
Timed Games

Patrick Jungblut

Universität des Saarlandes

July 03rd, 2008

Patrick Jungblut Timed Games

Talk outline

Motivation and computational model
Example
Timed Game Automaton
Playing and winning a Timed Game

Solving Timed Games
Backward fixpoint iteration
TiGa: An On-The-Fly algorithm

Patrick Jungblut Timed Games

Part 1:

Motivation and computational
model

Patrick Jungblut Timed Games

Example: a Production Cell

Patrick Jungblut Timed Games

Timed Game Automata

l0 l1l2

x ≤ 2

u; x < 1; {x , y}c; y ≥ 1

A Timed Game Automaton TGA is a tuple (L, l0, Inv ,Act ,X ,T)
where:

L is a finite set of locations
l0 ∈ L is the initial location
Inv is a function, which assigns to each location its
invariant.
Act = Actc ∪ Actu is a set of actions

Patrick Jungblut Timed Games

Timed Game Automata

l0 l1l2

x ≤ 2

u; x < 1; {x , y}c; y ≥ 1

A Timed Game Automaton TGA is a tuple (L, l0, Inv ,Act ,X ,T)
where:

L is a finite set of locations
l0 ∈ L is the initial location
Inv is a function, which assigns to each location its
invariant.
Act = Actc ∪ Actu is a set of actions

Patrick Jungblut Timed Games

Timed Game Automata

l0 l1l2

x ≤ 2

u; x < 1; {x , y}c; y ≥ 1

A Timed Game Automaton TGA is a tuple (L, l0, Inv ,Act ,X ,T)
where:

L is a finite set of locations
l0 ∈ L is the initial location
Inv is a function, which assigns to each location its
invariant.
Act = Actc ∪ Actu is a set of actions

Patrick Jungblut Timed Games

Timed Game Automata

l0 l1l2

x ≤ 2

u; x < 1; {x , y}c; y ≥ 1

A Timed Game Automaton TGA is a tuple (L, l0, Inv ,Act ,X ,T)
where:

L is a finite set of locations
l0 ∈ L is the initial location
Inv is a function, which assigns to each location its
invariant.
Act = Actc ∪ Actu is a set of actions

Patrick Jungblut Timed Games

Timed Game Automata (continued)

l0 l1l2

x ≤ 2

u; x < 1; {x , y}c; y ≥ 1

X is a set of real-valued clocks
T ⊆ (L×Act ×g×Reset ×L) is a set of transitions, where

g is a clock constraint built by: g = x ◦ c|x1 − x2 ◦ c|g1 ∧ g2
where x , x1, x2 ∈ X are clocks, c ∈ N some constant,
◦ ∈ {<,≤,=,≥, >} and g1,g2 clock constraints
Reset ⊆ X is the set of clocks to reset

Patrick Jungblut Timed Games

Timed Game Automata (continued)

l0 l1l2

x ≤ 2

u; x < 1; {x , y}c; y ≥ 1

X is a set of real-valued clocks
T ⊆ (L×Act ×g×Reset ×L) is a set of transitions, where

g is a clock constraint built by: g = x ◦ c|x1 − x2 ◦ c|g1 ∧ g2
where x , x1, x2 ∈ X are clocks, c ∈ N some constant,
◦ ∈ {<,≤,=,≥, >} and g1,g2 clock constraints
Reset ⊆ X is the set of clocks to reset

Patrick Jungblut Timed Games

Timed Game Automata (continued)

l0 l1l2

x ≤ 2

u; x < 1; {x , y}c; y ≥ 1

X is a set of real-valued clocks
T ⊆ (L×Act ×g×Reset ×L) is a set of transitions, where

g is a clock constraint built by: g = x ◦ c|x1 − x2 ◦ c|g1 ∧ g2
where x , x1, x2 ∈ X are clocks, c ∈ N some constant,
◦ ∈ {<,≤,=,≥, >} and g1,g2 clock constraints
Reset ⊆ X is the set of clocks to reset

Patrick Jungblut Timed Games

Playing a Timed Game

l0 l1 l2 l3

l4 l5

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

A Timed Game is a 2 player Game
A Timed Game Automaton is the ”board” of the game
Player Controller controls Actc
Player Environment controls Actu
Environment can preempt Controller

Patrick Jungblut Timed Games

Playing a Timed Game

l0 l1 l2 l3

l4 l5

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

A Timed Game is a 2 player Game
A Timed Game Automaton is the ”board” of the game
Player Controller controls Actc
Player Environment controls Actu
Environment can preempt Controller

Patrick Jungblut Timed Games

Playing a Timed Game

l0 l1 l2 l3

l4 l5

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

A Timed Game is a 2 player Game
A Timed Game Automaton is the ”board” of the game
Player Controller controls Actc
Player Environment controls Actu
Environment can preempt Controller

Patrick Jungblut Timed Games

Playing a Timed Game

l0 l1 l2 l3

l4 l5

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

A Timed Game is a 2 player Game
A Timed Game Automaton is the ”board” of the game
Player Controller controls Actc
Player Environment controls Actu
Environment can preempt Controller

Patrick Jungblut Timed Games

Playing a Timed Game

l0 l1 l2 l3

l4 l5

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

A Timed Game is a 2 player Game
A Timed Game Automaton is the ”board” of the game
Player Controller controls Actc
Player Environment controls Actu
Environment can preempt Controller

Patrick Jungblut Timed Games

Playing a Timed Game (continued)

Moves

At a location l ∈ L at a clock-valuation~t ∈ RX
≥0 a player P has

two possibilities
1 Using a transition t = (l , α, g,R, l ′), if~t |= g, α ∈ ActP , and
~t [R] |= Inv(l ′), where~t [R] is the clock-valuation resulting
from~t by setting all clocks in R to 0.

2 Waiting

Timed state space

S ⊆ L× RX
≥0 is the set of timed states

RX
≥0 is infinite⇒ so is S

Patrick Jungblut Timed Games

Playing a Timed Game (continued)

Moves

At a location l ∈ L at a clock-valuation~t ∈ RX
≥0 a player P has

two possibilities
1 Using a transition t = (l , α, g,R, l ′), if~t |= g, α ∈ ActP , and
~t [R] |= Inv(l ′), where~t [R] is the clock-valuation resulting
from~t by setting all clocks in R to 0.

2 Waiting

Timed state space

S ⊆ L× RX
≥0 is the set of timed states

RX
≥0 is infinite⇒ so is S

Patrick Jungblut Timed Games

Playing a Timed Game (continued)

Memoryless strategy
A memoryless (state-based) strategy
fP : S = L× RX

≥0 → ActP ∪ {λ} for a player P is a partial
function s.t.

fP(s) = a for some s ∈ S and a ∈ ActP , if P has to use a
fP(s) = λ, if P has to let time pass

A strategy fP is called winning, iff P always wins the Timed
Game following fP .

Patrick Jungblut Timed Games

Winning a Timed Game

[MPS ’95] describes 4 winning conditions for a Timed Game:

Let G ⊆ L be a set of goal locations.
Controller: ♦G
Controller wins if he can enforce to reach G
Controller: �G
Controller wins if he can enforce not to leave G
Controller: ♦�G
Controller wins if he can enforce to finally stay in G
Controller: �♦G
Controller wins if he can enforce to reach G infinitely often

Patrick Jungblut Timed Games

Winning a Timed Game

[MPS ’95] describes 4 winning conditions for a Timed Game:

Let G ⊆ L be a set of goal locations.
Controller: ♦G
Controller wins if he can enforce to reach G
Controller: �G
Controller wins if he can enforce not to leave G
Controller: ♦�G
Controller wins if he can enforce to finally stay in G
Controller: �♦G
Controller wins if he can enforce to reach G infinitely often

Patrick Jungblut Timed Games

Winning a Timed Game

[MPS ’95] describes 4 winning conditions for a Timed Game:

Let G ⊆ L be a set of goal locations.
Controller: ♦G
Controller wins if he can enforce to reach G
Controller: �G
Controller wins if he can enforce not to leave G
Controller: ♦�G
Controller wins if he can enforce to finally stay in G
Controller: �♦G
Controller wins if he can enforce to reach G infinitely often

Patrick Jungblut Timed Games

Winning a Timed Game

[MPS ’95] describes 4 winning conditions for a Timed Game:

Let G ⊆ L be a set of goal locations.
Controller: ♦G
Controller wins if he can enforce to reach G
Controller: �G
Controller wins if he can enforce not to leave G
Controller: ♦�G
Controller wins if he can enforce to finally stay in G
Controller: �♦G
Controller wins if he can enforce to reach G infinitely often

Patrick Jungblut Timed Games

Focus on ♦G

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

Controller tries to reach some dedicated goal location
Environment tries to prevent that

Patrick Jungblut Timed Games

Focus on ♦G

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

Controller tries to reach some dedicated goal location
Environment tries to prevent that

Patrick Jungblut Timed Games

Part 2:

Solving Timed Games

Patrick Jungblut Timed Games

Backward fixpoint iteration [MPS ’95]

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

win0 := goal× RX
≥0

wini+1 := wini ∪ Preenf (wini)

Patrick Jungblut Timed Games

Backward fixpoint iteration [MPS ’95]

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

win0 := goal× RX
≥0

wini+1 := wini ∪ Preenf (wini)

Patrick Jungblut Timed Games

The Preenf (win) operator

A state s = (l , x) ∈ S is in Preenf (win) iff:

∃s′ = (l , x ′) ∈ win for some x ′ > x and ∀x ≤ x ′′ ≤ x ′ holds
@t = (l , α, g,R, l ′) ∈ T s.t. α ∈ Actu and x |= g and
(l ′, x ′′[R]) /∈ win or
∃s′ = (l ′, x ′) ∈ win s.t. ∃x ′′ > x and t = (l , α, g,R, l ′) ∈ T
s.t. x ′ = x ′′[R] and ∀x ≤ x ′′′ ≤ x ′′ holds
@t ′ = (l , α′,g′,R′, l ′′) ∈ T s.t. α′ ∈ Actu and x |= g and
(l ′′, x ′′′[R]) /∈ win

Notation:
Let x , y be clock-valuations, we say x ≤ y if ∃δ ∈ R≥0 s.t.
y = x + δ~1

Patrick Jungblut Timed Games

The Preenf (win) operator

A state s = (l , x) ∈ S is in Preenf (win) iff:

∃s′ = (l , x ′) ∈ win for some x ′ > x and ∀x ≤ x ′′ ≤ x ′ holds
@t = (l , α, g,R, l ′) ∈ T s.t. α ∈ Actu and x |= g and
(l ′, x ′′[R]) /∈ win or
∃s′ = (l ′, x ′) ∈ win s.t. ∃x ′′ > x and t = (l , α, g,R, l ′) ∈ T
s.t. x ′ = x ′′[R] and ∀x ≤ x ′′′ ≤ x ′′ holds
@t ′ = (l , α′,g′,R′, l ′′) ∈ T s.t. α′ ∈ Actu and x |= g and
(l ′′, x ′′′[R]) /∈ win

Notation:
Let x , y be clock-valuations, we say x ≤ y if ∃δ ∈ R≥0 s.t.
y = x + δ~1

Patrick Jungblut Timed Games

The Preenf (win) operator

A state s = (l , x) ∈ S is in Preenf (win) iff:

∃s′ = (l , x ′) ∈ win for some x ′ > x and ∀x ≤ x ′′ ≤ x ′ holds
@t = (l , α, g,R, l ′) ∈ T s.t. α ∈ Actu and x |= g and
(l ′, x ′′[R]) /∈ win or
∃s′ = (l ′, x ′) ∈ win s.t. ∃x ′′ > x and t = (l , α, g,R, l ′) ∈ T
s.t. x ′ = x ′′[R] and ∀x ≤ x ′′′ ≤ x ′′ holds
@t ′ = (l , α′,g′,R′, l ′′) ∈ T s.t. α′ ∈ Actu and x |= g and
(l ′′, x ′′′[R]) /∈ win

Notation:
Let x , y be clock-valuations, we say x ≤ y if ∃δ ∈ R≥0 s.t.
y = x + δ~1

Patrick Jungblut Timed Games

The Preenf (win) operator

x1

x2

Patrick Jungblut Timed Games

The Preenf (win) operator

x1

x2

Patrick Jungblut Timed Games

The Preenf (win) operator

x1

x2

Patrick Jungblut Timed Games

Clock Zones

Infinite statespace
⇒ finite symbolic representation needed.
[Alur ’99] proposes a conjunction of inequalities called
Clock Zones ∧

xi ◦ ci ∧
∧

xi − xj ◦ cij

xi , xj ∈ X , ci , cij ∈ N ∪ {+∞}, ◦ ∈ {<,≤,≥, >}
A Clock Zone is a convex polyhedron
Efficient matrix based data structure: DBM
A Federation is a not necessarily convex union of Clock
Zones.
[CDFLL ’05]: compute Preenf (win) using Federations

Patrick Jungblut Timed Games

Initialization of fixpoint iteration

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

l0 : ∅
l1 : ∅
l2 : ∅

l3 : ∅
l4 : ∅
l5 : R≥0

Patrick Jungblut Timed Games

Step 1:

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

l0 : ∅
l1 : [1,∞[

l2 : ∅

l3 : ∅
l4 : ∅
l5 : R≥0

Patrick Jungblut Timed Games

Step 2:

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

l0 : {1}
l1 : [1,∞[

l2 : ∅

l3 : [0,1]

l4 : ∅
l5 : R≥0

Patrick Jungblut Timed Games

Step 3:

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

l0 : [0,1]

l1 : [1,∞[

l2 : [0,1]

l3 : [0,1]

l4 : ∅
l5 : R≥0

Patrick Jungblut Timed Games

Disadvantages of a pure backward approach

Each step of the iteration is expensive
Non-reachability of goal state will not be noticed until
fixpoint is reached
The whole statespace has to be known, but the statespace
can be huge

Patrick Jungblut Timed Games

On-the-fly Timed Game Solving [CDFLL ’05]

Initialization
Start in the initial state
Feed a waiting queue q with the outgoing transitions of the
initial state

The loop
After initialization we start the loop:

1 As long as q is not empty: take a transition t from q
2 Analyse the target state s′ of t :

If we meet s′ for the first time: start a forward step
If we already met s′ before: start a backward step

Patrick Jungblut Timed Games

On-the-fly Timed Game Solving [CDFLL ’05]

Initialization
Start in the initial state
Feed a waiting queue q with the outgoing transitions of the
initial state

The loop
After initialization we start the loop:

1 As long as q is not empty: take a transition t from q
2 Analyse the target state s′ of t :

If we meet s′ for the first time: start a forward step
If we already met s′ before: start a backward step

Patrick Jungblut Timed Games

On-the-fly Timed Game Solving [CDFLL ’05]

Initialization
Start in the initial state
Feed a waiting queue q with the outgoing transitions of the
initial state

The loop
After initialization we start the loop:

1 As long as q is not empty: take a transition t from q
2 Analyse the target state s′ of t :

If we meet s′ for the first time: start a forward step
If we already met s′ before: start a backward step

Patrick Jungblut Timed Games

On-the-fly Timed Game Solving [CDFLL ’05]

Initialization
Start in the initial state
Feed a waiting queue q with the outgoing transitions of the
initial state

The loop
After initialization we start the loop:

1 As long as q is not empty: take a transition t from q
2 Analyse the target state s′ of t :

If we meet s′ for the first time: start a forward step
If we already met s′ before: start a backward step

Patrick Jungblut Timed Games

On-the-fly Timed Game Solving [CDFLL ’05]

Initialization
Start in the initial state
Feed a waiting queue q with the outgoing transitions of the
initial state

The loop
After initialization we start the loop:

1 As long as q is not empty: take a transition t from q
2 Analyse the target state s′ of t :

If we meet s′ for the first time: start a forward step
If we already met s′ before: start a backward step

Patrick Jungblut Timed Games

On-the-fly Timed Game Solving [CDFLL ’05]

Initialization
Start in the initial state
Feed a waiting queue q with the outgoing transitions of the
initial state

The loop
After initialization we start the loop:

1 As long as q is not empty: take a transition t from q
2 Analyse the target state s′ of t :

If we meet s′ for the first time: start a forward step
If we already met s′ before: start a backward step

Patrick Jungblut Timed Games

On-the-fly Timed Game Solving (continued)

Forward step
1 s′ is the goal state? If yes, add t to q
2 Add all outgoing transitions of s′ to q

Backward step
1 Propagate winning information from s′ back to the source s

of t using Preenf

2 If the winning information of s changes by this, we add the
incoming transitions to s to the queue

Patrick Jungblut Timed Games

On-the-fly Timed Game Solving (continued)

Forward step
1 s′ is the goal state? If yes, add t to q
2 Add all outgoing transitions of s′ to q

Backward step
1 Propagate winning information from s′ back to the source s

of t using Preenf

2 If the winning information of s changes by this, we add the
incoming transitions to s to the queue

Patrick Jungblut Timed Games

On-the-fly Timed Game Solving (continued)

Forward step
1 s′ is the goal state? If yes, add t to q
2 Add all outgoing transitions of s′ to q

Backward step
1 Propagate winning information from s′ back to the source s

of t using Preenf

2 If the winning information of s changes by this, we add the
incoming transitions to s to the queue

Patrick Jungblut Timed Games

On-the-fly Timed Game Solving (continued)

Forward step
1 s′ is the goal state? If yes, add t to q
2 Add all outgoing transitions of s′ to q

Backward step
1 Propagate winning information from s′ back to the source s

of t using Preenf

2 If the winning information of s changes by this, we add the
incoming transitions to s to the queue

Patrick Jungblut Timed Games

Initialization

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

S = {(l0,R≥0)}
q = {

(
(l0,R≥0),u1, (l4,]1,∞[)

)
,
(
(l0,R≥0), c1, (l1,R≥0)

)
,(

(l0,R≥0),u3, (l3,R≥0)
)
}

Patrick Jungblut Timed Games

Step 1:

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

S = {(l0,R≥0), (l4,]1,∞[)}
q = {

(
(l0,R≥0), c1, (l1,R≥0)

)
,
(
(l0,R≥0),u3, (l3,R≥0)

)
}

Patrick Jungblut Timed Games

Step 2:

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

S = {(l0,R≥0), (l4,]1,∞[), (l1,R≥0)}
q = {

(
(l0,R≥0),u3, (l3,R≥0)

)
,
(
(l1,R≥0), c2, (l5, [2,∞[)

)
,(

(l1,R≥0),u2, (l2,R≥0)
)
}

Patrick Jungblut Timed Games

Step 3:

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

S = {(l0,R≥0), (l4,]1,∞[), (l1,R≥0), (l3,R≥0)}
q = {

(
(l1,R≥0), c2, (l5, [2,∞[)

)
,
(
(l1,R≥0),u2, (l2,R≥0)

)(
(l3,R≥0), c4, (l1,R≥0)

)
}

Patrick Jungblut Timed Games

Step 4:

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

S = {(l0,R≥0), (l4,]1,∞[), (l1,R≥0), (l3,R≥0), (l5, [2,∞[)}
q = {

(
(l1,R≥0), c2, (l5, [2,∞[)

)
,
(
(l1,R≥0),u2, (l2,R≥0)

)(
(l3,R≥0), c4, (l1,R≥0)

)
}

win
(
(l5, [2,∞[)

)
= [2,∞[

Patrick Jungblut Timed Games

Step 5:

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

q = {
(
(l0,R≥0), c1, (l1,R≥0)

)
,
(
(l3,R≥0), c4, (l1,R≥0)

)(
(l1,R≥0),u2, (l2,R≥0)

)
}

win
(
(l5, [2,∞[)

)
= [2,∞[

win
(
(l1,R≥0)

)
= [1,∞[

Patrick Jungblut Timed Games

Step 6:

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

q = {
(
(l3,R≥0), c4, (l1,R≥0)

)
,
(
(l1,R≥0),u2, (l2,R≥0)

)
}

win
(
(l5, [2,∞[)

)
= [2,∞[

win
(
(l1,R≥0)

)
= [1,∞[

win
(
(l0,R≥0)

)
= {1}

Patrick Jungblut Timed Games

Step 7:

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

q = {
(
(l0,R≥0),u3, (l3,R≥0)

)
,
(
(l3,R≥0), c4, (l1,R≥0)

)
,(

(l1,R≥0),u2, (l2,R≥0)
)
}

win
(
(l5, [2,∞[)

)
= [2,∞[

win
(
(l1,R≥0)

)
= [1,∞[

win
(
(l0,R≥0)

)
= {1}

win
(
(l3,R≥0)

)
= R≥0

Patrick Jungblut Timed Games

Step 8:

l0 l1 l2 l3

l4 l5

goal

c1; x ≤ 1

c2; x ≥ 2

c3

c4; x ≤ 1u1; x > 1

u2; x < 1

u3; x < 1; {x}

q = {
(
(l3,R≥0), c4, (l1,R≥0)

)
,
(
(l1,R≥0),u2, (l2,R≥0)

)
}

win
(
(l5, [2,∞[)

)
= [2,∞[

win
(
(l1,R≥0)

)
= [1,∞[

win
(
(l0,R≥0)

)
= [0,1]

win
(
(l3,R≥0)

)
= R≥0

Patrick Jungblut Timed Games

Two winning conditions remain

[MPS ’95] provides the following fixpoint iterations:

Controller: ♦�G
win0 := ∅, i := 0
do

help0 := S, j := 0
do

helpj+1 := Preenf (helpj) ∩ (G ∪ Preenf (wini)), j + +

while helpj+1 6= helpj
wini+1 := helpj , i + +

while wini+1 6= wini

Patrick Jungblut Timed Games

Two winning conditions remain (continued)

Controller: �♦G
win0 := S, i := 0
do

help0 := ∅, j := 0
do

helpj+1 := Preenf (helpj) ∪ (G ∩ Preenf (wini)), j + +

while helpj+1 6= helpj
wini+1 := helpj , i + +

while wini+1 6= wini

Patrick Jungblut Timed Games

Summary

Timed Game Automata
Syntax
Semantics

Playing Timed Games
Solving Timed Games for 4 types of winning conditions
Deeper look into Reachability Games

Patrick Jungblut Timed Games

The end

Questions?

Patrick Jungblut Timed Games

