
Solving Games Via Three-Valued Abstraction

Refinement

Georg Neis
Advisor: Rayna Dimitrova

July 17, 2008

Introduction

◮ games are important for verification and synthesis

◮ problem: size of state-space

◮ solution: abstraction

Games

◮ game structure G = (S , λ, δ)

◮ turn function λ : S → {1, 2} (so S = S1 ∪· S2)

◮ transition function δ : S → 2S \ ∅

Example

player 1

player 2

1

2

3

4

5

6 7

S = {1, 2, 3, 4, 5, 6, 7}

Game Objectives

◮ game objective is an ω-regular language Φ ⊆ Sω

◮ to win, sequence of states must be in this language

◮ here: reachability and safety

◮ reachability: ♦T where T ⊆ S denotes
{σ ∈ Sω | ∃k ≥ 0.σ[k] ∈ T}

◮ safety: �T where T ⊆ S denotes
{σ ∈ Sω | ∀k ≥ 0.σ[k] ∈ T}

Strategies

◮ strategy is a function πi : S∗ × Si → S

◮ outcome(s, π1, π2) = σ ∈ Sω such that

∀k ≥ 0. σ[k] ∈ Si =⇒ σ[k+1] = πi (σ[0..k])

◮ s is winning for player 1 with objective Φ iff
∃π1.∀π2. outcome(s, π1, π2) ∈ Φ

◮ 〈1〉Φ := {s ∈ S | s is winning for player 1 with objective Φ}

Controllable Predecessors

◮ cpre1 : 2S → 2S

◮ cpre1(T) = {s ∈ S1 | δ(s) ∩ T 6= ∅} ∪ {s ∈ S2 | δ(s) ⊆ T}

Goal

◮ given game objective Φ

◮ given set of initial states I ⊆ S

◮ decide I ∩ 〈1〉Φ ?
= ∅

Example

1

2

3

4

5

6 7

Φ = ♦{7}
cpre1({7}) = {5, 6, 7}
cpre1({5, 6, 7}) = {3, 5, 6, 7}
cpre1({3, 5, 6, 7}) = {1, 3, 5, 6, 7}
〈1〉Φ = {1, 3, 5, 6, 7}

Abstractions

◮ an abstraction of G = (S , λ, δ) is a set V ⊆ 2S \ {∅} of
abstract states

◮ such that
⋃

V = S

◮ so each abstract state is a nonempty set of concrete states

Abstractions

1

2

3

4

5

6 7

Abstractions

1

2

3

4

5

6 7

A

B

V = {A,B} = {{1, 2, 3, 4}, {5, 6}}

Abstractions

1

2

3

4

5

6 7

A

B

concrete states corresponding to a set U of abstract states:

U↓ :=
⋃

u∈U

u

Abstractions

1

2

3

4

5

6 7

A

B

concrete states corresponding to a set U of abstract states:

U↓ :=
⋃

u∈U

u

for instance: {B}↓ = {5, 6, 7}, {A,B}↓ = S

Abstractions

1

2

3

4

5

6 7

A

B

abstract states corresponding to a set T of concrete states?

Abstractions

1

2

3

4

5

6 7

A

B

abstract states corresponding to a set T of concrete states?

◮ under-approximation T under := {v ∈ V | v ⊆ T}
e.g. {1}under = ∅ and {1, 3, 5, 6, 7}under = {B}

Abstractions

1

2

3

4

5

6 7

A

B

abstract states corresponding to a set T of concrete states?

◮ under-approximation T under := {v ∈ V | v ⊆ T}
e.g. {1}under = ∅ and {1, 3, 5, 6, 7}under = {B}

◮ over-approximation T over := {v ∈ V | v ∩ T 6= ∅}
e.g. {1}over = {A} and {1, 3, 5, 6, 7}over = {A,B}

Abstractions

◮ for any T ⊆ S we have T under↓ ⊆ T ⊆ T over↓
◮ abstraction is precise for T iff T under = T over

Abstraction Refinement

◮ how to find a good abstraction?

◮ approach: abstraction refinement

◮ popular technique: CEGAR

◮ alternative proposal: three-valued analysis

Abstraction Refinement

◮ take abstraction

◮ compute must-win states, never-win states, and may-win
states

◮ if not sufficiently precise: reduce number of may-win states
and repeat

◮ refinement depends on the property in question!

Abstraction Refinement

◮ in concrete game: state is winning if it’s a cpre of a winning
state

◮ in abstract game? approximate!

Algorithm for Reachability Games

while true do

Wmust := µY .(T under ∪ cpre1(Y↓)under)
Wmay := µY .(T over ∪ cpre1(Y↓)over)
if Wmay ∩ I over = ∅ then return NO

if Wmust ∩ I under 6= ∅ then return YES

choose v ∈ (Wmay \ Wmust) ∩ cpre1(Wmust↓)over
let v1 = v ∩ cpre1(Wmust↓)
let v2 = v \ v1

V := (V \ {v}) ∪ {v1, v2}
done

Algorithm for Reachability Games

1

2

3

4

5

6 7

A

B

C

D

Algorithm for Reachability Games

1

2

3

4

5

6 7

A

B

C

D

Wmust := µY .(T under ∪ cpre1(Y↓)under) = {C ,D}
Wmay := µY .(T over ∪ cpre1(Y↓)over) = {A,B ,C ,D}

Algorithm for Reachability Games

1

2

3

4

5

6 7

A

B

C

D

if Wmay ∩ I over = ∅ then return NO
if Wmust ∩ I under 6= ∅ then return YES

Algorithm for Reachability Games

1

2

3

4

5

6 7

A

B

C

D

choose v ∈ (Wmay \ Wmust) ∩ cpre1(Wmust↓)over

Algorithm for Reachability Games

1

2

3

4

5

6 7

A

C

D

let v1 = v ∩ cpre1(Wmust↓)
let v2 = v \ v1

Algorithm for Reachability Games

1

2

3

4

5

6 7

A

C

D

V := (V \ {v}) ∪ {v1, v2}

Algorithm for Safety Games

◮ dual to reachability: 〈1〉�T = S \ 〈2〉♦(S\T)

Algorithm for Safety Games

◮ dual to reachability: 〈1〉�T = S \ 〈2〉♦(S\T)

◮ refinement for reachability:
choose v ∈ (Wmay \ Wmust) ∩ cpre1(Wmust↓)over

Algorithm for Safety Games

◮ dual to reachability: 〈1〉�T = S \ 〈2〉♦(S\T)

◮ refinement for reachability:
choose v ∈ (Wmay \ Wmust) ∩ cpre1(Wmust↓)over

◮ refinement for safety:
choose v ∈ (Wmay \ Wmust) ∩ cpre2(W

2
must↓)over

i.e., v ∈ (Wmay \ Wmust) ∩ cpre2(V \ Wmay↓)over

Algorithm for Safety Games

while true do

Wmust := νY .(T under ∩ cpre1(Y↓)under)
Wmay := νY .(T over ∩ cpre1(Y↓)over)
if Wmay ∩ I over = ∅ then return NO

if Wmust ∩ I under 6= ∅ then return YES

choose v ∈ (Wmay \ Wmust) ∩ cpre2(V \ Wmay↓)over
let v1 = v ∩ cpre2(S \ Wmay↓)
let v2 = v \ v1

V := (V \ {v}) ∪ {v1, v2}
done

Algorithm for Safety Games

1

2 3

4 5

A

B C

D

Φ = �{1, 2, 3, 4}

Algorithm for Safety Games

1

2 3

4 5

A

B C

D

Wmust := νY .(T under ∩ cpre1(Y↓)under) = {C}
Wmay := νY .(T over ∩ cpre1(Y↓)over) = {A, B, C}

Algorithm for Safety Games

1

2 3

4 5

A

B C

D

if Wmay ∩ I over = ∅ then return NO
if Wmust ∩ I under 6= ∅ then return YES

Algorithm for Safety Games

1

2 3

4 5

A

C

D

choose v ∈ (Wmay \ Wmust) ∩ cpre2(V \ Wmay↓)over

Algorithm for Safety Games

1

2 3

4 5

A

C

D

let v1 = v ∩ cpre2(S \ Wmay↓)
let v2 = v \ v1

Algorithm for Safety Games

1

2 3

4 5

A

C

D

V := (V \ {v}) ∪ {v1, v2}

Termination of the Algorithms

◮ correctness
√

◮ termination?

Termination of the Algorithms

◮ correctness
√

◮ termination? at least if there exists a finite region algebra for
the game structure, i.e., an abstraction that is

◮ closed under boolean operations
◮ closed under controllable predecessor operators

Comparison to CEGAR

◮ 3-valued approach never needs more refinement steps

◮ however, CEGAR may need more than 3-valued approach

◮ reason is loss of precision due to abstract edges

