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Motivation
Railroad Crossing Example

Use abstractions to model (real world) situations and

applications, like the example.

Use logic to formulate a specification.

Check whether the model satisfies the specification.

Examples for such logics: LTL, CTL, CTL*
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Motivation
Railroad Crossing Example

Examples for properties the model might fulfill:

“Sooner or later the train will drive past the gate.”
in CTL: ∀♦in gate

“It is possible that the train will never enter the gate.”
in CTL: ∃�out of gate

BUT: What about open system where multiple participants
interact, like the train and some gate-controller?

Questions like “Can the controller prevent the train from
entering the gate?” cannot be formulated in LTL or CTL.

Solution: ATL (Alternating-Time Temporal Logic) can be
used to state such properties.

Fabienne Eigner ATL
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Concurrent Game Structures

Goal: Model compositions of open systems with multiple
participants

Open system: system components and environment
interact

Our computational model: Concurrent Game Structures

Fabienne Eigner ATL
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Concurrent Game Structures
Definition

A concurrent game structure S = (k ,Q,Π, π,d , δ) is defined as:

k ∈ N: number of players (named from 1 to k)

Q: finite set of states

Π: finite set of propositions

π : Q → 2Π: labeling function

d : {1, . . . , k} × Q → N+: da(q) = number of possible
moves of player a at state q

δ: transition function from one state to the next, w.r.t. the
moves of each player

Fabienne Eigner ATL
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Concurrent Game Structures
Example

Define the situation as a (turn-based) game between the
train and the controller:

o u t _ o f _ g a t e
o u t _ o f _ g a t e

r e q u e s t

o u t _ o f _ g a t e

g r a n t

i n _ g a t e

q 0

q 3

q 1

q 2
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Linear-Time Temporal Logic LTL
An Intuition

P “boolean formula” ©P “next P”
P P

♦P “eventually P” �P := ¬♦¬P “always P”
P PP PPP

PUQ “P until Q”
QP QPP
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Computational Tree Logic CTL
An Intuition

∃♦P ∃�P ∀♦P ∀�P

P P

P

P

P

P

P

P

P P

P
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Alternating-Time Temporal Logic
Syntax

ATL defined w.r.t. set Σ = {1, . . . , k} of players and finite
set Π of propositions
An ATL formula must be one of the following:

(S1): p, where p ∈ Π
(S2): ¬φ or φ ∨ ψ,
where φ, ψ ATL formulas
(S3): 〈〈A〉〉 © φ, or 〈〈A〉〉�φ, or 〈〈A〉〉♦φ, or 〈〈A〉〉φ Uψ,
where A ⊆ Σ is a set of players, and φ, ψ are ATL formulas

Fabienne Eigner ATL
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Alternating-Time Temporal Logic
Semantics

State q satifies ATL formula φ in structure S (S,q |= φ), iff:

q |= p for propositions p ∈ Π , iff p ∈ π(q)

q |= ¬φ, iff q 2 φ

q |= φ ∨ ψ, iff q |= φ or q |= ψ

q |= 〈〈A〉〉 © φ, iff there exists a strategy for each player in
A, s.t. for all computations λ according to these strategies
from q: λ[1] |= φ

q |= 〈〈A〉〉�φ, iff for λ defined as above, and all positions
i ≥ 1: λ[i] |= φ

q |= 〈〈A〉〉φ U ψ, iff for λ defined as above, there is a
position i ≥ 1: λ[j < i] |= φ and λ[i] |= ψ

Fabienne Eigner ATL
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ATL
A Few Remarks

The definition of the other boolean operators and the ♦

operator follows immediately

Dual of path quantifier 〈〈A〉〉: [[A]] defined as follows:

[[A]]φ := ¬〈〈A〉〉¬φ

Intuitive interpretation of the duals:
〈〈A〉〉φ: Players in A can cooperate to make φ true
[[A]]φ: Players in A cannot cooperate to make φ false

There are other variants of ATL: e.g., ATL*, Fair ATL

Fabienne Eigner ATL
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ATL
Example Formulas

Remember the example:

o u t _ o f _ g a t e
o u t _ o f _ g a t e

r e q u e s t

o u t _ o f _ g a t e

g r a n t

i n _ g a t e

q 0

q 3

q 1

q 2
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ATL
Example Formulas

1 Whenever the train is outside the gate and has no grant to
enter, then the controller can prevent it from entering:
〈〈〉〉�((out of gate ∧ ¬grant) → 〈〈ctr〉〉�out of gate)

2 Whenever the train is outside the gate, the controller
cannot force it to enter:
〈〈〉〉�(out of gate → [[ctr ]]�out of gate)

3 Whenever the train is outside the gate, the train and the
controller can cooperate so that the train will enter the gate:
〈〈〉〉�(out of gate → 〈〈train, ctr〉〉♦in gate)

Fabienne Eigner ATL



Motivation
Computational Model

Specification Logic
Symbolic Model Checking for ATL

ATL
Difference ATL - CTL

Only way of modelling the first two statements in CTL:

∀�(out of gate → ∃�out of gate)

From this formula we cannot deduce whether the train, or
the controller, or the overall system keep the train from
entering the gate

⇒ ATL is more expressive than CTL

Fabienne Eigner ATL
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The Model-Checking Problem for ATL

The model-checking problem for ATL is defined as follows:

For a given game structure S = (k ,Q,Π, π,d , δ) and an
ATL formula φ compute the set [φ]S of all states in S that
satisfy φ

We define a symbolic algorithm to solve the MP as follows
(with implicit S), using the functions:

Reg(p), p ∈ Π returns all states where p holds

q ∈ Pre(A, ρ), iff in state q, the players in A can enforce the
next state to be in ρ, by cooperating

Fabienne Eigner ATL
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The Model-Checking Problem for ATL
Algorithm

MC(φ)

foreach subformula φ′ of φ (in ascending order) do
case φ′ = p: return Reg(φ′)
case φ′ = ¬ψ: return Q \ MC(ψ)
case φ′ = ψ1 ∨ ψ2: return MC(ψ1) ∪ MC(ψ2)
case φ′ = 〈〈A〉〉 © ψ: return Pre(A,MC(ψ))

Fabienne Eigner ATL
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The Model-Checking Problem for ATL
Algorithm Cont’d

case φ′ = 〈〈A〉〉�ψ:
ρ := Q; τ := MC(ψ)
while ρ * τ do ρ := τ ; τ := Pre(A, ρ) ∩ MC(ψ);
return ρ

Intuitively: do

p s i

A  e n f o r c e s  

P r e ( A , _ )

P r e ( A , _ )  

A  e n f o r c e s  

P r e ( A , _ )

until the greatest fixpoint is reached

Fabienne Eigner ATL



Motivation
Computational Model

Specification Logic
Symbolic Model Checking for ATL

The Model-Checking Problem for ATL
Algorithm Cont’d

case φ′ = 〈〈A〉〉ψ1 U ψ2:
ρ := ∅; τ := MC(ψ2)
while τ * ρ do ρ := ρ ∪ τ ; τ := Pre(A, ρ) ∩ MC(ψ1);
return ρ

Intuitively: do

A  e n f o r c e s  

A  e n f o r c e s  

P r e ( A , _ )

P r e ( A , _ )

p s i 1

p s i 2

until the smallest fixpoint is reached
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The Model-Checking Problem for ATL
Complexity

The complexity of the algorithm MC(φ) lies in O(m · l) where

l denotes the length of the formula φ
One can see that the outer loop of the algorithm is evoked
O(l) times

m describes the number of transitions in the game
structure S
Each case statement can be executed in O(m) time

Fabienne Eigner ATL
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Conclusion

In order to model interactions between multiple participants
we can use concurrent games

ATL: powerful logic to state properties of concurrent games

ATL more expressive than CTL (captures the capabilities of
individual user)

We have seen a symbolic algorithm for
ATL-model-checking that runs in O(m · l) time
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Literature I

Rajeev Alur, Thomas Henzinger, and Orna Kupferman.
Alternating-Time Temporal Logic.
http://www.eecs.berkeley.edu/˜tah/Publications/alternating-
time temporal logic.html
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Thank you!
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