

Daniel Dahrendorf Seminar: Games in Verification and Synthesis (University of Saarland, Reactive Systems Group) July 17, 2008

COUNTEREXAMPLE GUIDED CONTROL

PAPER BY: THOMAS A. HENZINGER, RANJIT JHALA AND RUPAK MAJUMDAR

- Consider 2 player games:
 system (player 1) vs. environment (player 2)
- Transition systems model the interaction between a system and the environment
- Model checker can check these transition systems for control

Very large transition system

Imagine a program component with variables over unbounded data domains (e.g. integers).

How would a transition system of such a program looks like?

Infinite transition system

No direct application of our finite state algorithms possible

What should we do?

Is there a possibility for a automatically simplification of such transition systems?

Lets see...

Two-player game structure

 Φ : set of propositions

 Λ : set of labels

$$G = (V_{1}, V_{2}, \delta, P)$$
:

 V_1 : player 1 nodes

 V_2 : player 2 nodes

$$(V = V_1 \cup V_2)$$

$$\delta$$
 : $\delta \subseteq V \times \Lambda \times V$

$$P: V \rightarrow \mathbf{2}^{\Phi}$$

$$init: init \in \Phi$$

Runs and strategies

 \blacksquare Run: $v_{_1}$ finite or infinite sequence $v_{_1}v_{_2}v_{_3}\dots$ of states

lacksquare Strategy for player i: function f_i : $V^* \cdot V_i {
ightarrow} \Lambda$

Outcome

lacksquare Outcome for strategies $f_{\mathtt{l}}$ and $f_{\mathtt{l}}$: $\Omega_{f_1,f_2}(v)$

Possible outcome:

Two-player safety game

safety game (G, φ):

G : game structure

 ϕ : LTL formula over Φ

 ϕ has the form $\Box \overline{err}$

Goal of player 1:

Avoid states which satisfy err

Winning / spoiling strategies

- Let Π_1 be the set of runs where player 1 wins
 - Infinite run that never visits an error state
- Strategy f1 is winning for player 1 if for all strategies f2 of player 2 and all initial states v:

$$\Omega_{f_1,f_2}(v) \subseteq \Pi_1$$

• Strategy f2 is spoiling for player 2 if for all strategies f1 of player 1 and a initial state v:

$$\Omega_{f_1,f_2}(v) \not\subseteq \Pi_1$$

Example: Winning strategy

Winning strategy for player 1:

- At state 1 she plays C
- At state 2 she plays A
- At state 3 she plays B

Problem

Game graph might be

- Very large
 - solving the game is practically infeasible
- Infinite
 - Algorithms for finite state case cannot be applied directly

The solution: abstraction

Obtain a simplification of the game which is

- 1. less expensive to solve
 - ⇒smaller / finite state space
- 2. sound

⇒ if player 1 wins the abstract game he wins also the concrete game

Abstract states

1. An abstract state $v^{\alpha} \in V^{\alpha}$ represents a set $\llbracket v^{\alpha} \rrbracket \subseteq V$ of concrete states

2. Player structure is preserved:

Abstract states

(3) Propositions are preserved:

(4) The abstract states cover the whole concrete state space:

How to ensure soundness?

- Restrict the power of player 1
 - ⇒ Player 1 has fewer moves in the abstraction

- Increase the power of player 2
 - ⇒ Player 2 has more moves in the abstraction

Abstract moves for player 1

From each abstract v^{α} player 1 state only moves are allowed which could be played from each concrete state $v \in \llbracket v^{\alpha} \rrbracket$:

Abstract moves for player 2

From each abstract v^{α} player 2 state all moves are allowed which could be played from a concrete state $v \in [v^{\alpha}]$:

Abstraction

Abstraction for a game structure G:

game structure $\mathcal{G}^{lpha}=(V_1^{lpha},V_2^{lpha},\delta^{lpha},P^{lpha})$

and a concretization function $\llbracket \cdot
rbracket : V^{lpha}
ightarrow 2^V$

Example: abstraction

Question

If player 1 wins (G^{α}, φ) she wins also (G, φ)

But what if player 2 has a spoiling strategy for (G^{α}, φ) ?

Counterexample

- Spoiling strategy for player 2 =
 counterexample that player 1 can't win the game
- Genuine counterexample corresponds to one in the concrete game
- Spurious counterexample arises due coarseness of the abstraction

Example: Spurious counterexample

Spoiling strategy for player 2:

- At state {5,6} she plays
 L ⇒ error state
- At state {7,8} she playsL ⇒ error state

Counterexample

We want to:

- Determine whether a counterexample is genuine
- Automatically refine the abstraction to rule out a spurious counterexample

Counterexamples are represented by finite labeled trees: Abstract counterexample tree (ACT)

Root labeled by $v^{\alpha} \Rightarrow \llbracket v^{\alpha} \rrbracket \subseteq [init]$

n': w^{α} l-child of n: $v^{\alpha} \Rightarrow \delta^{\alpha}$ (v^{α} , l, w^{α})

n: v^{lpha} non-leaf player 1 node \Rightarrow for each $l\in L^{lpha}(v^{lpha})$ n has at least one l-child

Leaf labeled by v^{α} : $L^{\alpha}(v^{\alpha}) = \emptyset$ or $\llbracket v^{\alpha} \rrbracket \subseteq [err]$

- Concrete node $v \in [v^{\alpha}]$ is part of a spoiling strategy \Rightarrow A successor of v is part of a spoiling strategy
- Divide each v^{α} in a good set r and a bad set $[\![v^{\alpha}]\!]\setminus r$

lacktriangleq ACT $T^{\,\alpha}$ is genuine iff its root contains a non-empty good set

Annotate each node n of a given ACT $T^{\,\alpha}$ with r (Focusing) under following rules:

Node is a leaf: $r = [v^{\alpha}]$

Node is a player 2 state: $v \in r$ if there is successor of v from where player 2 can spoil

Node n is a non leaf player 1 state: $v \in r$ if all moves of v are also outgoing edges of n and for every edge of n there is a spoiling succ. of v

Use the annotated ACT T^{α} to refine the abstraction (Shattering):

Split player 1 nodes in the good set $\{r\}$

Split player 1 nodes in bad sets of nodes which have moves which are no edges of \boldsymbol{n}

Split player 1 nodes in bad sets of nodes which have a move such that the succ. is not in a good set

Split player 2 in the good set $\{r\}$ and the bad set $\|v^{\alpha}\| \setminus r$

Example: refined Abstraction

Counterexample-Guided Controller Synthesis

Termination

Bad news:

The refinement loop may not terminate in general for infinite state games

Good news:

Termination is guaranteed for finite games and certain state equivalences with finite index

Conclusion

- Abstraction reduces the state space
- Sound abstraction: ensures that if player 1 wins the abstract game he wins also the concrete game
- Automatic refinement guided by spurious spoiling strategies
- Can be extended to arbitrary ω -regular objectives

References

1. T. Henzinger, R. Jhala, and R. Majumdar. Counterexample-guided control. In Proc. 30th Int. Colloquium on Automata, Languages, and Programming (ICALP), volume 2719 of LNCS, pages 886--902, 2003.