Solving Games Via Three-Valued Abstraction
Refinement

Georg Neis
Advisor: Rayna Dimitrova

July 22, 2008

1 Introduction

(Infinite) games have many applications in verification and related areas. For
instance, they are often used to model the interaction between a software com-
ponent and its environment. Unfortunately, the state space of game structures
for real life problems may be so huge that it is no longer feasible to work on
them directly. The usual approach to tackle this is to work on abstractions of
the original game structures. A popular technique for solving infinite two-player
games according to this principle is counter-example guided abstraction refine-
ment (CEGAR), as presented in [1]. [2] proposes an alternative approach for
abstraction refinement, using a technique called three-valued analysis.

2 (Games

Before talking about abstractions we recapitulate the basic terminology for in-
finite two-player games.

Definition 1. A game structure is a triple G = (S, A, §) where S is the set of
states (the state space), A : S — {1,2} the turn function, and § : S — 29\ ()
the transition function.

Definition 2. A game objective is an w-regular language ® C S over the
alphabet S.

Definition 3. A game is a triple (G, I, ®) consisting of a game structure, a set
of nitial states, and a game objective for player 1.

The turn function determines which of the two players’ turn it is when the
game is in a particular state. That is, it partitions the state space into a set of
player-1 states and a set of player-2 states: S = 51 U Ss.

Intuitively, a game starts by player 1 placing a token on an initial state.
Then the player whose turn it is moves the token to one of the successor states,
which in turn will determine who will do the next move. Since every state has a
successor, this will go on forever. Player 1 wins if the infinite sequence of states
that are visited satisfies (is an element of) the game objective. Otherwise player
2 wins.

Here we consider three particular classes of game objectives.

e The reachability objective for T C S is written as T and denotes {o €
S« | 3k > 0.0[k] € T}. Here the goal is to eventually visit a state in T'.

e The safety objective for T C S is written as 0T and denotes {o € S¥ |
Vk > 0.0]k] € T}. Here the goal is never to visit a state not in 7.

o The parity objective for a partition (B, ..., By,) of S is written as ¢(p, ... B,
and denotes {o € S¥ | max{i | B; Ninf(c) # 0} is even}.

The following definitions are relative to a particular given game structure

(S, A\, 9).
Definition 4. A strategy for player i € {1,2} is a function m; : S* x S; — S.

Definition 5. The outcome of a state s and strategies mi,ma, denoted by
outcome(s, 71, m2), is the uniquely determined sequence of states o € S* such
that Vk > 0. o[k] € S; = olk+1] = m;(c]0..k]). It results from starting at
state s and then following the strategies.

Definition 6. A state s is winning for player i with objective ® iff

I, V5. outcome(s, w1, 7o) € .

where 12 and 2 1. The set of player i’s winning states is denoted by

(1)@ :={s €S| s is winning for player i with objective ®}.

Definition 7. The controllable predecessors operator for player i € {1,2} is
the function cpre; : 25 — 2% defined as follows:

cpre; (T) d:ef{s €Si|o(s)NT #0}U{se S;|d(s) CT}

cpre; (T') is the set of those states from which player ¢ can force the game
in one step to a state in T'. It consists of the predecessors of T' that belong to
player ¢ and of the states of his opponent that have no successor outside 7T'. In
the first case player i can just move to a successor in T' because it is his turn.
In the second case it’s player 2’s turn but he cannot avoid moving to a state in
T.

Given a game (G, I, ®), we want to know whether or not player 1 can win,
i.e., we want to decide whether I N (1)® is empty.

3 Abstractions

Definition 8. An abstraction of a game structure G = (S, \,6) is a set V C
25\ {0} of abstract states such that JV = S.

In other words, each abstract state is a nonempty set of concrete states and
every concrete state is contained in at least one abstract state.
The following definitions are relative to a particular given abstraction V.

Definition 9. Given a set U C V' of abstract states, the conretization of U is
the set of concrete states corresponding to U. It is written as U] and defined

as Uyep -

(:Ud

o 1o to| e

Figure 1: An abstraction of a game structure

Definition 10. Given a set of concrete states T C V', the under-approximation
of T is written T and defined as {v eV |v C T}.

Definition 11. Given a set of concrete states T C V', the over-approximation
of T is written TV and defined as {v €V [vNT # 0}.

Definition 12. An abstraction is precise for T C S iff Tunder = over,

For any T C S we have T"der| C T C T°v| . Consequently, if V is precise
for T, then TWnder| = T = Tover|

Figure 1 gives a sample game structure and one possible abstraction of it.
The concrete state space is {1,2,3,4,5,6,7}, where {2,3,4} is controlled by
player 2 and the rest by player 1. Its abstraction consists of four states: A = {1},
B = {5,6}, C = {2,3,4}, and D = {7}. Tt is precise for the set of initial
states {1} and for {7}. For instance, we have cpre,({5,6,7}) = {3,5,6,7},
(1)O{7} = {1,3,5,6,7}, {B,C}| = {2,3,4,5,6}, {6}der =) {3,5,6}under =
{C}, {6}°vr = {C}, and {3,5,6}°V" = {B,C}.

4 Three-valued Abstraction Refinement

How to obtain an abstraction that is precise enough to answer a question like
”can player 1 win”? The general approach is abstraction refinement, that is,
the use of an algorithm that takes an initial abstraction and refines it until it
becomes sufficiently precise. One popular technique for this is counter-example
guided control (see [3]), where a counter-example in the abstract game is an-
alyzed to yield either a counter-example in the concrete game (in which case
the property in question does not hold) or a refined abstraction. If the re-
fined abstraction contains no other counter-example, then the property holds.
Otherwise, this counter-example will be analyzed in the same way.

In [2], de Alfaro and Roy propose an alternative approach, three-valued ab-
straction refinement, which works as follows. Given an abstraction that is precise
for the set of initial states, we compute the (abstract) must-win states, may-win
states, and never-win states for player 1. If the may-win states do not contain

while true do
Winust = pY. (Tunder U Cprelllnder(y))
Winay := pY.(T°V" U cpref’ (Y))
if Winay N 1" =) then return NO
if Winust N I £ () then return YES
choose v € (Wiay \ Wiust) N cpred’® (Winust)
let v1 = vNepre;(Wiust!)
let vg=v\ vy
Vi (V\ {oh) U {or, 02}
done

Figure 2: Three-valued abstraction refinement for reachability games

an initial state, then player 1 has no chance to win!. On the other hand, if one
of the must-win states is initial, then we know that player 1 can win the game.
If neither is the case, then the abstraction is not yet precise enough and must
be refined. The refinement, which depends on the game objective, will turn one
of the may-win states that is not a must-win state into either a must-win or a
never-win state. Afterwards the process is repeated.

4.1 Algorithm for Reachability Games

In a concrete game structure, the set of player 1’s winning states for a reach-
ability objective 0T is computed by a fixed point iteration involving the con-
trollable predecessors operator. On the abstract level, we can only approximate
the controllable predecessors. Accordingly, under-approximating will yield the
must-win states and over-approximating will yield the may-win states, which
always include the former. The set of never-win states simply is the comple-
mentation of the set of may-win states. The algorithm? is given in figure 2. If
the abstraction is not sufficiently precise, an abstract state v at the may/must
border, that is v € (Wmay \ Wiust) N cpre; (Wmust |)V, is chosen and split
into two, one of which will contain exactly those concrete states in v that are
controllable predecessors (for player 1) of the must-win concretization.

Let us apply the algorithm to the abstraction in figure 1. We have Wiyt =
{C,D} and Wy = {A4,B,C,D}, s0 Wnay \ Wiust = {4, B}. Then, since
cpre¥ ({C, D}) = {B,C, D}, B will be chosen and split into {2,4} and the
new must-win state {3}. Because of this, in the next iteration of the loop,
Juwder — A will be a must-win state, so the abstraction does not need to be
refined further and the algorithm will return yes.

4.2 Algorithm for Safety Games

Safety games are somewhat dual to reachability games. Player 1 loses a game
with objective OT iff player 2 wins the game with objective ¢(S \ T'). That is:

(DET = 5\ (2)0(S\T)

1We always assume that player 2 behaves ”intelligent”.
2We abbreviate cpre; (Y|)ndeT by cprey"der(Y) and cpre; (Y|)°V" by cpre§Ver (Y).

while true do
Winust := vY.(T"4e" 0 cpreynder(v7))
Winay := vY.(T°V" N cpred® (Y))
if Winay N 1" =) then return NO
if Winust N I £ () then return YES
choose v € (Wiay \ Wiust) N cpreg’ (V- \ Winay)
let v1 = vNceprey(S\ Winayl)
let vy =v\ v
V= (V\ {o}) U {or, 02}
done

Figure 3: Three-valued abstraction refinement for safety games

The algorithm (see figure 3) makes use of this fact and therefore is very
similar to the previous one. Since we are dealing with a safety objective, the re-
finement takes place at the border between may- and never-win states. Because
of the duality, this is (Wmay \ Wmust) N cpres¥® (V \ Wnay).

4.3 Algorithm for Parity Games

The algorithm for parity games, given in figure 4, is much more complex than
the other two, but the general scheme is still the same. The must-win and may-
win states are computed using nested fixed point iterations, where the algorithm
assumes the following definition:

o F; = :
v otherwise

def {u if i is odd
o win(op, U, k) ' F Vi ... vYy.UU (B A op(Y;)) U- - - U (BEMer nop(Yy))
Furthermore, the algorithm relies on a recursive procedure for computing

the abstract states that may be split.

4.4 Termination

The three given algorithms produce a correct answer—if they terminate. Termi-
nation is guaranteed if there exists a finite region algebra for the game structure,
i.e., an abstraction that is

e closed under boolean operations, and
e closed under controllable predecessor operators.

For instance, this is the case for timed games.

4.5 Comparison with CEGAR

The presented algorithms never produce a finer abstraction than the counter-
example guided approach in order to prove a property. However, the latter
may require more refinement that the former. The three-valued algorithms do

procedure split(V,Unay, Unust, k) = begin
if k odd then
P:= {(’U, ’U1,U2) | v e {Bk N (Umay \ Umust) N Cprecl)ver(Umust)}y
vy =vN Cprel(Umustl)va = \ V1,01 7é (Z); %] 7£ @}
else
P = {(0,01,2) | 0 € {Bi) (Unnay \ Unnust) 1 epre5™ (V' \ Uy},
v1 =vNepreg(V \ Umay)l), v2 = v \ vi,v1 # 0,02 # 0}
if k=0 then return P

let Upyay = win(cpre®®, Upust, K — 1)
return P Usplit(V,Up s Unust; kK — 1)

end

while true do
Winust := win(cpref™der () n)
Winay 1= win(cpre§¥e”, 0, n)
if Winay NI = () then return NO
if Winust N 1™ £ () then return YES
choose (v,v1,v2) € split(V, Wimay, Wiust, 1)
Vo= (VA {v}) U{vr,ve}

done

Figure 4: Three-valued abstraction refinement for parity games

not explicitly construct the abstract game but heavily use approximations of
the controllable predecessors operator. CEGAR, however, works with abstract
must transitions for player 1 and abstract may transitions for player 2. To be
precise they should be represented as hyper-edges but this is not done to save
space, causing a loss of precision.

References

[1] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In Computer Aided Verification, pages 154—
169, 2000.

[2] L. de Alfaro and P. Roy. Solving games via three-valued abstraction refine-
ment. In L. Caires and V. T. Vasconcelos, editors, CONCUR, volume 4703
of Lecture Notes in Computer Science, pages 74-89. Springer, 2007.

[3] T. Henzinger, R. Jhala, and R. Majumdar. Counterexample-guided control.
In Proc. 30th Int. Colloquium on Automata, Languages, and Programming

(ICALP), pages 886-902, 2003.

