
Module Checking
Maël Hörz

June 19, 2008

1 Introduction
In the paper “Module Checking” [2] the authors distinguish between self-contained sys-
tems, called closed systems, and systems that interact with an environment, called open
systems. They argue that model checking can only verify closed systems and has to be
extended to module checking to verify open systems. Furthermore they emphasize that
closed systems are uncommon and often are more correctly modeled as open systems,
hence module checking would be necessary. Unfortunately, checking if a module satisfies
a specification given in CTL is much more expensive (EXPTIME) than the correspond-
ing model checking (linear time). The good news is that for the commonly used fragment
of CTL (universal possibly, and always possibly properties), model-checking tools work
correctly or can be easily adapted to work correctly.

2 Closed Systems vs. Open Systems
Closed systems have total control, their behavior is completely determined by the state
of the system. The behavior of open systems depends on the interaction with its envi-
ronment.
When modeling systems non-determinism is used to hide complexity, abstract from

details and model unknown behavior. In the context of open systems, we talk of in-
ternal non-determinism if it describes a choice/move done by the system, and of ex-
ternal non-determinism if it is a choice/move of the system’s environment. So internal
non-determinism is controllable but external non-determinism is uncontrollable. We can
always choose in the implementation how to resolve internal non-determinism to a deter-
ministic behavior that meets the specified requirements, but external non-determinism
is uncontrollable and as such cannot be influenced.

2.1 Example
To show the difference between an open and a closed system, we will look at a drink-
dispenser machine. Figure 1 depicts a machine that repeatedly boils water and non-
deterministically chooses either tea or coffee. It models an open system, module M,

1

3 Module checking

boil

choose

coffeetea

Figure 1: Drink dispenser machine

with the system states “boil”, “tea” and “coffee” and the environment state “choose”.
In the state “boil” we know what its possible next states are, since it is a system state,
which is controllable. However when M is in the environment state “choose”, there is
no certainty w.r.t. to the environment and we cannot be sure that “coffee” and “tea”
are possible next states. For example it could be that a user of the machine, i.e. the
environment, does not like coffee.
If we regard the drink dispenser as a closed system, program P, then all states are

considered to be system states. In this case we know for the “choose” state like for the
“boil” state what its next possible states are.
Taking another perspective, this example could also be described as a game between

a system player and an environment player. We are the system player and can only
control our behavior but not that of the environment player.

3 Module checking
Model checking verifies closed systems, i.e. the system has to satisfy given requirements.
Model checking of open systems, or for short module checking, verifies open systems,
but here for all environments the system has to satisfy given requirements.
The general idea of model/module checking is:

• Express design as a formal model M (usually given as a finite transition system)

• Specify required behavior with a logic formula ψ

• Check that M satisfies ψ

Before going into more detail about module checking it is necessary to define transition
systems to express the design and temporal logics to be able to specify requirements.

2

3 Module checking

3.1 Transition systems
In closed systems the formal model is called a program. A program P is a transition
system and defined as follows:
P = (AP,W,R,w0, L) where

• AP : set of atomic propositions

• W : set of states

• R ⊆W ×W : transition relation (must be total)

• w0: initial state

• L : W → 2AP : maps each state to a set of atomic propositions true in this state

Examples for atomic propositions are:

• The state of a variable are, e.g. x = 5 and y = 7 always holds in state s, then L(s)
= {x = 5, y = 7}

• In state “tea” it holds that tea is served

In open systems the formal model is called a module. A module M is a transition system
and defined as follows:
M = (AP,Ws,We, R,w0, L) where

• Ws: set of system states

• We: set of environment states

• W = We ∪Ws

• everything else as in definition of P

3.2 Temporal Logics1

Reactive systems do not terminate, that means we get infinite execution trees2. As there
is no end state where we can check the requirements and we want to check properties
while execution we need to express temporal aspects in the requirements.

3.2.1 LTL - Linear Temporal Logics

LTL formulas are composed of atomic propositions, boolean connectors and temporal
operators.
Syntax:
ψ ::= true|a|ψ1 ∧ ψ2|¬ψ|Xψ|Fψ|Gψ|ψ1 ∪ ψ2, where a ∈ AP
An intuitive overview of LTL’s semantics is given in Figure 2.

1Some of the presented information about temporal logics were found in [1].
2Execution trees are the unrolling of a transition system.

3

3 Module checking

atomic prop. a ...
arbitrary arbitrary arbitrary arbitrarya

next step Xa ...
a arbitrary arbitrary arbitraryarbitrary

until aUb ...
a∧¬b a∧¬b b arbitrarya∧¬b

eventually/ Fa
finally

...
¬a ¬a a arbitrary¬a

always/ Ga
globally

...
a a a aa

Figure 2: Intuitive semantics of LTL

3.2.2 CTL - Computational Tree Logic

CTL is built of state and path formulas.
State-formulas:
Φ = true|a|ψ1 ∧ ψ2|¬ψ|∃ψ|∀ψ, where ψ,ψ1, ψ2 are path formulas.
Path formulas:
ψ = XΦ|FΦ|GΦ|Φ1 ∪ Φ2, where Φ,Φ1,Φ2 are state formulas.
Temporal operators X,F,G,U have analog semantics to their LTL-semantics.
New: Path-quantifiers:

• Let ψ be a path-formula

• Universal path quantifier ∀: ψ has to hold on all paths

• Existential path quantifier ∃: ψ has to hold on at least one path

Finally CTL* is like CTL, but temporal operators can be freely mixed.

3.3 Exec-Function
Execution tree is the tree obtained from unrolling a program/module. In module check-
ing we have a set of execution trees, exec(M) instead of just one execution tree. By
pruning from the execution tree of M sub-trees, which have as root node a successor

4

References

of an environment node, we obtain exec(M). Figure 3 exemplifies the computation of
exec(M).

Execution tree of M: exec(M):

, ,

Figure 3: Prune sub-trees to obtain exec(M)

Intuitively each tree in exec(M) corresponds to a different behavior of the environment.
Formally, given a module M, CTL* formula Ψ, model checking is verifying that all trees
in exec(M) satisfy Ψ. I.e. apply model checking to all trees in exec(M).

3.4 Complexity
Module checking problem for ∀CTL is in linear time and for LTL, ∀CTL* it is PSPACE-
complete. Program complexity of module checking for LTL, ∀CTL, ∀CTL* is NLOGSPACE-
complete.
Proof-idea: For LTL, ∀CTL, ∀CTL* model checking and module checking coincide.

This is because we have no existential quantification but only universal quantification,
therefore we cannot distinguish between environment and system, i.e. closed and open
systems are not distinguishable either.
Module checking problem for CTL is EXPTIME-complete. Module checking problem

for CTL* 2EXPTIME-complete.
Proof-idea: Model checking problem for CTL is in linear-time. Module checking of

model M runs model-checking on all trees in exec(M). And as exec(M) is a subset of the
power set of M we get an exponential blow-up.

3.4.1 Good news

Is it really that bad? Fortunately for the commonly-used fragment of CTL (universal
possibly, and always possibly properties) model checking tools can be easily adjusted.
For these commonly-used CTL fragments model checking problem is in linear time and
program-complexity of module is PTIME-complete.

References
[1] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. 2006.

[2] Orna Kupfermann, Moshe Y. Vardi, and Pierre Wolper. Module checking. 1998.

5

	1 Introduction
	2 Closed Systems vs. Open Systems
	2.1 Example

	3 Module checking
	3.1 Transition systems
	3.2 Temporal LogicsSome of the presented information about temporal logics were found in PrinciplesOfModelChecking.
	3.2.1 LTL - Linear Temporal Logics
	3.2.2 CTL - Computational Tree Logic

	3.3 Exec-Function
	3.4 Complexity
	3.4.1 Good news

