating tree automata

Word automata

Well known

Alphabet Σ
States Q
Initial state(s) i0 ∈ Q or I ⊆ Q
Transition-relation or -function δ, details follow
Acceptance condition c

δ may vary depending on the type of atomaton, determinism
a.s.f.

c may be something like Muller-Acceptance,
Rabin-Acceptance a.s.f.

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Word automata
Alternating automata
Tree Automata
Alternating tree automata

Word Automata

A word automaton can be...

Deterministic. Then δ is a function δ : Q × Σ→ Q

Nondeterministic. Then δ is a relation δ : Q × Σ→ 2Q

Instead of writing δ(q1, σ) = {q2, q3} we can write
δ(q1, σ) = q2 ∨ q3 in the sense that the automaton accepts if
proceeding in q2 or q3 accepts

Universal. Then again, δ is a relation δ : Q × Σ→ 2Q , but
the automaton forks for each additional successor and we
demand that all automatons accept

Again, we can write δ(q1, σ) = q2 ∧ q3, because the automaton
that goes on in q2 and the one that goes on in q3 must accept

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Word automata
Alternating automata
Tree Automata
Alternating tree automata

Alternating automata

From nondeterministic and universal to alternating automata
Let Q ′ ⊆ Q

Nondeterministic: δ(q1, σ) =
∨

qi∈Q′ qi

Universal: δ(q1, σ) =
∧

qi∈Q′ qi

Alternating: Combine the 2 possibilities, allow arbitrary
positive boolean formulas

“positive”: Don’t use “¬”

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Word automata
Alternating automata
Tree Automata
Alternating tree automata

Tree Automata

Read trees instead of words

Symbols may have more than one successor, but finitely many

Atomaton forks much like universal word atomaton:

One copy per child
All copies must accept

But...

Each child-automaton runs on a different subtree, not on same
input

Nondeterminism

Definition remains
Automaton selects possible set of successor-states, then forks
and copies run on elements of chosen successor set

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Word automata
Alternating automata
Tree Automata
Alternating tree automata

Example

Assume finite, binary input tree over Σ = {a, b, c}:
a

b c

Automaton A = (Q, i0, δ, c), Q = {q0, q1, q2, q3, q4}, i0 = q0,
c : State in F = {q4} is reached.

Some parts of deterministic tree automaton:
δ: (q0, a) 7→ (q1, q2)

(q1, b) 7→ (q4)
(q2, c) 7→ (q4)

Example for nondeterministic case:
δ(q0, a) = {(q1, q2), (q3, q2)}

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Word automata
Alternating automata
Tree Automata
Alternating tree automata

Acceptance

Acceptance conditions for tree automata similar to those of
word-automata:

Final states for finate case

Büchi, Muller, Rabin, Street or Parity acceptance condition
for infinite case

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Word automata
Alternating automata
Tree Automata
Alternating tree automata

Alternating tree automata

Combination of alternating automata and tree automata not
obvious:

They run on trees

They allow arbitrary positive boolean expressions for
successors...

...combined with information about which branch to take

Branches are enumerated, starting with 0

Reconsidering the previous example, we can construct an
alternating tree automaton out of a “normal” tree automaton:

δ(q0, a) = (q1, q2) becomes δ(q0, a) = (0, q1) ∧ (1, q2)
δ(q0, a) = {(q1, q2), (q3, q2)} becomes
δ(q0, a) = (0, q1) ∧ (1, q2) ∨ (0, q3) ∧ (1, q2)

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Word automata
Alternating automata
Tree Automata
Alternating tree automata

Alternating tree automata

Another, partial example:
δ(q1, σ) = (0, q2) ∧ (0, q3) ∨ (0, q3) ∧ (1, q3) ∧ (1, q4)

If you look at the left part...

It universally branches for the “∧”, i.e. 2 automata are sent
into subtrees.
One descends to the left and starts there in state q2. The
other also goes to the left, but into state q3.

As you can see in this example...

Several copies may proceed in the same subtree
Subtrees may be ignored

But all running copies of a universal branch must accept!

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Overview
hide, wide and xray functions
Putting it all together
Final statements

ϕ→ A

Theorem (taken from [5]): Given a CTL∗ formula ϕ over a set
AP = I ∪ E ∪ O of atomic propositions and a set τ = 2I∪E of
directions, there exists an alternating Rabin tree automaton Aτ,ϕ
over 2AP -labeled τ -trees, with 2O(|ϕ|) states and two pairs, such
that L(Aτ,ϕ) is exactly the set of trees satisfying ϕ.

“Two pairs” refers to the Rabin-acceptance-condition

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Overview
hide, wide and xray functions
Putting it all together
Final statements

Overview

Repetition:

Signals I of readable input
Signals E of unreadable input
Signals O of output

Since P doesn’t know E , it must behave independently of E

If the history of 2 states p and q differs only in values in E ,
then P must behave identical in p and q

However, the signals E are reflected in the computation tree
of P

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Overview
hide, wide and xray functions
Putting it all together
Final statements

hide- and wide-functions

hide removes the information that is invisible to P

hideY (X ,Y) = X
We can apply hide to a path in a tree by applying it to each
node on that path. This yields hideY : (X × Y)∗ → X ∗

wide defines the other direction, but builds consistently
labelled trees:

wideY (〈X ∗,V 〉) = 〈(X × Y)∗,V ′〉 where for every node
w ∈ (X × Y)∗, we have V ′(w) = V (hideY (w))

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Overview
hide, wide and xray functions
Putting it all together
Final statements

Example: hide- and wide-functions

ε

00 01 10 11

0000 0001 0010 0011 0100 0101 0110 0111

Consider this 4-ary tree. Assume the first input is i0 ∈ I and the
second is e0 ∈ E . Assume arbitrary, potentially inconsistent labels

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Overview
hide, wide and xray functions
Putting it all together
Final statements

Example: hide- and wide-functions

ε

00 01 10 11

0000 0001 0010 0011 0100 0101 0110 0111

Hide extracts the binary I -part out of the 4-ary tree. Entire
subtrees “fall off”

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Overview
hide, wide and xray functions
Putting it all together
Final statements

Example: hide- and wide-functions

ε

0 1

00 01 10 11

The result looks like this.

Based on this, wide yields a consistently labelled tree

That tree still lacks the input signals in the labels, so we need
another function

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Overview
hide, wide and xray functions
Putting it all together
Final statements

The xray -function

The xray -function adds a labelled tree’s (skeletal) structure to it’s
labels:

a

b c

0 1 xray

〈ε, a〉

〈0,b〉 〈1,c〉

0 1

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Overview
hide, wide and xray functions
Putting it all together
Final statements

Overview of automata transformations

From specification (logic formula ϕ), we get Automaton A
over 2I∪E∪O labelled 2I∪E trees

A tree accepted by this automaton does not have to be

consistent w.r.t. incomplete information.
2I∪E exhaustive

So we must construct some automaton A′ over 2O-labelled
2I∪E -tree out of A, s.t. A′ accepts a tree 〈T ,V 〉 iff A
accepts xray(〈T ,V 〉)
Then, we still have to deal with incomplete information, so we
construct an automaton A′′ over 2O-labelled 2I -trees out of
A′, s.t. A′′ accepts a tree 〈T ,V 〉 iff A′ accepts
wide2E (〈T ,V 〉)

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Overview
hide, wide and xray functions
Putting it all together
Final statements

A → A′

Theorem (taken from [1]): Given an alternating tree automaton A
over (τ × Σ)-labelled τ -trees, we can construct an alternating tree
automaton A′ over Σ-labelled τ -trees such that

1 A′ accepts a labelled tree 〈τ∗,V 〉 iff A accepts xray(〈τ∗,V 〉).

2 A′ and A have the same acceptance condition.

3 |A′| = O(|A|)

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Overview
hide, wide and xray functions
Putting it all together
Final statements

A′ → A′′

Theorem (taken from [1]): Let X , Y and Z be finite sets. Given
an alternating tree automaton A over Z -labelled (X × Y)-trees,
we can construct an alternating tree automaton A′ over Z -labelled
X -trees such that

1 A′ accepts a labelled tree 〈X ∗,V 〉 iff A accepts
wideY (〈X ∗,V 〉).

2 A′ and A have the same acceptance condition.

3 |A′| = O(|A|)

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Overview
hide, wide and xray functions
Putting it all together
Final statements

Solution

Given A′′, we can test whether L(A′′) is empty

ϕ is realizable iff A′′ is not empty

The emptiness-check can be extended s.t. it actually produces
a finite state program P.

Theorem (taken from [1]): The synthesis problem for LTL and
CTL∗, with either complete or incomplete information, is
2EXPTIME complete.

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Overview
hide, wide and xray functions
Putting it all together
Final statements

Final Statements

We saw that alternation is an apropriate machanism to cope
with incomplete information.

Something that was not shown here: For the special case of
CTL formulas, the algorithm is modifiable, s.t. the obtained
algorithm runs in exponential time.

An extension of the presented result is that µ-calculus
synthesis under incomplete information is EXPTIME
complete[2], but the extension is not straightforward.

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

Questions?

Andreas Augustin Synthesis under incomplete information

Outline
Automata types

Incomplete information

References

[1] Main paper: Orna Kupferman, Moshe Y. Vardi. Synthesis
with incomplete information.

[2] Broader overview: Orna Kupferman, Moshe Y. Vardi.
µ-calculus synthesis.

[3] LTL, CTL, Alternating tree automata: Moshe Y. Vardi.
Alternating automata and program verification.

[4] S1S: Madhavan Mukund. Finite-state automata on infinite
inputs.

[5] From Logics to alternating automata: O. Bernholtz, M. Y.
Vardi and P. Wolper. An automata-theoretic approach to
branching-time model checking

Andreas Augustin Synthesis under incomplete information

	Outline
	Background
	Incomplete information

	Automata types
	Word automata
	Alternating automata
	Tree Automata
	Alternating tree automata

	Incomplete information
	Overview
	hide, wide and xray functions
	Putting it all together
	Final statements

	

