Synthesis under incomplete information

Andreas Augustin

June 12, 2008

Overview

1 Outline

- Background

■ Incomplete information
2 Automata types
■ Word automata

- Alternating automata
- Tree Automata
- Alternating tree automata

3 Incomplete information

- Overview
- hide, wide and xray functions
- Putting it all together
- Final statements

Background: Open systems

- We know automata that read input and make transitions
- finite
- infinite
- You probably heard of automata that read input, produce output and make transitions (e.g. Moore, Mealy)
- Behaviour of a reactive system
- Program P maps inputs I and history to outputs O :
$P:\left(2^{\prime}\right)^{*} \rightarrow 2^{O}$

Specification and synthesis

■ Specification as formula φ in LTL, CTL, CTL*, μ-calculus

- Realizability: Does there exist a program P that satisfies φ ?

■ Synthesis: Transform specification φ in program P that is guaranteed to satisfy φ

Synthesis for LTL

■ Specification yields allowed combinations of sequences of inputs and outputs

■ Problem can be reduced to non-emptiness test of tree-automaton

- Synthesis is proven to be 2EXPTIME complete in this case

Synthesis for branching-time logics

- P associates with each input sequence infinite computation over $2^{/ \cup O}$
- I and O are disjoint, so $2^{I \cup O}=2^{I} \times 2^{O}$
- Although P deterministic, P induces a computation tree due to external nondeterminism caused by different possible inputs in I

■ Branching temporal logics (CTL, CTL*) give us the required expressive power because of path quantifiers: In LTL we can't express possibility requirements.
■ Realizability correlates to non-emptiness-test for tree-atomaton

From complete to incomplete information

■ Now assume the environment knows more than the program P :

- Signals / of readable input
- Signals E that are known to the environment, but unknown to P
- Signals O as before
- What's the impact of this on
- Realizability?

■ Complexity?

Example

- An adapted example from the paper[1]: Assume a printer scheduler shall only print a paper if it doesn't contain bugs. Unfortunately, it can't decide whether the paper contains a bug.
- We have:

■ $I=\{i\} ; i=1 \Leftrightarrow$ User wants to print a paper

- $E=\{e\} ; e=1 \Leftrightarrow$ Paper is buggy
- $O=\{o\} ; o=1 \Leftrightarrow$ Paper scheduled for printing
- We want $A \square(o \Rightarrow i \wedge \neg e)$
- Since we can't destinguish between $i \wedge \neg e$ and $i \wedge e$, the only safe way to handle this is never to print anything at all

Word- and Tree-Automata and their alternating versions

Word automata

- Well known
- Alphabet Σ
- States Q
- Initial state(s) $i_{0} \in Q$ or $I \subseteq Q$
- Transition-relation or -function δ, details follow
- Acceptance condition c
- δ may vary depending on the type of atomaton, determinism a.s.f.
- c may be something like Muller-Acceptance, Rabin-Acceptance a.s.f.

Word Automata

A word automaton can be...

- Deterministic. Then δ is a function $\delta: Q \times \Sigma \rightarrow Q$

■ Nondeterministic. Then δ is a relation $\delta: Q \times \Sigma \rightarrow 2^{Q}$

- Instead of writing $\delta\left(q_{1}, \sigma\right)=\left\{q_{2}, q_{3}\right\}$ we can write $\delta\left(q_{1}, \sigma\right)=q_{2} \vee q_{3}$ in the sense that the automaton accepts if proceeding in q_{2} or q_{3} accepts
- Universal. Then again, δ is a relation $\delta: Q \times \Sigma \rightarrow 2^{Q}$, but the automaton forks for each additional successor and we demand that all automatons accept
- Again, we can write $\delta\left(q_{1}, \sigma\right)=q_{2} \wedge q_{3}$, because the automaton that goes on in q_{2} and the one that goes on in q_{3} must accept

Alternating automata

From nondeterministic and universal to alternating automata Let $Q^{\prime} \subseteq Q$

■ Nondeterministic: $\delta\left(q_{1}, \sigma\right)=\bigvee_{q_{i} \in Q^{\prime}} q_{i}$

- Universal: $\delta\left(q_{1}, \sigma\right)=\bigwedge_{q_{i} \in Q^{\prime}} q_{i}$

■ Alternating: Combine the 2 possibilities, allow arbitrary positive boolean formulas

- "positive" : Don't use " \neg "

Tree Automata

Read trees instead of words

- Symbols may have more than one successor, but finitely many

■ Atomaton forks much like universal word atomaton:

- One copy per child
- All copies must accept

■ But...

- Each child-automaton runs on a different subtree, not on same input
■ Nondeterminism
- Definition remains
- Automaton selects possible set of successor-states, then forks and copies run on elements of chosen successor set

Example

- Assume finite, binary input tree over $\Sigma=\{a, b, c\}$:

■ Automaton $\mathcal{A}=\left(Q, i_{0}, \delta, c\right), Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}, i_{0}=q_{0}$, c: State in $F=\left\{q_{4}\right\}$ is reached.

- Some parts of deterministic tree automaton:
$\delta: \quad\left(q_{0}, a\right) \mapsto\left(q_{1}, q_{2}\right)$

$$
\begin{aligned}
& \left(q_{1}, b\right) \mapsto\left(q_{4}\right) \\
& \left(q_{2}, c\right) \mapsto\left(q_{4}\right)
\end{aligned}
$$

- Example for nondeterministic case:

$$
\delta\left(q_{0}, a\right)=\left\{\left(q_{1}, q_{2}\right),\left(q_{3}, q_{2}\right)\right\}
$$

Acceptance

Acceptance conditions for tree automata similar to those of word-automata:

- Final states for finate case

■ Büchi, Muller, Rabin, Street or Parity acceptance condition for infinite case

Alternating tree automata

Combination of alternating automata and tree automata not obvious:

- They run on trees

■ They allow arbitrary positive boolean expressions for successors...

■ ...combined with information about which branch to take

- Branches are enumerated, starting with 0
- Reconsidering the previous example, we can construct an alternating tree automaton out of a "normal" tree automaton:
- $\delta\left(q_{0}, a\right)=\left(q_{1}, q_{2}\right)$ becomes $\delta\left(q_{0}, a\right)=\left(0, q_{1}\right) \wedge\left(1, q_{2}\right)$
- $\delta\left(q_{0}, a\right)=\left\{\left(q_{1}, q_{2}\right),\left(q_{3}, q_{2}\right)\right\}$ becomes $\delta\left(q_{0}, a\right)=\left(0, q_{1}\right) \wedge\left(1, q_{2}\right) \vee\left(0, q_{3}\right) \wedge\left(1, q_{2}\right)$

Alternating tree automata

- Another, partial example: $\delta\left(q_{1}, \sigma\right)=\left(0, q_{2}\right) \wedge\left(0, q_{3}\right) \vee\left(0, q_{3}\right) \wedge\left(1, q_{3}\right) \wedge\left(1, q_{4}\right)$
- If you look at the left part...
- It universally branches for the " \wedge ", i.e. 2 automata are sent into subtrees.
- One descends to the left and starts there in state q_{2}. The other also goes to the left, but into state q_{3}.
- As you can see in this example...
- Several copies may proceed in the same subtree
- Subtrees may be ignored
- But all running copies of a universal branch must accept!

Theorem (taken from [5]): Given a CTL* formula φ over a set $A P=I \cup E \cup O$ of atomic propositions and a set $\tau=2^{\prime \cup E}$ of directions, there exists an alternating Rabin tree automaton $\mathcal{A}_{\tau, \varphi}$ over $2^{A P}$-labeled τ-trees, with $2^{O(|\varphi|)}$ states and two pairs, such that $\mathcal{L}\left(\mathcal{A}_{\tau, \varphi}\right)$ is exactly the set of trees satisfying φ.

- "Two pairs" refers to the Rabin-acceptance-condition

Overview

- Repetition:
- Signals / of readable input
- Signals E of unreadable input
- Signals O of output

■ Since P doesn't know E, it must behave independently of E

- If the history of 2 states p and q differs only in values in E, then P must behave identical in p and q
■ However, the signals E are reflected in the computation tree of P

hide- and wide-functions

■ hide removes the information that is invisible to P

- $\operatorname{hide}_{Y}(X, Y)=X$
- We can apply hide to a path in a tree by applying it to each node on that path. This yields hidey $_{Y}:(X \times Y)^{*} \rightarrow X^{*}$
- wide defines the other direction, but builds consistently labelled trees:
- wider $\left(\left\langle X^{*}, V\right\rangle\right)=\left\langle(X \times Y)^{*}, V^{\prime}\right\rangle$ where for every node $w \in(X \times Y)^{*}$, we have $V^{\prime}(w)=V\left(\operatorname{hide}_{Y}(w)\right)$

Example: hide- and wide-functions

Consider this 4-ary tree. Assume the first input is $i_{0} \in I$ and the second is $e_{0} \in E$. Assume arbitrary, potentially inconsistent labels

Example: hide- and wide-functions

Hide extracts the binary l-part out of the 4-ary tree. Entire subtrees "fall off"

Example: hide- and wide-functions

■ The result looks like this.
■ Based on this, wide yields a consistently labelled tree

- That tree still lacks the input signals in the labels, so we need another function

The xray-function

The xray-function adds a labelled tree's (skeletal) structure to it's labels:

Overview of automata transformations

- From specification (logic formula φ), we get Automaton \mathcal{A} over $2^{I \cup E \cup O}$ labelled $2^{I \cup E}$ trees
- A tree accepted by this automaton does not have to be
- consistent w.r.t. incomplete information.
- $2^{I U E}$ exhaustive
- So we must construct some automaton \mathcal{A}^{\prime} over 2^{O}-labelled
 accepts $\operatorname{xray}(\langle T, V\rangle)$
- Then, we still have to deal with incomplete information, so we construct an automaton $\mathcal{A}^{\prime \prime}$ over 2^{O}-labelled 2^{\prime}-trees out of \mathcal{A}^{\prime}, s.t. $\mathcal{A}^{\prime \prime}$ accepts a tree $\langle T, V\rangle$ iff \mathcal{A}^{\prime} accepts wide $_{2} E(\langle T, V\rangle)$

$\mathcal{A} \rightarrow \mathcal{A}^{\prime}$

Theorem (taken from [1]): Given an alternating tree automaton \mathcal{A} over $(\tau \times \Sigma)$-labelled τ-trees, we can construct an alternating tree automaton \mathcal{A}^{\prime} over \sum-labelled τ-trees such that
$1 \mathcal{A}^{\prime}$ accepts a labelled tree $\left\langle\tau^{*}, V\right\rangle$ iff \mathcal{A} accepts $\operatorname{xray}\left(\left\langle\tau^{*}, V\right\rangle\right)$.
$2 \mathcal{A}^{\prime}$ and \mathcal{A} have the same acceptance condition.
$3\left|\mathcal{A}^{\prime}\right|=O(|\mathcal{A}|)$

Theorem (taken from [1]): Let X, Y and Z be finite sets. Given an alternating tree automaton \mathcal{A} over Z-labelled $(X \times Y)$-trees, we can construct an alternating tree automaton \mathcal{A}^{\prime} over Z-labelled X-trees such that
$1 \mathcal{A}^{\prime}$ accepts a labelled tree $\left\langle X^{*}, V\right\rangle$ iff \mathcal{A} accepts wide $_{Y}\left(\left\langle X^{*}, V\right\rangle\right)$.
$2 \mathcal{A}^{\prime}$ and \mathcal{A} have the same acceptance condition.
$3\left|\mathcal{A}^{\prime}\right|=O(|\mathcal{A}|)$

Solution

■ Given $\mathcal{A}^{\prime \prime}$, we can test whether $\mathcal{L}\left(\mathcal{A}^{\prime \prime}\right)$ is empty

- φ is realizable iff $\mathcal{A}^{\prime \prime}$ is not empty
- The emptiness-check can be extended s.t. it actually produces a finite state program P.

Theorem (taken from [1]): The synthesis problem for LTL and CTL*, with either complete or incomplete information, is 2EXPTIME complete.

Final Statements

■ We saw that alternation is an apropriate machanism to cope with incomplete information.

- Something that was not shown here: For the special case of CTL formulas, the algorithm is modifiable, s.t. the obtained algorithm runs in exponential time.
- An extension of the presented result is that μ-calculus synthesis under incomplete information is EXPTIME complete[2], but the extension is not straightforward.

Questions?

References

[1] Main paper: Orna Kupferman, Moshe Y. Vardi. Synthesis with incomplete information.
[2] Broader overview: Orna Kupferman, Moshe Y. Vardi. μ-calculus synthesis.
[3] LTL, CTL, Alternating tree automata: Moshe Y. Vardi. Alternating automata and program verification.
[4] S1S: Madhavan Mukund. Finite-state automata on infinite inputs.
[5] From Logics to alternating automata: O. Bernholtz, M. Y. Vardi and P. Wolper. An automata-theoretic approach to branching-time model checking

