
Summary: Counterexample Guided
Control

Daniel Dahrendorf

2008-07-17

1 Introduction

The solving of large games may be practically infeasible. Also we cannot apply algo-
rithms which are designed for finite-state games to infinite game structures directly.
A key to the success of algorithmic methods for the control of complex systems may
be abstraction. This paper [1] presents a fully automatic way of finding suitable ab-
stract models. An abstract model should be coarse enough to reduce the state space
but fine enough to exhibit controllability of the concrete model. The algorithm starts
with a very coarse abstraction and refines it if it is not controllable and the abstract
counterexample does not correspond to a concrete one. This spurious counterexample
is used to guide the refinement. The algorithm is presented for safety games but can
be extended to ω-regular games

2 Games and Abstraction

Game structure and semantics Let Λ be a set of labels and Φ a set of propositions.
A two-player game structure G = (V1, V2, δ, P ) (V1 and V2 are disjoint sets and V =
V1 ∪ V2) consists of:

• V1: player 1 nodes

• V2: player 2 nodes

• δ: labeled transition relation function δ ⊆ V × Λ× V

• P : function which maps every state to a set of propositions P : V → 2Φ

We denote the set of available moves in v ∈ V with L(v) = {l ∈ Λ | ∃w : (v, l, w) ∈ δ}.
For i ∈ {0, 1} player i chooses in a state v ∈ Vi a move l ∈ L(v) and the game proceeds
nondeterministically to some state w satisfying (v, l, w) ∈ δ. For every player 2 state
v holds L(v) 6= ∅.

1



Figure 1: Example of a two-player safety game

Run, strategy and outcome A run is a finite or infinite sequence v0v1v2... of states
vj ∈ V such that for all j ≥ 0, if vj is not the last state, then there is a move lj ∈ λ
with (vj , lj , vj+1) ∈ δ. A strategy of player i is a partial function fi : V ∗ · Vi → λ.
When possible a player i strategy suggests a move for player i for a given sequence of
states. For two strategies f1 and f2 the set of possible outcomes Ωf1,f2(v) from a state
v ∈ V is the set of runs defined as follows. A run v0v1v2... is in Ωf1,f2(v) iff v = v0

and for every j ≥ 0 vj ∈ Vi and (vj , fi(v0...vj), vj+1) ∈ δ or vj is the last state and
L(vj) = ∅.

Winning conditions We will only consider safety games. A two-player safety game
consists of a game structure G and an objective φ. φ is a LTL-formula over Φ of the
form �err. [err] ⊆ V specify a set of error states. Player 1 will loose if the game will
be in a state where err is true or a dead-end state will be encountered. Let Π1 denote
the infinite runs which never visit an error state and are therefore winning for player
1.

• A strategy f1 is winning for player 1 if for all strategies f2 of player 2 and all
initial states v: Ωf1,f2(v) ⊆ Π1

• A strategy f2 is spoiling for player 2 if for all strategies f1 of player 1 there is an
initial state v such that: Ωf1,f2(v) 6⊆ Π1

Abstraction We want to construct a simplification of the concrete game which is
less expensive to solve and sound. This means the abstraction should have a smaller
state space and if player 1 wins the abstraction she also wins the concrete game. To
ensure soundness we decrease the power of player 1 and increase the power of player
2. Therefore in the abstraction player 1 has fewer moves available and player 2 more
moves. An abstraction consists of a game structure Gα = (V α1 , V

α
2 , δ

α, Pα) and a
concretization function [[·]] : V α → 2V such that following conditions hold:

2



Figure 2: A possible abstraction of the example

1. The player structure is preserved: for i ∈ {1, 2} and all vα ∈ V αi : [[vα]] ⊆ Vi.

2. Propositions are preserved: for all vα ∈ V α, if v, v′ ∈ [[vα]]: P (v) = P (v′) and
Pα(vα) = P (v)

3. The abstract states cover the whole concrete state space:
⋃
vα∈V α [[vα]] = V

4. From each abstract player 1 node vα ∈ V α1 only moves are allowed which could
be played from each concrete state v ∈ [[vα]]: Lα(vα) =

⋂
v∈[[vα]] L(v)

5. From each abstract player 2 node vα ∈ V α2 all moves are allowed which could be
played from some concrete state v ∈ [[vα]]: Lα(vα) =

⋃
v∈[[vα]] L(v)

An abstraction is uniquely defined by the abstract state space V α and the concretiza-
tion function [[·]]. We will consider only abstractions with finite state space.

3 Counterexample-Guided Abstraction Refinement

A counterexample is a spoiling strategy for player 2 which shows that player 1 can-
not win the game. We divide abstract counterexample in genuine counterexamples
which corresponds to one in the concrete game and spurious counterexamples which
arises due coarseness of the abstraction. The first step is to determine if an abstract
counterexample is genuine and if not we will refine the abstraction.

Abstract counterexample trees As we only consider finite-state safety games we can
represent an abstract counterexample as a rooted, directed, labeled, finite tree. Each
node n is labeled by an abstract state vα (n : vα) and possibly a set r ⊆ V of concrete
nodes. The edges are labeled with moves. Node n′ is an l-child of node n iff n l→ n′ is a
edge. An abstract counterexample tree (ACT) Tα is a tree where following conditions
hold:

3



Figure 3: Abstract counterexample tree

1. The root is labeled by vα ⇒ [[vα]] ⊆ [init]

2. n′ : wα is a l-child of n : vα ⇒ (vα, l, wα) ∈ δα

3. n′ : vα is a non-leaf player 1 node ⇒ for each l ∈ Lα(vα) n has at least one
l-child

4. n′ : vα is a non-leaf player 2 node ⇒ for some l ∈ Lα(vα) n has at least one
l-child

5. A leaf is labeled by vα ⇒ Lα(vα) = ∅ or [[vα]] ⊆ [err]

Concretizing abstract counterexamples To determine whether an abstract coun-
terexample is spurious we will analyze the ACT. A concrete node v ∈ [[vα]] can be only
part of a spoiling strategy iff a successor of v is part of a spoiling strategy or if it is an
error state or a dead-end. We will annotate each node of the ACT with a good set which
contains concrete nodes which are part of the spoiling strategy and a bad set which
contains the nodes which are not part of the spoiling strategy. Initially for all nodes
in a ACT holds r = [[vα]]. Let C(n) = {l ∈ Λ | n has an l-child} the set of moves
that label the outgoing edges of n. Avl(l) = {v ∈ V | l ∈ L(v)} is the set of states
where the move l is available and Epre(X, l) = {v ∈ V | ∃w : (v, l, w) ∈ δ ∧ w ∈ X}
the set of states which do have a move l to a node w ∈ X. rl,j means the good
set of the l-children of n. The annotation will be done bottom up by the operator
Focus(n : vα : r).

4



Figure 4: Abstract counterexample tree after applying the focus operator

Focus(n : vα : r) =



r if n leaf and Lα(vα) 6= ∅
r ∩

(⋂
l∈C(n)Epre(

⋃
j rl,j , l)

)
∩
(⋂

l 6∈C(n)Avl(l)
)

if n other player 1 node

r ∩
(⋃

l∈C(n)Epre(
⋃
j rl,j , l)

)
if n player 2 node

The operator Focus(n : vα : r) use the following rules:

• Node n is a leaf and Lα(vα) 6= ∅: r = [[vα]]

• Node is a player 1 state: v ∈ r if for all l ∈ L(v): l ∈ C(n) and for every l ∈ L(v)
there is an l-child from where player 2 can spoil

• Node is a player 2 state: v ∈ r if there is a successor of v from where player 2
can spoil

An abstract counterexample is genuine iff the root of the corresponding ACT has a
non-empty good set after applying focus.

Abstraction refinement If we find an ACT to be spurious, we have to refine our
abstraction to rule out the spurious abstract counterexample. A refinement will split
an abstract state into several states. This is done by the Shatter operator which takes
a node of the annotated ACT. It takes a node n : vα : r and returns R = {r1, r2, ..., rm}
under the following rules:

• Player 1 nodes will be split in the good set, in sets of nodes which have moves
which are not edges of n and sets which have a move such that the successor is
not in a good set

5



Figure 5: Algorithm of the abstract-verify-refine loop

• Player 2 nodes will be split in the good set and the bad set

Formalized:

Shatter(n : q : r) =


{r} ∪ {(q \ r) ∩Avl(l) | l /∈ C(n)}

∪
{

(q \ r) ∩ Epre
(⋃

j rl,j , l
)
| l ∈ C(n)

}
n player 1 node

{r, (q \ r)} n player 2 node

The Shatter operator will be applied to each node of the annotated ACT. Let R ⊆
2V denote the collection of all sets r which were produced by the Shatter operator.
≡R⊆ V × V is the equivalence relation which is defined by v1 ≡R v2 if for all sets
r ∈ R v1 ∈ r ⇔ v2 ∈ r. Closure(R) denotes the equivalence classes of ≡R. The
refined Abstraction is uniquely specified by the set Abstraction(R) which contains for
each set r ∈ Closure(R) an abstract state wαr with r = [[wαr ]] and the concretization
function [[·]].

4 Counterexample-Guided Controller Synthesis

Algorithm Given a game structure G and a safety objective �err we wish to deter-
mine if player 1 wins. If she wins we also want to construct a winning strategy for her.
Figure 5 shows the algorithm which use the abstraction refinement loop.

Termination The refinement loop may not terminate in general for infinite state
games. But termination is guaranteed for finite state games and games for which
certain state equivalences has finite index.

6



5 Conclusion

It was shown that abstraction could reduce the state space so that the abstraction
is less expensive to solve. Further infinite state games could be reduced to finite
abstractions. Soundness ensures that if player 1 wins the abstract game she will also
win the concrete game. The refinement is fully automatic guided by spurious spoiling
strategies. It can be extended to ω-regular objectives. The main difference is that
spoiling strategies can be not longer represented as finite trees but as finite graphs.
For more details see [1].

References

[1] T. A. Henzinger, R. Jhala, and R. Majumdar. Counterexample-guided control. In
ICALP, pages 886–902, 2003.

7


