Solving Games Via Three-Valued Abstraction Refinement

Georg Neis

Advisor: Rayna Dimitrova

July 17, 2008

Introduction

- games are important for verification and synthesis
- problem: size of state-space
- solution: abstraction

Games

- game structure $G=(S, \lambda, \delta)$
- turn function $\lambda: S \rightarrow\{1,2\}$ (so $S=S_{1} \cup S_{2}$)
- transition function $\delta: S \rightarrow 2^{S} \backslash \emptyset$

Example

$S=\{1,2,3,4,5,6,7\}$

Game Objectives

- game objective is an ω-regular language $\Phi \subseteq S^{\omega}$
- to win, sequence of states must be in this language
- here: reachability and safety
- reachability: $\diamond T$ where $T \subseteq S$ denotes $\left\{\sigma \in S^{\omega} \mid \exists k \geq 0 . \sigma[k] \in T\right\}$
- safety: $\square T$ where $T \subseteq S$ denotes $\left\{\sigma \in S^{\omega} \mid \forall k \geq 0 . \sigma[k] \in T\right\}$

Strategies

- strategy is a function $\pi_{i}: S^{*} \times S_{i} \rightarrow S$
- outcome $\left(s, \pi_{1}, \pi_{2}\right)=\sigma \in S^{\omega}$ such that $\forall k \geq 0 . \sigma[k] \in S_{i} \Longrightarrow \sigma[k+1]=\pi_{i}(\sigma[0 . . k])$
- s is winning for player 1 with objective Φ iff $\exists \pi_{1} . \forall \pi_{2}$. outcome $\left(s, \pi_{1}, \pi_{2}\right) \in \Phi$
- $\langle 1\rangle \Phi:=\{s \in S \mid s$ is winning for player 1 with objective $\Phi\}$

Controllable Predecessors

- cpre $_{1}: 2^{S} \rightarrow 2^{S}$
- $\operatorname{cpre}_{1}(T)=\left\{s \in S_{1} \mid \delta(s) \cap T \neq \emptyset\right\} \cup\left\{s \in S_{2} \mid \delta(s) \subseteq T\right\}$

Goal

- given game objective Φ
- given set of initial states $I \subseteq S$
- decide $I \cap\langle 1\rangle \Phi \stackrel{?}{=} \emptyset$

Example

$\Phi=\diamond\{7\}$
$\operatorname{cpre}_{1}(\{7\})=\{5,6,7\}$
$\operatorname{cpre}_{1}(\{5,6,7\})=\{3,5,6,7\}$
$\operatorname{cpre}_{1}(\{3,5,6,7\})=\{1,3,5,6,7\}$
$\langle 1\rangle \Phi=\{1,3,5,6,7\}$

Abstractions

- an abstraction of $G=(S, \lambda, \delta)$ is a set $V \subseteq 2^{S} \backslash\{\emptyset\}$ of abstract states
- such that $\bigcup V=S$
- so each abstract state is a nonempty set of concrete states

Abstractions

Abstractions

$$
V=\{A, B\}=\{\{1,2,3,4\},\{5,6\}\}
$$

Abstractions

concrete states corresponding to a set U of abstract states:

$$
U \downarrow:=\bigcup_{u \in U} u
$$

Abstractions

concrete states corresponding to a set U of abstract states:

$$
U \downarrow:=\bigcup_{u \in U} u
$$

for instance: $\{B\} \downarrow=\{5,6,7\},\{A, B\} \downarrow=S$

Abstractions

abstract states corresponding to a set T of concrete states?

Abstractions

abstract states corresponding to a set T of concrete states?

- under-approximation $T^{\text {under }}:=\{v \in V \mid v \subseteq T\}$ e.g. $\{1\}^{\text {under }}=\emptyset$ and $\{1,3,5,6,7\}^{\text {under }}=\{B\}$

Abstractions

abstract states corresponding to a set T of concrete states?

- under-approximation $T^{\text {under }}:=\{v \in V \mid v \subseteq T\}$ e.g. $\{1\}^{\text {under }}=\emptyset$ and $\{1,3,5,6,7\}^{\text {under }}=\{B\}$
- over-approximation $T^{\text {over }}:=\{v \in V \mid v \cap T \neq \emptyset\}$ e.g. $\{1\}^{\text {over }}=\{A\}$ and $\{1,3,5,6,7\}^{\text {over }}=\{A, B\}$

Abstractions

- for any $T \subseteq S$ we have $T^{\text {under }} \downarrow \subseteq T \subseteq T^{\text {over }} \downarrow$
- abstraction is precise for T iff $T^{\text {under }}=T^{\text {over }}$

Abstraction Refinement

- how to find a good abstraction?
- approach: abstraction refinement
- popular technique: CEGAR
- alternative proposal: three-valued analysis

Abstraction Refinement

- take abstraction
- compute must-win states, never-win states, and may-win states
- if not sufficiently precise: reduce number of may-win states and repeat
- refinement depends on the property in question!

Abstraction Refinement

- in concrete game: state is winning if it's a cpre of a winning state
- in abstract game? approximate!

Algorithm for Reachability Games

```
while true do
    W must }:=\muY.(T\mp@subsup{T}{}{\mathrm{ under }}\cup\mp@subsup{\mathrm{ cpre}}{1}{}(Y\downarrow)\mp@subsup{)}{}{\mathrm{ under }}
    W may }:=\muY.(\mp@subsup{T}{}{\mathrm{ over }}\cup\mp@subsup{\mathrm{ cpre }}{1}{}(Y\downarrow\mp@subsup{)}{}{\mathrm{ over }}
    if }\mp@subsup{W}{\mathrm{ may }}{}\cap\mp@subsup{I}{}{\primeover }=\emptyset\mathrm{ then return NO
    if }\mp@subsup{W}{\mathrm{ must }}{}\cap/\mp@subsup{I}{}{\mathrm{ under }}\not=\emptyset\mathrm{ then return YES
    choose v\in( W may \ W Wmust )}\cap\mp@subsup{\mathrm{ cpre }}{1}{}(\mp@subsup{W}{\mathrm{ must }}{}\downarrow\mp@subsup{)}{}{\mathrm{ over}
    let }\mp@subsup{v}{1}{}=v\cap\mp@subsup{\textrm{cpre}}{1}{}(\mp@subsup{W}{\mathrm{ must }}{}\downarrow
    let }\mp@subsup{v}{2}{}=v\\mp@subsup{v}{1}{
    V:=(V\{v})\cup{\mp@subsup{v}{1}{},\mp@subsup{v}{2}{}}
done
```


Algorithm for Reachability Games

Algorithm for Reachability Games

$$
\begin{aligned}
& W_{\text {must }}:=\mu Y .\left(T_{\text {under }}^{\text {und }} \cup \text { cpre }_{1}(Y \downarrow)^{\text {under }}\right)=\{C, D\} \\
& W_{\text {may }}:=\mu Y .\left(T^{\text {over }} \cup \operatorname{cpre}_{1}(Y \downarrow)^{\text {over }}\right)=\{A, B, C, D\}
\end{aligned}
$$

Algorithm for Reachability Games

if $W_{\text {may }} \cap I^{\text {over }}=\emptyset$ then return NO if $W_{\text {must }} \cap I^{\text {under }} \neq \emptyset$ then return YES

Algorithm for Reachability Games

choose $v \in\left(W_{\text {may }} \backslash W_{\text {must }}\right) \cap \operatorname{cpre}_{1}\left(W_{\text {must }} \downarrow\right)^{\text {over }}$

Algorithm for Reachability Games

let $v_{1}=v \cap \operatorname{cpre}_{1}\left(W_{\text {must } \downarrow} \downarrow\right)$
let $v_{2}=v \backslash v_{1}$

Algorithm for Reachability Games

$$
V:=(V \backslash\{v\}) \cup\left\{v_{1}, v_{2}\right\}
$$

Algorithm for Safety Games

- dual to reachability: $\langle 1\rangle \square T=S \backslash\langle 2\rangle \diamond(S \backslash T)$

Algorithm for Safety Games

- dual to reachability: $\langle 1\rangle \square T=S \backslash\langle 2\rangle \diamond(S \backslash T)$
- refinement for reachability: choose $v \in\left(W_{\text {may }} \backslash W_{\text {must }}\right) \cap \operatorname{cpre}_{1}\left(W_{\text {must }} \downarrow\right)^{\text {over }}$

Algorithm for Safety Games

- dual to reachability: $\langle 1\rangle \square T=S \backslash\langle 2\rangle \diamond(S \backslash T)$
- refinement for reachability: choose $v \in\left(W_{\text {may }} \backslash W_{\text {must }}\right) \cap \operatorname{cpre}_{1}\left(W_{\text {must }} \downarrow\right)^{\text {over }}$
- refinement for safety: choose $v \in\left(W_{\text {may }} \backslash W_{\text {must }}\right) \cap \operatorname{cpre}_{2}\left(W_{\text {must }}^{2} \downarrow\right)^{\text {over }}$ i.e., $v \in\left(W_{\text {may }} \backslash W_{\text {must }}\right) \cap \operatorname{cpre}_{2}\left(V \backslash W_{\text {may }} \downarrow\right)^{\text {over }}$

Algorithm for Safety Games

```
while true do
```



```
    W may := \nuY.( }\mp@subsup{T}{}{\mathrm{ over }}\cap\mp@subsup{\operatorname{cpre}}{1}{}(Y\downarrow\mp@subsup{)}{}{\mathrm{ over }}
    if }\mp@subsup{W}{\mathrm{ may }}{}\cap\mp@subsup{I}{}{\primever}=\emptyset\mathrm{ then return NO
    if }\mp@subsup{W}{\mathrm{ must }}{}\cap\mp@subsup{I}{}{\mathrm{ under }}\not=\emptyset\mathrm{ then return YES
    choose v\in( }\mp@subsup{W}{\mathrm{ may }}{\}\mp@subsup{W}{\mathrm{ must }}{})\cap\mp@subsup{\operatorname{cpre}}{2}{(}(V\\mp@subsup{W}{\mathrm{ may }}{}\downarrow\mp@subsup{)}{}{\mathrm{ over}
    let }\mp@subsup{v}{1}{}=v\cap\mp@subsup{\operatorname{cpre}}{2}{(}(S\backslash\mp@subsup{W}{\mathrm{ may }}{}\downarrow
    let }\mp@subsup{v}{2}{}=v\\mp@subsup{v}{1}{
    V:=(V\{v})\cup{\mp@subsup{v}{1}{},\mp@subsup{v}{2}{}}
done
```


Algorithm for Safety Games

$$
\Phi=\square\{1,2,3,4\}
$$

Algorithm for Safety Games

$W_{\text {must }}:=\nu Y .\left(T^{\text {under }} \cap \operatorname{cpre}_{1}(Y \downarrow)^{\text {under }}\right)=\{\mathrm{C}\}$
$W_{\text {may }}:=\nu Y .\left(T^{\text {over }} \cap \operatorname{cpre}_{1}(Y \downarrow)^{\text {over }}\right)=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$

Algorithm for Safety Games

if $W_{\text {may }} \cap I^{\text {over }}=\emptyset$ then return NO
if $W_{\text {must }} \cap I^{\text {under }} \neq \emptyset$ then return YES

Algorithm for Safety Games

choose $v \in\left(W_{\text {may }} \backslash W_{\text {must }}\right) \cap \operatorname{cpre}_{2}\left(V \backslash W_{\text {may }} \downarrow\right)^{\text {over }}$

Algorithm for Safety Games

let $v_{1}=v \cap \operatorname{cpre}_{2}\left(S \backslash W_{\text {may }} \downarrow\right)$
let $v_{2}=v \backslash v_{1}$

Algorithm for Safety Games

$$
V:=(V \backslash\{v\}) \cup\left\{v_{1}, v_{2}\right\}
$$

Termination of the Algorithms

- correctness $\sqrt{ }$
- termination?

Termination of the Algorithms

- correctness $\sqrt{ }$
- termination? at least if there exists a finite region algebra for the game structure, i.e., an abstraction that is
- closed under boolean operations
- closed under controllable predecessor operators

Comparison to CEGAR

- 3-valued approach never needs more refinement steps
- however, CEGAR may need more than 3-valued approach
- reason is loss of precision due to abstract edges

