
Distributed Synthesis

Jonathan Türpe

1 Introduction

In the synthesis problem one decides if a given temporal specification ϕ over
a set of boolean formulas has an implementation, i.e., a finite state program,
that satisfies ϕ. One can focus on several types considering this problem.
The easiest type is considered the closed synthesis, i.e., a single-process wich
does not interact with the environment. In contrast, open synthesis deals
with the possible interaction with the environment. A third type is called
open synthesis with incomplete information and has to handle interactions
regarding the environment which remains possibly unseen by the process.
This third most general type was solved for specifications given in CTL* by
Kupferman and Vardi in 1997 [Kup.Var97].

The distributed synthesis generalizes the three types from the ones men-
tioned above. We consider not only one but several processes which can
interact among each other in a certain way. This arrangement of processes
and the structure of the interactions in-between them is called architecture.
The distributed synthesis problem is given by a temporal specification ϕ over
a set of boolean variables and an architecture A. The task is to decide
whether there exists implementations of the single processes in A such that
the overall behaviour satisfies ϕ or not.

That the distributed synthesis problem is indeed a challenging prob-
lem can be seen by the negative result given by Pnueli and Rosner in 1990
[Pnu.Ros90]. For the simple architecture given below and specifications in
LTL the problem is undecidable.

c

b

p3p2

p1

d

a

In the following we will see that it is possible to part the classes of
architectures into a class D which is decidable, and a class U which remains
undecidable. The ideas and results are taken from [Fin.Sch05].

1

2 Distributed synthesis

To really understand and discuss the distributed synthesis problem the fol-
lowing definitions are needed.

Definition. An architecture A=(P,W, penv, E, O, H) is a tuple consisting
of a set P of processes, a subset W ⊂ P of white-box processes and an
distinguished environment process penv ∈ P \W . (P,E) is a directed graph,
O = {Oe | e ∈ E} a set of non empty sets of output variables and H =
{Hp | p ∈ P} a set of hidden variables for each process. We assume that
the hidden variables are pairwise disjoint from each other as well as from the
sets in O. The same variable may occur on two separate edges to indicate
broadcasting, but only if the edges are originated in the same note. For
convenience we do not consider black-box processes without output variables,
as they can be implemented trivially by mapping every input history to ∅.
The set B := P \W contains the black-box processes and the environment,
B− := B \ penv is the set of all black-box processes but the environment.

Definition. An implementation of a process p is a function sp : (2Ip)∗ →
2Op called strategy, which maps every possible input history of the process
to a possible output.

Definition. An Implementation of an architecture A is a set of strategies
S = {sp | p ∈ B−}, for all black-box processes except the environment.

Definition. A composition of a set of strategies is a function sQ : (2IQ)∗ →
2OQ , where IQ and OQ denotes the common input or output of the processes
respectively. The mapping is given according to the single strategies of the
processes.

In order to describe the meaning if an implementation satisfies a specifi-
cation ϕ it is necessary to consider the computation tree. The directions of
this tree are all possible combinations of outputs of the environment. Where
the implementation maps to is fixed in the labels. Because the programs
cannot recognize hidden variables of the environment, the definition needs
the widening function wide. With the xray function the direction is written
into the label.

Definition. A computation tree of an implementation S is a 2O∪H labeled
2Oenv -tree and given by:
< 2Oenv

∗
, ` >= xray2Oenv (wide2Henv (< (2Oenv\Henv)∗, sB− >))

Definition. A tuple (A,ϕ) consisting of an architecture A and a specification
ϕ is realizable if there exists an implementation of A s.t. its computation
tree satisfies. ϕ

Definition. An architecture is called decidable if there exists an algorithm
which decides for all specifications ϕ if (A,ϕ) is realizable.

2

3 Partition of the classes of architectures

The partition of the classes of architectures is done by using the notion of
informedness of a process. In case it is possible to compare each pair of
black-box processes in a given architecture A among each other whether
one has more or less information than the other, it turns out that A is
decidable. On the other hand, if there is a pair of black-box processes in
an architecture A which can not be compared in this sense, then A is an
undecidable architecture.

Definition. The preorder p 4 p′ (Reading: p has more or equal information
than p’) is given by the following construction:
Let Ep = {e ∈ E | Oe 6⊆ Ip} be the set of edges with information invisible to
p and Up = {q ∈ B | ¬∃ directed path from penv to q in (P,Ep)} the processes
which are not reachable by such edges then:
p 4 p′ ↔ p′ ∈ Up for p, p′ ∈ B

Example:

paul 64 til til 64 paul

env

press

tv

paul

post

tily

tilpaula

irak

bored

paris.t

paris
szbild

news

act

Upaul

env

press

tv

paul

post

tily

tilpaula

irak

bored

paris.t

paris
szbild

news

act

Util

This architecture is undecidable unless we modify it, by for example
giving paul and paula the "sz" in addition.

Definition. An architecture A is called (strictly) ordered if there exists a
(bijective) surjective function, f : B → Nn with n ∈ N, s.t. f−1(1) = {penv}
and for all p, p′ ∈ B : f(p) ≤ f(p′) iff p 4 p′.

In the following two sections we will see that an architecture A is in the
decidable class D of architectures if A can be ordered or in the undecidable
class U otherwise.

4 The decidable class of architectures D
To proof decidability of an ordered architecture, we transform at first any
given architecture into a strictly ordered acyclic architecture without white-

3

box processes. After that we check by using an automata-based algorithm,
whether the simplified architecture is decidable or not.

4.1 Architecture transformation

The transformation of the architecture is done in three steps. For each of the
steps it holds that: (Ai, ϕi) is realizable iff (Ai+1, ϕi+1) is realizable. (A0, ϕ0)
denotes the given problem (A,ϕ). The tuples (Ai, ϕi) with i ∈ {1, 2, 3} de-
note the transformed ones according to the steps of the algorithm.

The three steps:

1. Clustering equally informed processes

2. Elimination of white-box processes

3. Elimination of feedback edges (i.e. an edge from a process to a better
informed one)

The algorithm and ideas of the proof:
Step 1
”0 ↔ 1” Assume that we have a strategy for A0 that satisfies ϕ0. For a clus-
ter we take the composition of the implementations for the processes that
are clustered together. This satisfies the specification ϕ1 := ϕ0. The other
way around, if we have a strategy for A1 which satisfies ϕ1 := ϕ0, we can
copy the strategy of the cluster for each of the processes in it and restrict it
then to the possible output variables. This leads to a strategy for A0 which
satisfies ϕ0.

Step 2
”1 ↔ 2” Assume that we have an implementation of A1 which satisfies ϕ1.
We take the best informed black-box process p′ which provides the white-box
process with information, and add edges from it so that all black-boxes still
have the same input. As the white-box is already implemented, the strat-
egy for the obtained process p′new is just the composition of the old strategy
and the "white" one. Formally this is done by turning the strategie for the
white-box process sw into an equivalent specification ϕw and add them to
the original specification. In the other way round we just restrict the imple-
mentation to the possible outputs.

Step 3
”2 ↔ 3” In an analog way, a better informed process can always simulate a
feedback. Vice versa having an implementation for A3 that satisfies ϕ3 := ϕ2,
the same implementation that ignores possible feedback edges is a perfect
one for A2.

4

Example:
(A0) (A1)

1, env

press

tv

2, paul

post

tily

3, til2, paula

irak

bored

paris.t

paris
szbild, sz

news

act

1, env

press

tv

2, paula & paul

post

 tily

3, til

irak

bored

paris.t

paris
szbild, sz

news

act

(A2) (A3)

tv

2, paula & paul

1, e & p & p

3, til & tily

irak

bored
paris.t

paris
szbild, sz

act, news

tv

2, paula & paul

1, e & p & p

3, til & tily

irak
bored
paris.t

paris
szbild, sz

act, news

4.2 Automaton construction

Theorem. Given a tuple (A,ϕ) where A is a strictly ordered architecture
without white-boxes and ϕ a specification in CTL∗, then:

We can construct an alternating automaton A that recognizes a tree iff
it is a computation tree of an implementation of A that satisfies ϕ.

Proof. We illustrate the idea of the proof using our example.
The first step is to translate the specification ϕ into an alternating automaton
that accepts a 2{a,n,b,s,t,p,p′,i,b}-labeled 2{a,n,b,s}-tree iff this tree satisfies ϕ.
That way the label could be different from the direction of the environment
and therefore trees are also accepted which are definitely not computation
trees of A. In the second step we take care of this problem. The third step
is done due to the possible hidden information of the environment. But
nevertheless a trees accepted by this alternating automaton can have too
many directions. The third process in this example does not have all the
information bild and sz. The ensures that the output of a process depends
only on its input we need further steps. The fourth step translates the
alternating automaton to an equivalent nondeterministic automaton which

5

is necessary to perform the next step, but gives also an exponential blow-up in
the number of states. The fifth step is to construct an alternating automaton
that accepts a 2{p

′,i,b}-labeled 2{b,s}-tree iff there exists a 2{t,p,p′,i,b}-labeled
2{b,s}-tree which is accepted by the former automaton. Now we use the third
step again to gain an automaton that accepts 2{p

′,i,b}-labeled 2{p,s}-trees iff
this is a computation tree of the third process and the widening of the tree
is accepted by the former automaton. In general we have to repeat step 4, 5
and 3 until the process with the least information is reached and we are able
to take care about its incomplete information. If the resulted automaton
is not empty, then (A,ϕ) is satisfiable. Going the steps back again we can
construct an implementation for A which satisfies ϕ.

1. ϕ ; A1 over 2{a,n,b,s,t,p,p′,i,b}-labeled 2{a,n,b,s}-trees

2. A1 ; A2 over 2{t,p,p′,i,b}-labeled 2{a,n,b,s}-trees

3. A2 ; A3 over 2{t,p,p′,i,b}-labeled 2{b,s}-trees

4. A3 ; N3 nondeterministic automaton

5. N3 ; A4 over 2{p
′,i,b}-labeled 2{b,s}-trees

6. A4 ; A′
3 over 2{p

′,i,b}-labeled 2{p,s}-trees

5 The undecidable class of architectures U
Theorem. Let A be an architecture, s.t. A can not be ordered and the
language for the specifications is either in CTL or in LTL.
The architecture A is undecidable.

Idea of the proof: Using a reduction from the halting problem.

6 Conclusion

We showed that the distributed synthesis problem can be solved for spec-
ifications in CTL∗ if and only if the architecture A is in a special class D
of architectures. Furthermore we showed how to check whether A is in this
class or not.

6

References

[Fin.Sch05] Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In:
Proc. LICS, IEEE Computer Society Press (2005) 321- 330

[Kup.Var97] O. Kupferman and M. Y. Vardi. Synthesis with incomplete
information. In Proc. ICTL’97, 1997.

[Pnu.Ros90] A. Pnueli and R. Rosner. Distributed reactive systems are hard
to synthesize. In Proc. FOCS’90, pages 746-757, 1990.

7

