
Synthesis of Asynchronous Systems

Prepared by: Christine Rizkallah
Supervisor: Sven Schewe

Date: 22, July 2008

1 Introduction

A synthesis algorithm takes a specification and generates an implementation
that is guaranteed to satisfy this specification [1].

Asynchronous systems are important because they are a natural way to
model many problems, for example, distributed software modules or processes
running at different speeds.

Synthesis of asynchronous systems is more difficult than that of synchronous
systems. This is because we are not only interested in a single program, but
rather in how the whole system works correctly provided that the program we
are considering is usually not scheduled all of the time. Thus, the program does
not always see changes to the environment that might affect its output. To
ensure that the program satisfies a certain specification we need to ensure that
it satisfies the specification regardless of the environment’s input.

2 Asynchronicity

Programs take inputs from the environment. Those inputs are invisible to the
program until the program is scheduled. The output of the program may vary
according to the input. To ensure that a certain specification or property is
satisfied by the program, we need to ensure that it is satisfied regardless of
the input of the environment and the scheduler. The following figure shows
a program having an input variable a from the environment and an output
variable b.

env program
a b

Consider the following sequence of states where a is the boolean input vari-
able to the program which is chosen by the environment, b is the boolean out-
put variable, and the boolean variable s states whether or not the program is
scheduled. Note that if the program is not scheduled, then the environment is
scheduled.

(¬a, ¬b, ¬s), (a, ¬b, ¬s), (a, b, s), (a, b, ¬s) ...

We assume that the environment cannot change the input of the program
while the program is scheduled, therefore, the input of the program at step two
and three is the same. The program is only scheduled at the third step (a, b, s).
Thus, that is the only ”visible” state to the program, the rest is ”invisible”.

1



3 Computational Model

In an asynchronous system we use two types of trees. The behaviour tree de-
scribes the behaviour of a program under the assumption that the program is
always scheduled. The computation tree captures all possible system behaviours.

3.1 Example

As an illustrative example, consider the following program which has only two
states, input variable a and output variable b. In each step when it is scheduled
it moves to the other state and gives the opposite output, regardless of its input
1.

¬b b

a,¬a

a,¬a

We now want to illustrate the difference between the behaviour tree and the
computation tree of this program2.

We start by the behaviour tree which describes how a program behaves when
it is always scheduled. Each level of this tree is a step where the program is
scheduled. The left branch represents that the program is scheduled with input
¬a and the right branch represents that the program is scheduled with input a.

The behaviour tree of this program changes the output at each level, that is,
everytime the program is scheduled, regardless of the input. For this program
it looks as follows:

Now we show the computation tree which is more general and captures all
possible system behaviours. It has three directions. The leftmost represents
that the program is not scheduled and environment sends input ¬a, the middle
one that the program is not scheduled and environment sends input a, and the
rightmost represents that the program is scheduled. The following is the com-
putation tree of the previous program:

The computation tree can be constructed from the behaviour tree. This is
because the behaviour tree establishes all possible system behaviours: from the
behaviour tree we know what output the program gives when scheduled, and

1Note that we assume from now on that initially the environment sends input a.
2Red and blue nodes represent nodes with output ¬b and output b respectively.

2



we know that when the program is not scheduled its state in the behaviour tree
does not change and hence, output does not change either. Thus, we know what
output the computation tree has at each node.

4 Translating between Trees

4.1 Synchronous Setting

In a synchronous setting the behaviour tree and the computation tree are es-
sentially the same since the program is always scheduled. The only difference
is that in the computation tree directions are added to the labels of the nodes.
Thus, it is very easy to transform each of them to the other.

Checking whether the computation tree corresponds to a behaviour tree
could be done locally by checking that the directions are correct. So this check
is easy to make.

Behaviour Tree:

√ ⇓ ⇑ √

Computation Tree:

4.2 Asynchronous Setting

In an asynchronous setting this transformation is harder. As we have discussed
in Section 3 it is possible into transform from a behaviour tree to a computation
tree. But the question is, whether the other direction is also valid.

The answer is no, not every computation tree has a corresponding behaviour
tree. Consider the following computation tree3:

It has no corresponding behaviour tree, since after the first scheduling of
the program given input a, we get two different outputs at two different parts
in the computation tree. Thus, at the same node in the behaviour tree the
program outputs two different outputs, that is, the program behaves differently
in the same situation. In the asynchronous setting, checking whether a com-
putation tree has a corresponding behaviour tree cannot be done locally, since

3White nodes are either red or blue, we do not care about their value.

3



every node in the behaviour tree has infinitely many corresponding nodes in the
computation tree. This is of course computationally infeasible.

5 Synthesis Algorithm

A synthesis algorithm takes a specification and generates an implementation
that is guaranteed to satisfy this specification. Our aim is to present a synthesis
algorithm for asynchronous systems. We will first describe the procedure for
deterministic safety tree automata (DSTA), because of their simple acceptance
condition, then show some extensions to other more general types of automata.

Initially we have an automaton that reads a computation tree and accepts
if the tree satisfies a certain specification, that is, it is a singleton game going
through the computation tree and trying to find a branch which does not satisfy
the specification. The first step is to transform this automaton to a similar one
which realizes the acceptance game on the behaviour tree.

In Subsection 5.1 we will explain how to do this automata transformation.
The output of this transformation will be a universal ε safety tree automaton
(UεSTA) which runs on a behaviour tree and accepts if the specification is
satisfied. In Subsection 5.2 we will describe how to eliminate the ε transitions
in the UεSTA automaton to get a corresponding universal safety tree automaton
(USTA).

At this stage we have reduced our problem to a non-emptiness test for USTA,
then generating a program that is guaranteed to satisfy the specification of the
automaton.

This is an overview of the whole procedure:

DSTA ACT ⇒ UεSTA ABT ⇒ USTA ABT ⇒ NET ⇒ Program

5.1 Automata Transformation

In this subsection we will describe how to transform a DSTA reading the com-
putation tree to a UεSTA accepting the behaviour tree.

The automaton running on the computation tree ACT is a four tuple (2I ×
2S ×2O, Qdir, q0, δ) where I is the input variable to the program, S is a boolean
variable representing the scheduling decision (0 means environment scheduled
and 1 program scheduled), and O is the output variable of the program. Qdir are
the states of the automaton labeled by directions. q0 ∈ Qdir is the start state.
δ(q, i, s, o) = (q1, false, 0)∧ (q2, true, 0)∧ (q3, i, 1) is a function representing the
transition relations. It is a partial function that is not defined on inputs that
the safety automaton should reject on.

The corresponding automaton running on the behaviour tree ABT is a four
tuple (Q × 2I × 2S × 2O, dir, q0, δ

′) where I, S, and O mean the same as in
ACT . They are added to the label of the states Q. q0 ∈ Q is the initial state.
δ′(q, i, s, o) = (q1, false, 0, ε) ∧ (q2, true, 0, ε) ∧ (q3, i, 1, i) is a partial function
representing the transition relations.

5.2 Eliminating ε Transitions

In the last subsection we discussed how to transform a DSTA that reads the
computation tree to a UεSTA that reads the behaviour tree. In this section

4



we will explain how to remove those ε transitions and transform the obtained
UεTA to an equivalent USTA that reads the behaviour tree. Removing the ε

transitions could be done expanding the δ function using fixed point iteration.
This is done as follows:

δ′(q, i, s, o) = (q1, false, 0, o) ∧ (q2, true, 0, o) ∧ (q3, i, 1, i)

6 Extensions

In the last section we have described a synthesis algorithm for DSTA. In this
section we will briefly describe how this could be extended to other types of
automata. Universal Safety Tree Automata are obtained for free, the only dif-
ference is that there will be more conjuncts in the transition relation. Universal
Co-Büchi Automata are obtained by searching for ε cycles containing rejecting
states. This is done during the process of eliminating ε transitions. If a rejecting
state is found in a cycle, this information is saved and eventually the automata
rejects. Note that LTL formulas could be transformed into Universal Co-Büchi
Automata.

References

[1] S. Schewe and B. Finkbeiner. Synthesis of asynchronous systems. In 16th
International Symposium on Logic Based Program Synthesis and Transfor-
mation (LOPSTR 2006), pages 127–142. Springer Verlag, 2006.

5


