Module Checking

An overview by
Maél Horz

Paper by

Orna Kupfermann, Moshe Y. Vardi, Pierre Wolper

Talk-Outline

Closed Systems vs. Open Systems

Transition Systems (Programs/Reactive
Programs)

Temporal Logic
Module Checking

Complexity of Module Checking

Introduction

e System Design
- Closed systems vs. Open systems

Closed system Open system
e Behavior e Behavior
- Completely determined by - Depends on the interaction
the state of the system with its environment
e One kind of non- e Two kinds of non-
determinism determinism
- Only internal - External (uncontrollable)

- Internal (controllable)

Closed system - One player

e System / Internal player (= only player)

4/34

Open system - Two players

e System/ internal player

e controllable

e Environment / external
player
e uncontrollable

A

Interaction

v

Versus

5/34

No gambling

e \We are only interested in safe systems

41 £1L-LF-;;5“’*ﬁ
Codnd

&=

.

L

ST i

6/34

Introduction

e Environment
- Everything not under control of system itself

e Reactive system
- Open system
- Does not terminate
- Interacts with an environment

e External vs. internal
- Environment makes external choices
- System makes internal choices

Example

e Closed system
- Repeatedly boils water

- Makes internal non-det.
choice

- Serves either tea or coffee
- One player:
machine

choose

8/34

Example

e Open system
- Repeatedly boils water

- Asks environment to
choose between coffee
and tea

- Serves a drink according to
choose the external choice

- Two players:
machine vs. user

- Controllability of non-det.
depends on player

9/34

Model vs. Module Checking

e Verification of closed systems
- Model checking:
e machine has to satisfy given requirements
e Verification of open systems:

- Module checking
e For all env.: machine has to satisfy given requirements
e “Model checking of open systems™

Model/Module Checking

e General Idea of model/module checking

- EXxpress design as a formal model M
e Finite state transition system
- Specify required behavior with a logic formula v

- Check that M satisfies vy

Transition Systems

e Program P :(AP,W,R,WO, L)
- AP : set of atomic propositions
- W : set of states
- RcW xW : transition relation (must be total)
- W o an initial state

0]

- L:W — 2% : maps each state to a set of atomic
propositions true in this state

e Atomic propositions

- The state of a variable, e.g. x =5 and y = 7 always
holds in state s, then L(s) ={x =5,y =7}

- In state “tea” it holds that tea is served

Transition Systems

e Module M =(APW W ,Rw,L)
- AP : set of atomic propositions
- W, W, : set of system/environment states
- W =WS UWe
- RcW xW : transition relation (must be total)
- W :an initial state

0]

- L:W — 2% : maps each state to a set of atomic
propositions true in this state

TS and its unwinding

e Transition System e Unwinding of TS (Infinite exe-
cution tree)

- Every path represents a possible
execution

14/34

Temporal Logics

e Reactive systems do not terminate
- = We get infinite execution trees
- = No end state where we can check requirements
- = Want to check properties while execution
- = Need to express temporal aspects in requirements

LTL - Linear Temporal Logic

Syntax
pi=true|alo Ang |- Xp|Fo|Golo Up
where a € AP

Formula composed of

- Atomic propositions

- Boolean connectors

- Temporal operators

Using A and — the remaining connectives V, @,
—, <, hor, nand can be derived

Similarily, F and G could be derived from the U
operator

LTL- Intuitive Semantics (1/2)

a arbitrary arbitrary arbitrary arbitrary
atomic prop. a Q >© >© ;O O_.
arbitrary a arbitrary arbitrary arbitrary

next step Xa Q >© >© ;O ;Q_.

LTL- Intuitive Semantics (2/2)

arbitrary

until aub Q

©-

-

arbitrary

»
>

—a
eventually/ Fa Q
finally
a

always/ Ga Q

globally

O-

"

CTL - Computational Tree Logic

e State-formulas
Di=true|a|® A® [-D[Ip|Ve
where a € AP and ¢ is a path-formula
- State formulas express a property of a state
e Path-formulas
9 =XO|FO[GD|d UD,
where @, @ , @ are state-formulas

- Path formulas express a property of a path
e Path = infinite sequence of states

CTL - Semantics

e Temporal operators X,F,G,U have analog
semantics to their LTL-semantics

e New: Path-quantifiers
- Let ¢ be a path-formula

- Universal path quantifier
e Yo : ¢ has to hold on all paths

- Existential path quantifier ¢
e Jd¢ : ¢ has to hold on at least one path

e CTL*

- Like CTL, but temporal operators can be freely
mixed

Comparison of LTL, CTL, CTL*

e CTL vs. CTL*

- CTL: one path operator followed by a state operator
- CTL*: temporal operators can be freely mixed

e LTL expressed in CTL*

- LTL-formula checked on all paths of TS
= Implicit V-quantification
- LTL formula ¢ expressed as CTL* formula Vo

Expressiveness of LTL, CTL, CTL*

9

CTL*

LTL z CTL
- FGa € LTL but FGa ¢ CTL (idea: VFVGa # VFGa)

CTL & LTL
- VG3F € CTL but VG3F ¢ LTL (idea: no 3 in LTL)

LTL < CTL*
- Add V in front of LTL formula

CTL < CTL*
- CTL* 1s an extension of CTL

Model Checking vs. Module Checking

e Model checking

P: - Is it always possible to
(program/ eventually serve tea?
model)

e Does P £ VYG3Ftea hold?

e Yes

choose - System controls non-
determinism of “choose”

23/34

Model Checking vs. Module Checking

e Module checking

iy e [s it always possible to
(modu_le/ eventually serve tea?
,;re(?;:;\r/ﬁ) e Does M £ VG3Ftea hold?
e No

choose - Environment controls non-
’ R determinism of choose

- If environment chooses
always coffee = M can
never serve tea

24/34

Model Checking vs. Module Checking

e Model checking tools will always answer yes
- M is regarded as program (no environment)
- = wrong answer for modules

- Adapt model checking tools such that module
checking works

Module Checking

e Execution tree
- Tree obtained from unrolling program/module

e In module checking set of execution trees, exec(M)
e exec(M)
- Let ET be the execution tree

- By pruning from ET sub-trees, which have as root node a
successor of an environment node, we obtain exec(M).

Execution tree of M: exec(M):

, l ~
’ ~
. ~
. ~

_/
26/34

Module Checking

e Intuitively
- Each tree in exec(M) corresponds to a different
behavior of the environment
e Module checking
- Given module M, CTL* formula
- M £ y, If all trees in exec(M) satisfy
- |.e. apply model checking to all trees in exec(M)

e Module checking can be solved using non-det.
tree automata

Complexity

e VCTL*, VCTL
- CTL*/CTL restricted to V-quantification

e Module checking problem for VCTL*

- Theorem
e Coincides with model checking problem for VCTL*

- Proof idea
e All choices have to be considered since no 3-quantification

 No difference between system and environment non-
determinism

- Module/model checking of LTL, VCTL, VCTL* of
same complexity
e Since LTL, VCTL are subsets of VCTL*

Complexity

e Results
- Module checking for YCTL is in linear time

- Module checking problem for LTL, VCTL* is PSPACE-
complete

- Program complexity of module checking for LTL,
VCTL, VCTL* iIs NLOGSPACE-complete

Complexity

e Module checking problem for CTL
- EXPTIME-complete

e Module checking problem for CTL*
- 2EXPTIME-complete

e Proof idea
- Model checking problem for CTL is in linear-time

- Module checking of model M runs model-checking on
all trees in exec(M)

- exec(M) is a subset of the power set of M, i.e. we
get an exponential blow-up

Complexity

e |s it really that bad?

e Good news

- Model checking tools can be easily adjusted for
commonly-used fragment of CTL

- Module checking problem for 3F§ and YG3FE In
linear time

- Program-complexity of module checking for 3F& and
for VG3FE Is PTIME-complete

Complexity-Overview

Model Module Program Program
checking checking complexity of | complexity of
model module
checking checking
LTL PSPACE PSPACE NLOGSPACE NLOGSPACE
CTL linear-time EXPTIME NLOGSPACE PTIME
CTL* PSPACE 2EXPTIME NLOGSPACE PTIME
VCTL linear-time linear-time NLOGSPACE NLOGSPACE
ACTL linear-time EXPTIME NLOGSPACE PTIME
aFE linear-time linear-time NLOGSPACE PTIME

VGIFE

summary

Closed systems vs. Open system
- Closed system
e No interaction, total control
- Open systems interact with an environment
e “Game between system and environment player”
Temporal logic formulas to specify requirements
- Want to check properties while execution

Module checking
- M F W
- Module M has to satisfy iy in all environments

Module checking is much more complex than model
checking

Commonly used subset of CTL has linear complexity

References

e “Module Checking*
by Orna Kupferman, Moshe Y. Vardi, Pierre
Wolper

e “Principles of Model Checking”
by Christel Baler and Joost-Pieter Katoen

e Pictures In Introduction from various sources

	Module Checking
	Talk-Outline
	Introduction
	Closed system – One player
	Open system - Two players
	No gambling
	Introduction
	Example
	Example
	Model vs. Module Checking
	Model/Module Checking
	Transition Systems
	Transition Systems
	TS and its unwinding
	Temporal Logics
	LTL – Linear Temporal Logic
	LTL- Intuitive Semantics (1/2)
	LTL- Intuitive Semantics (2/2)
	CTL – Computational Tree Logic
	CTL – Semantics
	Comparison of LTL, CTL, CTL*
	Expressiveness of LTL, CTL, CTL*
	Model Checking vs. Module Checking
	Model Checking vs. Module Checking
	Model Checking vs. Module Checking
	Module Checking
	Module Checking
	Complexity
	Complexity
	Complexity
	Complexity
	Complexity-Overview
	Summary
	References

