
Module Checking

An overview by
Maël Hörz

Paper by

Orna Kupfermann, Moshe Y. Vardi, Pierre Wolper

2/34

Talk-Outline

• Closed Systems vs. Open Systems
• Transition Systems (Programs/Reactive

Programs)
• Temporal Logic
• Module Checking
• Complexity of Module Checking

3/34

Introduction

Closed system

• Behavior
– Completely determined by

the state of the system

• One kind of non-
determinism
– Only internal

Open system

• Behavior
– Depends on the interaction

with its environment

• Two kinds of non-
determinism
– External (uncontrollable)
– Internal (controllable)

• System Design
– Closed systems vs. Open systems

4/34

Closed system – One player

• System / Internal player (= only player)

5/34

Open system - Two players

• System/ internal player
• controllable

• Environment / external
player

• uncontrollable

Interaction

versus

6/34

No gambling

• We are only interested in safe systems

7/34

Introduction

• Environment
– Everything not under control of system itself

• Reactive system
– Open system
– Does not terminate
– Interacts with an environment

• External vs. internal
– Environment makes external choices
– System makes internal choices

8/34

Example

• Closed system
– Repeatedly boils water
– Makes internal non-det.

choice
– Serves either tea or coffee
– One player:

machine

boil

choose

coffeetea

9/34

Example

• Open system
– Repeatedly boils water
– Asks environment to

choose between coffee
and tea

– Serves a drink according to
the external choice

– Two players:
machine vs. user

– Controllability of non-det.
depends on player

boil

choose

coffeetea

10/34

Model vs. Module Checking

• Verification of closed systems
– Model checking:

• machine has to satisfy given requirements

• Verification of open systems:
– Module checking

• For all env.: machine has to satisfy given requirements
• “Model checking of open systems”

11/34

Model/Module Checking

• General idea of model/module checking
– Express design as a formal model M

• Finite state transition system

– Specify required behavior with a logic formula ψ
– Check that M satisfies ψ

12/34

Transition Systems

• Program
– AP : set of atomic propositions
– W : set of states
– : transition relation (must be total)
– : an initial state
– : maps each state to a set of atomic

propositions true in this state

• Atomic propositions
– The state of a variable, e.g. x = 5 and y = 7 always

holds in state s, then L(s) = {x = 5, y = 7}
– In state “tea” it holds that tea is served

()0
, , , ,P AP W R w L=

R W W⊆ ×

o
w

: 2APL W →

13/34

Transition Systems

• Module
– AP : set of atomic propositions
– Ws, We : set of system/environment states
–
– : transition relation (must be total)
– : an initial state
– : maps each state to a set of atomic

propositions true in this state

()0
, , , , ,

s e
M AP W W R w L=

R W W⊆ ×

o
w

: 2APL W →

s e
W W W= ∪

14/34

TS and its unwinding

• Transition System • Unwinding of TS (Infinite exe-
cution tree)
– Every path represents a possible

execution

A

B

A C C

C

A

B C

15/34

Temporal Logics

• Reactive systems do not terminate
– ⇒

We get infinite execution trees

– ⇒

No end state where we can check requirements
– ⇒

Want to check properties while execution

– ⇒

Need to express temporal aspects in requirements

16/34

LTL – Linear Temporal Logic

• Syntax

• Formula composed of
– Atomic propositions
– Boolean connectors
– Temporal operators

• Using ∧

and ¬

the remaining connectives ¤, ⊕,
Ø, ¨, nor, nand can be derived

• Similarily, F and G could be derived from the U
operator

1 2 1 2
:: | | | | | | |

where

true a X F G

a AP

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= ∧ ¬

∈

∪

17/34

LTL- Intuitive Semantics (1/2)

atomic prop. a ...
arbitrary arbitrary arbitrary arbitrarya

next step Xa ...
a arbitrary arbitrary arbitraryarbitrary

18/34

LTL- Intuitive Semantics (2/2)

until aUb ...
a∧¬b a∧¬b b arbitrarya∧¬b

eventually/ Fa
finally

...
¬a ¬a a arbitrary¬a

always/ Ga
globally

...
a a a aa

19/34

CTL – Computational Tree Logic

• State-formulas

– State formulas express a property of a state

• Path-formulas

– Path formulas express a property of a path
• Path = infinite sequence of states

1 2
:: | | | | |

where and is a path-formula

true a

a AP

ϕ ϕ

ϕ

Φ = Φ ∧ Φ ¬Φ ∃ ∀

∈

1 2

1 2

:: | | |

where , , are state-formulas

X F Gϕ = Φ Φ Φ Φ Φ

Φ Φ Φ

∪

20/34

CTL – Semantics

• Temporal operators X,F,G,U have analog
semantics to their LTL-semantics

• New: Path-quantifiers
– Let ϕ

be a path-formula

– Universal path quantifier
• ∀ϕ

: ϕ

has to hold on all paths

– Existential path quantifier ∃ϕ
• ∃ϕ

: ϕ

has to hold on at least one path

• CTL*
– Like CTL, but temporal operators can be freely

mixed

21/34

Comparison of LTL, CTL, CTL*

• CTL vs. CTL*
– CTL: one path operator followed by a state operator
– CTL*: temporal operators can be freely mixed

• LTL expressed in CTL*
– LTL-formula checked on all paths of TS
⇒

implicit ∀-quantification

– LTL formula ϕ

expressed as CTL* formula ∀ϕ

22/34

Expressiveness of LTL, CTL, CTL*

• LTL ⊄

CTL
– FGa ∈

LTL but FGa ∉

CTL (idea: ∀F∀Ga ≠

∀FGa)

• CTL ⊄

LTL
– ∀G∃F ∈

CTL but ∀G∃F ∉

LTL (idea: no ∃

in LTL)

• LTL ⊂

CTL*
– Add ∀

in front of LTL formula

• CTL ⊂

CTL*
– CTL* is an extension of CTL

CTL*

LTL CTL

23/34

Model Checking vs. Module Checking

• Model checking
• Is it always possible to

eventually serve tea?
• Does P £

∀G∃Ftea hold?

• Yes
– System controls non-

determinism of “choose”

boil

choose

coffeetea

P:
(program/

model)

24/34

Model Checking vs. Module Checking

• Module checking
• Is it always possible to

eventually serve tea?
• Does M £

∀G∃Ftea hold?

• No
– Environment controls non-

determinism of choose
– If environment chooses

always coffee ⇒

M can
never serve tea

boil

choose

coffeetea

M:
(module/
reactive
program)

25/34

Model Checking vs. Module Checking

• Model checking tools will always answer yes
– M is regarded as program (no environment)
– ⇒

wrong answer for modules

– Adapt model checking tools such that module
checking works

26/34

Module Checking

• Execution tree
– Tree obtained from unrolling program/module

• In module checking set of execution trees, exec(M)
• exec(M)

– Let ET be the execution tree
– By pruning from ET sub-trees, which have as root node a

successor of an environment node, we obtain exec(M).

Execution tree of M: exec(M):

, ,

27/34

Module Checking

• Intuitively
– Each tree in exec(M) corresponds to a different

behavior of the environment

• Module checking
– Given module M, CTL* formula ψ
– M £r ψ, if all trees in exec(M) satisfy ψ
– I.e. apply model checking to all trees in exec(M)

• Module checking can be solved using non-det.
tree automata

28/34

Complexity

• ∀CTL*, ∀CTL
– CTL*/CTL restricted to ∀-quantification

• Module checking problem for ∀CTL*
– Theorem

• Coincides with model checking problem for ∀CTL*

– Proof idea
• All choices have to be considered since no ∃-quantification
• No difference between system and environment non-

determinism

– Module/model checking of LTL, ∀CTL, ∀CTL* of
same complexity

• Since LTL, ∀CTL are subsets of ∀CTL*

29/34

Complexity

• Results
– Module checking for ∀CTL is in linear time
– Module checking problem for LTL, ∀CTL* is PSPACE-

complete
– Program complexity of module checking for LTL,

∀CTL, ∀CTL* is NLOGSPACE-complete

30/34

Complexity

• Module checking problem for CTL
– EXPTIME-complete

• Module checking problem for CTL*
– 2EXPTIME-complete

• Proof idea
– Model checking problem for CTL is in linear-time
– Module checking of model M runs model-checking on

all trees in exec(M)
– exec(M) is a subset of the power set of M, i.e. we

get an exponential blow-up

31/34

Complexity

• Is it really that bad?
• Good news

– Model checking tools can be easily adjusted for
commonly-used fragment of CTL

– Module checking problem for ∃Fξ

and ∀G∃Fξ

in
linear time

– Program-complexity of module checking for ∃Fξ

and
for ∀G∃Fξ

is PTIME-complete

32/34

Complexity-Overview

Model
checking

Module
checking

Program
complexity of
model
checking

Program
complexity of
module
checking

LTL PSPACE PSPACE NLOGSPACE NLOGSPACE

CTL linear-time EXPTIME NLOGSPACE PTIME

CTL* PSPACE 2EXPTIME NLOGSPACE PTIME

∀CTL linear-time linear-time NLOGSPACE NLOGSPACE

∃CTL linear-time EXPTIME NLOGSPACE PTIME

∃Fξ
∀G∃Fξ

linear-time linear-time NLOGSPACE PTIME

33/34

Summary

• Closed systems vs. Open system
– Closed system

• No interaction, total control
– Open systems interact with an environment

• “Game between system and environment player”

• Temporal logic formulas to specify requirements
– Want to check properties while execution

• Module checking
– M £r ψ
– Module M has to satisfy ψ in all environments

• Module checking is much more complex than model
checking

• Commonly used subset of CTL has linear complexity

34/34

References

• “Module Checking“
by Orna Kupferman, Moshe Y. Vardi, Pierre
Wolper

• “Principles of Model Checking”
by Christel Baier and Joost-Pieter Katoen

• Pictures in introduction from various sources

	Module Checking
	Talk-Outline
	Introduction
	Closed system – One player
	Open system - Two players
	No gambling
	Introduction
	Example
	Example
	Model vs. Module Checking
	Model/Module Checking
	Transition Systems
	Transition Systems
	TS and its unwinding
	Temporal Logics
	LTL – Linear Temporal Logic
	LTL- Intuitive Semantics (1/2)
	LTL- Intuitive Semantics (2/2)
	CTL – Computational Tree Logic
	CTL – Semantics
	Comparison of LTL, CTL, CTL*
	Expressiveness of LTL, CTL, CTL*
	Model Checking vs. Module Checking
	Model Checking vs. Module Checking
	Model Checking vs. Module Checking
	Module Checking
	Module Checking
	Complexity
	Complexity
	Complexity
	Complexity
	Complexity-Overview
	Summary
	References

