Synthesis under incomplete information

Andreas Augustin

June 12, 2008

Andreas Augustin Synthesis under incomplete information

伺 ト く ヨ ト く ヨ ト

Overview

1 Outline

- Background
- Incomplete information

2 Automata types

- Word automata
- Alternating automata
- Tree Automata
- Alternating tree automata

3 Incomplete information

- Overview
- hide, wide and xray functions
- Putting it all together
- Final statements

Background Incomplete information

Background: Open systems

- We know automata that read input and make transitions
 - finite
 - infinite
- You probably heard of automata that read input, produce output and make transitions (e.g. Moore, Mealy)
- Behaviour of a reactive system
- Program *P* maps inputs *I* and history to outputs *O*: $P: (2^{I})^{*} \rightarrow 2^{O}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Background Incomplete information

Specification and synthesis

- \blacksquare Specification as formula φ in LTL, CTL, CTL*, $\mu\text{-calculus}$
- Realizability: Does there exist a program P that satisfies φ ?
- \blacksquare Synthesis: Transform specification φ in program P that is guaranteed to satisfy φ

・ 同 ト ・ ヨ ト ・ ヨ ト

Background Incomplete information

Synthesis for LTL

- Specification yields allowed combinations of sequences of inputs and outputs
- Problem can be reduced to non-emptiness test of tree-automaton
- Synthesis is proven to be 2EXPTIME complete in this case

- **→** → **→**

Background Incomplete information

Synthesis for branching-time logics

- P associates with each input sequence infinite computation over 2^{IUO}
- I and O are disjoint, so $2^{I \cup O} = 2^I \times 2^O$
- Although P deterministic, P induces a computation tree due to external nondeterminism caused by different possible inputs in I
- Branching temporal logics (CTL, CTL*) give us the required expressive power because of path quantifiers: In LTL we can't express possibility requirements.
- Realizability correlates to non-emptiness-test for tree-atomaton

・ 同 ト ・ ヨ ト ・ ヨ ト

Background Incomplete information

From complete to incomplete information

- Now assume the environment knows more than the program P:
 - Signals I of readable input
 - Signals E that are known to the environment, but unknown to P
 - Signals O as before
- What's the impact of this on
 - Realizability?
 - Complexity?

Background Incomplete information

Example

- An adapted example from the paper[1]: Assume a printer scheduler shall only print a paper if it doesn't contain bugs. Unfortunately, it can't decide whether the paper contains a bug.
- We have:
 - $I = \{i\}; i = 1 \Leftrightarrow User wants to print a paper$
 - $E = \{e\}; e = 1 \Leftrightarrow \mathsf{Paper} \text{ is buggy}$
 - $O = \{o\}; o = 1 \Leftrightarrow Paper scheduled for printing$
- We want $A \Box (o \Rightarrow i \land \neg e)$
- Since we can't destinguish between i ∧ ¬e and i ∧ e, the only safe way to handle this is never to print anything at all

・ 同 ト ・ ヨ ト ・ ヨ ト

Word automata Alternating automata Tree Automata Alternating tree automata

Word- and Tree-Automata and their alternating versions

- **→** → **→**

Word automata Alternating automata Tree Automata Alternating tree automata

Word automata

- Well known
 - Alphabet Σ
 - States Q
 - Initial state(s) $i_0 \in Q$ or $I \subseteq Q$
 - **Transition-relation** or -function δ , details follow
 - Acceptance condition c
- δ may vary depending on the type of atomaton, determinism a.s.f.
- *c* may be something like Muller-Acceptance, Rabin-Acceptance a.s.f.

< 🗇 🕨 < 🚍 🕨

Word automata Alternating automata Tree Automata Alternating tree automata

Word Automata

A word automaton can be...

- Deterministic. Then δ is a function $\delta: Q \times \Sigma \to Q$
- Nondeterministic. Then δ is a relation $\delta: Q \times \Sigma \to 2^Q$
 - Instead of writing δ(q₁, σ) = {q₂, q₃} we can write δ(q₁, σ) = q₂ ∨ q₃ in the sense that the automaton accepts if proceeding in q₂ or q₃ accepts
- Universal. Then again, δ is a relation $\delta : Q \times \Sigma \rightarrow 2^Q$, but the automaton forks for each additional successor and we demand that all automatons accept
 - Again, we can write $\delta(q_1, \sigma) = q_2 \wedge q_3$, because the automaton that goes on in q_2 and the one that goes on in q_3 must accept

- 4 同 6 4 日 6 4 日 6

Word automata Alternating automata Tree Automata Alternating tree automata

Alternating automata

From nondeterministic and universal to alternating automata Let $Q'\subseteq Q$

- Nondeterministic: $\delta(q_1, \sigma) = \bigvee_{q_i \in Q'} q_i$
- Universal: $\delta(q_1, \sigma) = \bigwedge_{q_i \in Q'} q_i$
- Alternating: Combine the 2 possibilities, allow arbitrary positive boolean formulas

■ "positive": Don't use "¬"

(人間) ト く ヨ ト く ヨ ト

Word automata Alternating automata **Tree Automata** Alternating tree automata

Tree Automata

Read trees instead of words

- Symbols may have more than one successor, but finitely many
- Atomaton forks much like universal word atomaton:
 - One copy per child
 - All copies must accept
- But...
 - Each child-automaton runs on a different subtree, not on same input
- Nondeterminism
 - Definition remains
 - Automaton selects possible set of successor-states, then forks and copies run on elements of chosen successor set

< D > < A > < B >

Word automata Alternating automata **Tree Automata** Alternating tree automata

Example

- Assume finite, binary input tree over $\Sigma = \{a, b, c\}$:
 - a /\ b c
- Automaton $\mathcal{A} = (Q, i_0, \delta, c), Q = \{q_0, q_1, q_2, q_3, q_4\}, i_0 = q_0, c$: State in $F = \{q_4\}$ is reached.
- Some parts of deterministic tree automaton:

$$\delta \colon \quad (q_0, a) \mapsto (q_1, q_2) \ (q_1, b) \mapsto (q_4) \ (q_2, c) \mapsto (q_4)$$

• Example for nondeterministic case: $\delta(q_0, a) = \{(q_1, q_2), (q_3, q_2)\}$

Word automata Alternating automata **Tree Automata** Alternating tree automata

Acceptance

Acceptance conditions for tree automata similar to those of word-automata:

- Final states for finate case
- Büchi, Muller, Rabin, Street or Parity acceptance condition for infinite case

< 日 > < 同 > < 三 > < 三 >

Word automata Alternating automata Tree Automata Alternating tree automata

Alternating tree automata

Combination of alternating automata and tree automata not obvious:

- They run on trees
- They allow arbitrary positive boolean expressions for successors...
- ...combined with information about which branch to take
- Branches are enumerated, starting with 0
- Reconsidering the previous example, we can construct an alternating tree automaton out of a "normal" tree automaton:

•
$$\delta(q_0, a) = (q_1, q_2)$$
 becomes $\delta(q_0, a) = (0, q_1) \land (1, q_2)$
• $\delta(q_0, a) = \{(q_1, q_2), (q_3, q_2)\}$ becomes
 $\delta(q_0, a) = (0, q_1) \land (1, q_2) \lor (0, q_3) \land (1, q_2)$

▲ □ ▶ ▲ □ ▶ ▲

Word automata Alternating automata Tree Automata Alternating tree automata

Alternating tree automata

Another, partial example:

 $\delta(q_1,\sigma)=(0,q_2)\wedge(0,q_3)\vee(0,q_3)\wedge(1,q_3)\wedge(1,q_4)$

- If you look at the left part...
 - It universally branches for the "∧", i.e. 2 automata are sent into subtrees.
 - One descends to the left and starts there in state q₂. The other also goes to the left, but into state q₃.
- As you can see in this example...
 - Several copies may proceed in the same subtree
 - Subtrees may be ignored
- But all running copies of a universal branch must accept!

Overview hide, wide and xray functions Putting it all together Final statements

$$\varphi \to \mathcal{A}$$

Theorem (taken from [5]): Given a CTL^* formula φ over a set $AP = I \cup E \cup O$ of atomic propositions and a set $\tau = 2^{I \cup E}$ of directions, there exists an alternating Rabin tree automaton $\mathcal{A}_{\tau,\varphi}$ over 2^{AP} -labeled τ -trees, with $2^{O(|\varphi|)}$ states and two pairs, such that $\mathcal{L}(\mathcal{A}_{\tau,\varphi})$ is exactly the set of trees satisfying φ .

"Two pairs" refers to the Rabin-acceptance-condition

- 4 同 2 4 回 2 4 U

Overview hide, wide and xray functions Putting it all together Final statements

Overview

Repetition:

- Signals I of readable input
- Signals *E* of unreadable input
- Signals O of output
- Since P doesn't know E, it must behave independently of E
- If the history of 2 states p and q differs only in values in E, then P must behave identical in p and q
- However, the signals E are reflected in the computation tree of P

▲ □ ▶ ▲ □ ▶ ▲

Overview hide, wide and xray functions Putting it all together Final statements

hide- and wide-functions

- hide removes the information that is invisible to P
 - $hide_Y(X, Y) = X$
 - We can apply *hide* to a path in a tree by applying it to each node on that path. This yields $hide_Y : (X \times Y)^* \to X^*$
- wide defines the other direction, but builds consistently labelled trees:
 - wide_Y($\langle X^*, V \rangle$) = $\langle (X \times Y)^*, V' \rangle$ where for every node w ∈ $(X \times Y)^*$, we have $V'(w) = V(hide_Y(w))$

くほし くほし くほし

Overview hide, wide and xray functions Putting it all together Final statements

Example: *hide-* and *wide-*functions

second is $e_0 \in E$. Assume arbitrary, potentially inconsistent labels

□→ < □→</p>

Overview hide, wide and xray functions Putting it all together Final statements

Example: hide- and wide-functions

Image: A image: A

Overview hide, wide and xray functions Putting it all together Final statements

Example: *hide-* and *wide-*functions

- The result looks like this.
- Based on this, wide yields a consistently labelled tree
- That tree still lacks the input signals in the labels, so we need another function

Overview hide, wide and xray functions Putting it all together Final statements

The xray-function

The *xray*-function adds a labelled tree's (skeletal) structure to it's labels:

Overview hide, wide and xray functions **Putting it all together** Final statements

Overview of automata transformations

- From specification (logic formula φ), we get Automaton A over 2^{*I*∪*E*∪*O*} labelled 2^{*I*∪*E*} trees
- A tree accepted by this automaton does not have to be
 - consistent w.r.t. incomplete information.
 - $2^{I \cup E}$ exhaustive
- So we must construct some automaton \mathcal{A}' over 2^{O} -labelled $2^{I \cup E}$ -tree out of \mathcal{A} , s.t. \mathcal{A}' accepts a tree $\langle T, V \rangle$ iff \mathcal{A} accepts $xray(\langle T, V \rangle)$
- Then, we still have to deal with incomplete information, so we construct an automaton A" over 2^O-labelled 2^I-trees out of A', s.t. A" accepts a tree (T, V) iff A' accepts wide_{2E}((T, V))

< ロ > < 同 > < 回 > < 回 > < □ > <

Overview hide, wide and xray functions **Putting it all together** Final statements

$$\mathcal{A}
ightarrow \mathcal{A}'$$

Theorem (taken from [1]): Given an alternating tree automaton \mathcal{A} over $(\tau \times \Sigma)$ -labelled τ -trees, we can construct an alternating tree automaton \mathcal{A}' over Σ -labelled τ -trees such that

1 \mathcal{A}' accepts a labelled tree $\langle \tau^*, V \rangle$ iff \mathcal{A} accepts $xray(\langle \tau^*, V \rangle)$.

2 \mathcal{A}' and \mathcal{A} have the same acceptance condition.

 $\exists |\mathcal{A}'| = O(|\mathcal{A}|)$

Overview hide, wide and xray functions **Putting it all together** Final statements

$$\mathcal{A}'
ightarrow \mathcal{A}''$$

Theorem (taken from [1]): Let X, Y and Z be finite sets. Given an alternating tree automaton A over Z-labelled (X × Y)-trees, we can construct an alternating tree automaton A' over Z-labelled X-trees such that

- $I \mathcal{A}' \text{ accepts a labelled tree } \langle X^*, V \rangle \text{ iff } \mathcal{A} \text{ accepts } wide_Y(\langle X^*, V \rangle).$
- 2 \mathcal{A}' and \mathcal{A} have the same acceptance condition.

3
$$|\mathcal{A}'| = O(|\mathcal{A}|)$$

・ 同・ ・ ヨ・

Overview hide, wide and xray functions **Putting it all together** Final statements

Solution

- Given \mathcal{A}'' , we can test whether $\mathcal{L}(\mathcal{A}'')$ is empty
- φ is realizable iff \mathcal{A}'' is not empty
- The emptiness-check can be extended s.t. it actually produces a finite state program *P*.

Theorem (taken from [1]): The synthesis problem for LTL and CTL^{*}, with either complete or incomplete information, is 2EXPTIME complete.

Overview hide, wide and xray functions Putting it all together Final statements

Final Statements

- We saw that alternation is an apropriate machanism to cope with incomplete information.
- Something that was not shown here: For the special case of CTL formulas, the algorithm is modifiable, s.t. the obtained algorithm runs in exponential time.
- An extension of the presented result is that μ-calculus synthesis under incomplete information is EXPTIME complete[2], but the extension is not straightforward.

< /₽ > < E > .

Questions?

・ロト ・四ト ・ヨト ・ヨト

æ

References

- [1] Main paper: Orna Kupferman, Moshe Y. Vardi. Synthesis with incomplete information.
- [2] Broader overview: Orna Kupferman, Moshe Y. Vardi. μ-calculus synthesis.
- [3] LTL, CTL, Alternating tree automata: Moshe Y. Vardi. Alternating automata and program verification.
- [4] S1S: Madhavan Mukund. Finite-state automata on infinite inputs.
- [5] From Logics to alternating automata: O. Bernholtz, M. Y. Vardi and P. Wolper. An automata-theoretic approach to branching-time model checking

伺 ト く ヨ ト く ヨ ト