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Part 1:

Motivation and computational
model
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Example: a Production Cell
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Timed Game Automata

l0 l1l2

x ≤ 2

u; x < 1; {x , y}c; y ≥ 1

A Timed Game Automaton TGA is a tuple (L, l0, Inv ,Act ,X ,T )
where:

L is a finite set of locations
l0 ∈ L is the initial location
Inv is a function, which assigns to each location its
invariant.
Act = Actc ∪ Actu is a set of actions
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Timed Game Automata (continued)

l0 l1l2

x ≤ 2

u; x < 1; {x , y}c; y ≥ 1

X is a set of real-valued clocks
T ⊆ (L×Act ×g×Reset ×L) is a set of transitions, where

g is a clock constraint built by: g = x ◦ c|x1 − x2 ◦ c|g1 ∧ g2
where x , x1, x2 ∈ X are clocks, c ∈ N some constant,
◦ ∈ {<,≤,=,≥, >} and g1,g2 clock constraints
Reset ⊆ X is the set of clocks to reset
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Playing a Timed Game

l0 l1 l2 l3

l4 l5

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

A Timed Game is a 2 player Game
A Timed Game Automaton is the ”board” of the game
Player Controller controls Actc
Player Environment controls Actu
Environment can preempt Controller
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Playing a Timed Game (continued)

Moves

At a location l ∈ L at a clock-valuation~t ∈ RX
≥0 a player P has

two possibilities
1 Using a transition t = (l , α, g,R, l ′), if~t |= g, α ∈ ActP , and
~t [R] |= Inv(l ′), where~t [R] is the clock-valuation resulting
from~t by setting all clocks in R to 0.

2 Waiting

Timed state space

S ⊆ L× RX
≥0 is the set of timed states

RX
≥0 is infinite⇒ so is S
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Playing a Timed Game (continued)

Memoryless strategy
A memoryless (state-based) strategy
fP : S = L× RX

≥0 → ActP ∪ {λ} for a player P is a partial
function s.t.

fP(s) = a for some s ∈ S and a ∈ ActP , if P has to use a
fP(s) = λ, if P has to let time pass

A strategy fP is called winning, iff P always wins the Timed
Game following fP .
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Winning a Timed Game

[MPS ’95] describes 4 winning conditions for a Timed Game:

Let G ⊆ L be a set of goal locations.
Controller: ♦G
Controller wins if he can enforce to reach G
Controller: �G
Controller wins if he can enforce not to leave G
Controller: ♦�G
Controller wins if he can enforce to finally stay in G
Controller: �♦G
Controller wins if he can enforce to reach G infinitely often
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Focus on ♦G

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

Controller tries to reach some dedicated goal location
Environment tries to prevent that
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Part 2:

Solving Timed Games
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Backward fixpoint iteration [MPS ’95]

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

win0 := goal× RX
≥0

wini+1 := wini ∪ Preenf (wini)
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The Preenf (win) operator

A state s = (l , x) ∈ S is in Preenf (win) iff:

∃s′ = (l , x ′) ∈ win for some x ′ > x and ∀x ≤ x ′′ ≤ x ′ holds
@t = (l , α, g,R, l ′) ∈ T s.t. α ∈ Actu and x |= g and
(l ′, x ′′[R]) /∈ win or
∃s′ = (l ′, x ′) ∈ win s.t. ∃x ′′ > x and t = (l , α, g,R, l ′) ∈ T
s.t. x ′ = x ′′[R] and ∀x ≤ x ′′′ ≤ x ′′ holds
@t ′ = (l , α′,g′,R′, l ′′) ∈ T s.t. α′ ∈ Actu and x |= g and
(l ′′, x ′′′[R]) /∈ win

Notation:
Let x , y be clock-valuations, we say x ≤ y if ∃δ ∈ R≥0 s.t.
y = x + δ~1
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The Preenf (win) operator

x1

x2
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The Preenf (win) operator

x1

x2
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Clock Zones

Infinite statespace
⇒ finite symbolic representation needed.
[Alur ’99] proposes a conjunction of inequalities called
Clock Zones ∧

xi ◦ ci ∧
∧

xi − xj ◦ cij

xi , xj ∈ X , ci , cij ∈ N ∪ {+∞}, ◦ ∈ {<,≤,≥, >}
A Clock Zone is a convex polyhedron
Efficient matrix based data structure: DBM
A Federation is a not necessarily convex union of Clock
Zones.
[CDFLL ’05]: compute Preenf (win) using Federations
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Initialization of fixpoint iteration

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

l0 : ∅
l1 : ∅
l2 : ∅

l3 : ∅
l4 : ∅
l5 : R≥0
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Step 1:

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

l0 : ∅
l1 : [1,∞[

l2 : ∅

l3 : ∅
l4 : ∅
l5 : R≥0
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Step 2:

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

l0 : {1}
l1 : [1,∞[

l2 : ∅

l3 : [0,1]

l4 : ∅
l5 : R≥0
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Step 3:

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

l0 : [0,1]

l1 : [1,∞[

l2 : [0,1]

l3 : [0,1]

l4 : ∅
l5 : R≥0
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Disadvantages of a pure backward approach

Each step of the iteration is expensive
Non-reachability of goal state will not be noticed until
fixpoint is reached
The whole statespace has to be known, but the statespace
can be huge

Patrick Jungblut Timed Games



On-the-fly Timed Game Solving [CDFLL ’05]

Initialization
Start in the initial state
Feed a waiting queue q with the outgoing transitions of the
initial state

The loop
After initialization we start the loop:

1 As long as q is not empty: take a transition t from q
2 Analyse the target state s′ of t :

If we meet s′ for the first time: start a forward step
If we already met s′ before: start a backward step
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On-the-fly Timed Game Solving (continued)

Forward step
1 s′ is the goal state? If yes, add t to q
2 Add all outgoing transitions of s′ to q

Backward step
1 Propagate winning information from s′ back to the source s

of t using Preenf

2 If the winning information of s changes by this, we add the
incoming transitions to s to the queue
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Initialization

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

S = {(l0,R≥0)}
q = {

(
(l0,R≥0),u1, (l4, ]1,∞[)

)
,
(
(l0,R≥0), c1, (l1,R≥0)

)
,(

(l0,R≥0),u3, (l3,R≥0)
)
}
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Step 1:

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

S = {(l0,R≥0), (l4, ]1,∞[)}
q = {

(
(l0,R≥0), c1, (l1,R≥0)

)
,
(
(l0,R≥0),u3, (l3,R≥0)

)
}
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Step 2:

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

S = {(l0,R≥0), (l4, ]1,∞[), (l1,R≥0)}
q = {

(
(l0,R≥0),u3, (l3,R≥0)

)
,
(
(l1,R≥0), c2, (l5, [2,∞[)

)
,(

(l1,R≥0),u2, (l2,R≥0)
)
}
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Step 3:

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

S = {(l0,R≥0), (l4, ]1,∞[), (l1,R≥0), (l3,R≥0)}
q = {

(
(l1,R≥0), c2, (l5, [2,∞[)

)
,
(
(l1,R≥0),u2, (l2,R≥0)

)(
(l3,R≥0), c4, (l1,R≥0)

)
}
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Step 4:

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

S = {(l0,R≥0), (l4, ]1,∞[), (l1,R≥0), (l3,R≥0), (l5, [2,∞[)}
q = {

(
(l1,R≥0), c2, (l5, [2,∞[)

)
,
(
(l1,R≥0),u2, (l2,R≥0)

)(
(l3,R≥0), c4, (l1,R≥0)

)
}

win
(
(l5, [2,∞[)

)
= [2,∞[
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Step 5:

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

q = {
(
(l0,R≥0), c1, (l1,R≥0)

)
,
(
(l3,R≥0), c4, (l1,R≥0)

)(
(l1,R≥0),u2, (l2,R≥0)

)
}

win
(
(l5, [2,∞[)

)
= [2,∞[

win
(
(l1,R≥0)

)
= [1,∞[
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Step 6:

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

q = {
(
(l3,R≥0), c4, (l1,R≥0)

)
,
(
(l1,R≥0),u2, (l2,R≥0)

)
}

win
(
(l5, [2,∞[)

)
= [2,∞[

win
(
(l1,R≥0)

)
= [1,∞[

win
(
(l0,R≥0)

)
= {1}

Patrick Jungblut Timed Games



Step 7:

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

q = {
(
(l0,R≥0),u3, (l3,R≥0)

)
,
(
(l3,R≥0), c4, (l1,R≥0)

)
,(

(l1,R≥0),u2, (l2,R≥0)
)
}

win
(
(l5, [2,∞[)

)
= [2,∞[

win
(
(l1,R≥0)

)
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win
(
(l0,R≥0)

)
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win
(
(l3,R≥0)

)
= R≥0
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l4 l5
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c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

q = {
(
(l3,R≥0), c4, (l1,R≥0)

)
,
(
(l1,R≥0),u2, (l2,R≥0)

)
}

win
(
(l5, [2,∞[)

)
= [2,∞[

win
(
(l1,R≥0)

)
= [1,∞[

win
(
(l0,R≥0)

)
= [0,1]

win
(
(l3,R≥0)

)
= R≥0
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Two winning conditions remain

[MPS ’95] provides the following fixpoint iterations:

Controller: ♦�G
win0 := ∅, i := 0
do

help0 := S, j := 0
do

helpj+1 := Preenf (helpj) ∩ (G ∪ Preenf (wini)), j + +

while helpj+1 6= helpj
wini+1 := helpj , i + +

while wini+1 6= wini
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Two winning conditions remain (continued)

Controller: �♦G
win0 := S, i := 0
do

help0 := ∅, j := 0
do

helpj+1 := Preenf (helpj) ∪ (G ∩ Preenf (wini)), j + +

while helpj+1 6= helpj
wini+1 := helpj , i + +

while wini+1 6= wini
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Summary

Timed Game Automata
Syntax
Semantics

Playing Timed Games
Solving Timed Games for 4 types of winning conditions
Deeper look into Reachability Games
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The end

Questions?
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