Alternating-Time Temporal Logic

Fabienne Sophie Eigner

fabieigner@aol.com

Abstract. In this paper we will introduce Alternating-Temporal Time
Logic as defined by Rajeev Alur, Thomas Henzinger, and Orna Kupfer-
man. We will give an intuition why this logic is more expressive than
other known temporal logics, like LTL or CTL, for open structures, e.
g., concurrent game structures. We will then describe a symbolic model
checking algorithm for the logic and briefly discuss its runtime.

1 Introduction

Imagine the following situation: A train arrives at a crossing. It needs to drive
through a gate in order to continue its journey. Whether or not the train is
allowed to enter the gate is decided by a controller.

This or other (real world) situations are often modelled using abstractions. A
classical approach is to use Kripke structures, that model the computations of a
closed system. Known logics that are classically interpreted over such structures
are Linear-Time Temporal Logic (LTL) [3] and Computational Tree Logic (CTL)
[2]. Whereas LTL assumes implicit quantification over all branches that result
from an execution of the system, CTL allows us to explicitly quantify (universally
and existentially) over the paths.

But looking at the train-crossing example, we see that it would be more
suitable to view it as an open system, where one (or multiple) player(s), here
the train, interact with the environment, in this case the controller. A model for
this kind of open system would be a concurrent game structure, which we will
introduce more formally later.

Similar to closed systems, we want a logic for open systems to describe prop-
erties such a model should fulfill. For the above mentioned train-crossing example
such properties could be as follows:

1. “Sooner or later the train will drive past the gate.”
2. “It is possible that the train will never enter the gate.”
3. “Can the controller prevent the train from entering the gate?”

The first two properties can be stated using CTL, where the formulas would
be of the following form: V{Qin_gate and d0out_of_gate. The third property,
however, refers to the individual powers an agent in the game possesses and is
not describable in CTL (much less in LTL).

A logic that can indeed be used to describe properties like the third one is
Alternating-Time Temporal Logic (ATL), which we will introduce in the follow-
ing. With this logic, we can give a specification for a model. Checking whether

a model fulfills a specification is called model-checking. We will later give a sym-
bolic algorithm that can be used to solve the model-checking problem for ATL.
Note that there are some variants of ATL, such as ATL* (which corresponds
to an extension of CTL*) and Fair ATL (which deals with additional fairness
constraints), which we will not discuss in this paper. For further reference, have
a look at [1].

2 Concurrent Game Structures

We need a computational model to describe compositions of open systems, where
the system components and an environment interact. We choose concurrent game
structures as such a model.

We define a concurrent game structure S = (k, Q, I1, 7, d, §) as follows:

— k € N denotes the number of players (named from 1 to k).

— (Q denotes the finite set of states.

— I denotes the finite set of propositions.

— 7 : Q — 2 is called the labeling function, where m(q) returns the set of
propositions that hold at state g.

—d:{l,...,k} x @ — N7, where d,(q) describes the number of possible
moves of player a at state q. The possible moves of this player a at state ¢
are identified with the numbers 1, ..., d,(g). For each state g in @, we define
a move vector to be a tuple (j1,. .., ji), where 1 < j, < d,(q) for each a. Here
Ja denotes a possible move of player a. For a state ¢ we write D(q), called the
move function, for the set of move vectors {1,...,di(q)}x...x{1,...,dr(q)}.

— 0 describes the transition function, which assigns to each state ¢ and to each
move vector (ji,...,Jk) a state §(q,j1,...,Jk) that results from ¢ if each
player a executes the corresponding move j,.

As an example, we will now define the train-crossing problem as a somewhat
simplified (turn-based) game between the train and the controller. In turn-based
games, each state is assigned to one player a, the other player(s) can only do
one possible move at this state, that simply follows whatever a chooses.

For an intuitive definition of the train-crossing game, see Figure 1. Here we
have k = 2 players, the train and the controller. The set of states () is defined
as {q0,q1,q2,¢3}, where the states ¢0 and ¢2 are assigned to the train, and
ql and ¢3 to the controller. The set of propositions consiststs of four elements:
out_of_gate, in_gate, request, and grant. The labeling function can be easily
read off the graph, e. g., w(ql) = {out-of_gate, request}. For simplicity, we
will omit a formal definition of d and 9, as this is implicitely defined by the
transition-arcs of the graph.

3 Alternating-Time Temporal Logic

Alternating-Time Temporal Logic was introduced by Rajeev Alur, Thomas Hen-
zinger, and Orna Kupferman in [1]. It uses operators known from LTL and CTL,

out_of_gate

grant

Fig. 1. Turn-based concurrent game structure for the train-crossing problem

whose intuitive meanings are given in Figure 2. Additionally, it introduces a se-
lective form of quantors. We will now formally define the syntax and semantics
of ATL.

P “boolean formula” OP ‘“next P”

@0 000 66060070

OP “eventually P” OP :=-0-P “always P”

PUQ “P until Q”
P P P Q WW(

Fig. 2. Intuitive semantics of LTL operators

3.1 Syntax of ATL

An ATL formula is defined w. 1. t. a set X' = {1,...,k} of players and a finite
set II of propositions. It has one of the following forms:

— (S1): p, where p e I

— (S2): =¢ or ¢ V1), where ¢,) ATL formulas

— (83): ((A)) O ¢, or ((A)Oe, or ((ANO¢, or ({(A))¢p U ¢, where A C X' is a

set of players, and ¢, ¥ are ATL formulas

We will also define the dual of the quantifier as [[A]]¢ = —((A))—¢. Other
boolean operators like A, —,«> can be used for notational convenience, since
they can be easiy constructed from the given —, V.

3.2 Semantics of ATL

Above, we have seen the intuitive meanings of formulas only constisting of type
S1 and S2. The intuitive meaning of formulas of type S3, containing the quan-
tifier ((A))¢ or its dual [[A]]¢ is as follows:

— ((A))¢: Players in A can cooperate to make ¢ true
— [[A]]¢: Players in A cannot cooperate to make ¢ false

Let us now define the semantics of ATL formally. Note that we will not define
the ¢ - operator, as it can be replaced by the other operators.

We say that a state ¢ € @Q satifies the ATL formula ¢ in a structure S
(S,q E ¢), iff:

— ¢ = p for propositions p € IT | iff p € 7(q)

—qF ¢, iff qF ¢

—qFoVY,iffqEporgEY

— q E ((A)) O ¢, iff there exists a strategy for each player in A, such that
for all computations A starting fom ¢ and following these strategies, it holds
that: A\[1] = ¢

— q = ((A))de, iff for A as defined above, it holds that Vi > 1: A[{] = ¢

—q E ((A)¢ U 9, iff for X as defined above, there is a position ¢ > 1, such
that: V1 <j<i: A[j] E ¢ and A\[i] = ¢

3.3 Examples for ATL Formulas

We will now show what kind of properties one can state using ATL. We will
again use the train-crossing problem as an example, giving an informal meaning
of the property we want to define and the corresponding ATL formula. Here (())
is an abbreviation for ((#)). Note that all of these properties do indeed hold for
our model from Figure 1.

1. Whenever the train is outside the gate and has not been granted permission
to enter, then the controller can prevent it from entering:

((HO((out-of-gate A ~grant) — {{(ctr))Tout_of_gate)
2. Whenever the train is outside the gate, the controller cannot force it to enter:
(()O(out_of _gate — [[ctr]|Cout_of -gate)

3. Whenever the train is outside the gate, the train and the controller can
cooperate so that the train will enter the gate:

((H)O(out_of -gate — ((train, ctr))Qin_gate)

As one can easily see, the only way of describing the first two properties in CTL
is
VO(out-of _gate — Iout_of _gate)

From this formula we cannot deduce whether the train, or the controller, or
the (possibly faulty) overall system keep the train from entering the gate. This
gives an intuition as to why ATL is more expressive than CTL. With ATL we
can quantify over the individual powers of one player or a cooperating team of
players.

4 ATL Symbolic Model Checking

The model-checking problem for ATL is defined as follows:

— For a given game structure S = (k,Q, I, 7, d,J), the set of players X =
{1,...,k}, and an ATL formula ¢, compute the set [¢|s of all states in S
that satisfy ¢.

We will introduce a symbolic algorithm MC(S, ¢) as defined in [1] to solve the
model-checking problem for structure S and formula ¢. This algorithm makes
use of the following functions:

— Reg : IT — 29, where q € Reg(p) & p € 7(q)
— Pre(2¥ x 29), where ¢ € Pre(A,p), iff from ¢ the set A of players can
cooperate and enforce the next state do be in p.

The algorithm itself is defined as follows:
— MC(S, ¢):

foreach subformula ¢’ of ¢ (in ascending order) do
case ¢’ = p: return Reg(¢')
case ¢/ = —): return Q \ MC(S,v)
case ¢ =17 V 9: return MC(S, 1) U MC(S,12)
case ¢/ = ((4)) O : return Pre(A, MC(S,))
case ¢ = ((A))Oy:
x p:=Q;7:=MC(S,v)
« while p ¢ 7 do p:=7;7 := Pre(A4,p) N MC();
* return p
o case ¢ = ((A))1 U ha:
x p:=0;7:= MC(S,1s)
x while 7 ¢ p do p:= pUT;7:= Pre(A, p) N MC(S,91);

* return p

A correctness proof of the algorithm and a detailed runtime analysis can be
found in [1]. As can be seen there, the runtime of the algorithm is in O(m - 1),
were [is defined as the length of the formula and m as the size of the structure
(m = |4]). The outer loop of the algorithm clearly depends on I, and it can be
shown that each of the cases lies in O(m).

5 Conclusion

We have shown how concurrent game structures can be used to model open
systems. We have then specified a logic ATL over such models, which as we
have seen in an example is more expressive than CTL (or LTL), because it can
capture the powers of individual players or cooperating groups of players in a
game. Furthermore we have shown how the model-checking problem for ATL
can be solved, using a symbolic algorithm that was first defined in [1].

References

1. Rajeev Alur, Thomas Henzinger, and Orna Kupferman. Alternating-time temporal
logic. Journal of the ACM 49: pages 672-713, 2002.

2. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. Proceedings of the International Workshop on
Logic of Program, volume 131 of Lecture Notes in Computer Science: pages 52-71,
1981.

3. A. Pnuelli. The temporal logic of programs. Proceedings of the 18th International
Symposium on Foundations of Computer Science: pages 46-57, 1977.

