Timed Interfaces

Stefan Stattelmann
Seminar Games in Verification and Synthesis, Summer Term 2008

Tutor: Hans-Jorg Peter, Reactive Systems Group, Saarland University

1 Introduction

This text summarizes the theory of timed interfaces that can be used to model the interaction of components
in a system with timing constraints, as described in [dAHS02].

Complex real-time systems are made of several interacting components. The interaction between one such
component and its environment is described in terms of its interface. When two or more components are
combined, this could cause problems due to unexpected interaction between the components, which might
result in faulty behavior of the system or even a deadlock.

One classical approach for modelling such systems are timed automata ([AD94]). Such automata are basically
automata for w-regular languages that are augmented with one or more clocks that increase over time and
can be tested and reset on transitions in the automaton. With this extension, a time value can be attached
to every symbol in a word of the w-regular language the automaton accepts. Such an automaton then can
be used to model systems or parts of a system that have to fulfill timing constraints. When modelling the
components of a system as timed automata and then combining those automata to model the whole system,
some problems arise. It might be the case that at some point in time, one of the components can create
an output for another component which can not be handled by this component. In a very strict, sense this
would mean that the whole system is faulty, because it is possible to reach an erroneous state. Nevertheless,
the system might still be useful and correct as long as the “user” can avoid that the system enters the faulty
state by using the system “in the right way”.

In terms of interfaces this means that achieving correctness of the combined interface might be achieved by
making it more strict than the interfaces it is composed of, and thus make it safely usable, but less general.
The interface of a component can modeled as a game between two players Input and Output, where the
component is represented by Player Output and its environment by Player Input. The moves of Player Input
are the inputs that are accepted by the component (input assumptions) and the moves of Player Output
stand for the outputs the system can generate (output guarantees). An interface is well-formed as long as
there is some environment that can fulfill its the input assumptions.

This motivates the modelling of timed interfaces as timed games.

2 Timed Interfaces as Timed Games

Timed interfaces are modeled as timed games between two players, Input and Output, abbreviated I and
O. Those players have two types of moves, immediate moves which model a send or receive event in the
interface and timed moves, that represent an amount of time the player wants to wait for an event. If both
players decide to play a timed move from the time domain T (e.g T = R>¢ or T = N), global time advances
by the smaller value. Immediate actions always prevail timed actions and if both players play an immediate
move, one of them happens nondeterministically.

Only outcomes for which the global time diverges are meaningful for modeling interfaces because liveness
is required, but one player could block progress by playing a sequence of timed moves that get smaller and
smaller. To forbid this so-called Zeno behavior ([MPS95]), it has to be defined for each round of the game

which player can be blamed for playing first. So, if one player is playing all the time but global time does
not diverge, this player blocks the game. This is also the case if a player runs out of moves to play.

For a timed interface to be well-formed, both players have to be able to win the game with the goal that
time diverges or the other player can be made responsible for blocking the progress of time.

Definitions

init

A timed interface is a tuple P = (Sp, s% ,Acts%;, Acts%7 p%,, pg) such that:
e Sp is a set of states.
o st € Sp is the initial state.

° Acts{; and Acts% are disjoint sets of immediate input and immediate output actions, respectively.
Furthermore, Actsp = Acts%, U Ac?fs7oD denotes the set of all immediate actions, I 713 = Acts{; UT is the
set of all input actions and I'S = ActsQ UT describes the set of all output actions. The elements in T
are timed actions. Acts%), Actsg and T have to be disjoint.

) p{, C Sp x F{D x Sp is the input transition relation and ,0703 C Sp X Fg X Sp the output transition
relation. Both relations are required to be deterministic.

For v € {I,0} the set I'}(s) = {a € I’} | 3s’ € Sp.(s,a, ") € p})} describes the set of moves for player
~ in state s. If there are any moves available for player v, she always can also take the timed action O:
IA(s) #0 = (s,0,5) € pp.

For all states s € Sp and moves oy € I'(s) and ap € I'S(s) the outcome dp(s,ar,ap0) = (a, §',bl) with
(s,a,8") € ph U p@ and bl € {I,0} is defined as follows:

o If ar, ap € T, then o = min{as,ap} and bl = I if a; < ap or bl = O otherwise. Note that this
defintion is asymmetric to capture the cause-effect relation between inputs and outputs.

o If oy € Actsp and ap € T, then a = oy and bl = I.
e If a; € T and ap € Actsp, then a = ap and bl = O.
o If oy, ap € Actsp, then choose either « = oy and bl = I or a = ap and bl = O nondeterministically.

A strategy for player v € {I,0} is a partial function 77 : S5 — I} that assigns a move 77(5) € I'4(s) to
every finite sequence of states 5 € S5 whose final state is s, if I} # (). Otherwise, 77(5) is undefined.

Some state s € Sp is reachable in P if there are two strategies 7/ and 7@ such that there is an outcome that
visits s when the players play the game according to their strategies, starting from s%”t

A timed interface is well-formed if for every reachable state player I has strategy such that time diverges or
O is always blamed after some point in time and symmetrically, O has a strategy such that time diverges or
I can be blamed for blocking time.

Product and composition of timed interfaces

Two timed interfaces P and Q are composable if they have no overlapping output actions. Their shared
actions are defined as shared(P, Q) = Actsp N Actsg. The composition P || Q is constructed in two steps:
at first, compute the product P ® Q and then modify the transitions so that no error states can be entered.
Given two composable timed interfaces P and Q, their product P ® Q is defined as follows:

wnit wnit init)

e Spgo = Sp x Sg and sE o = (sp*, 58

o Actshgo = Actsh U Actsh \ shared(P, Q) and Acts@,o = Acts@ U Acts3.

° p{;.@Q is the set of transitions ((s1, s2), a, (s}, s5) such that if P can play the immediate input action «
from state s; to s}, Q must play the timed action 0. Symmetrically, if Q can play « € ActsIQ, P must
play the timed action O:

Proo = {((s1,82), v, (s, 85)|(s1, 0, 81) € pp and (s2,0,5) € pg} U
{((51a52)7a7 (8/175l2)|(327a’5,2) € pIQ and (517078/1) € p’{?}

o D50 is the set of transitions ((s1, s2), @, (s}, s5) such that if P can play the immediate output action
a from state s to s, Q can either play the immediate input action « from sy to s, or the timed
action 0. Symmetrically, if Q can play output move «, P can either play input move « or play the
timed action 0. If it is possible for the players to synchronize a move, they have to:

O _
PPeQ =
{((s1,52), a0, (], 85)|(s1, v, 81) € pB and (s2,3,55) € ph, B =aif a € Actsh or =0 otherwise} U
{((s1,52), a0, (s, 85)|(s2, v, sb) € pQ and (s1,5,5)) € ph, = if a € Acts], or 3 =0 otherwise}

The product of two interfaces might contain error states. There are two kinds of error states. If in some
state one of the interfaces can produce an output that cannot be accepted by the other interfaces, this state
is an immediate error state. To get a well-formed composition of two interfaces and to guarantee safety
of the composed system, it is not only necessary to stay out of the immediate error states, but it is also
necessary to avoid entering all states from which the Input Player does not have a winning strategy anymore
after removing the immediate error states. The composition P || Q can be obtained by restricting the input
behavior of P ® Q in such a way that the error states are never entered. The intuition behind this is that
when combining two components to form a new interface, it is not possible to modify the behavior of the
original components. Nevertheless, it is possible to restrict the way the new component can be used or, in
other words, which moves player I is allowed to make.

o Immediate error states: A state (s,t) € Spgo is an immediate error state if there is an shared action
o € shared(P, Q) such that 3s' : (s,a, ') € p@ and V' : (t,a,t') & ph or 3t : (t,a,t') € p3 and
Vs': (s,a,s") ¢ ph. The set of all immediate error states is denoted by i-errors(P, Q) C Spgo.

o Time error states: A state (s,t) € Spgg is a time error state if it is reachable in P ® Q, but there is
no strategy to win the game for player I in Spgo \ i-errors(P, Q). The set of all time error states is
denoted by t-errors(P, Q) with i-errors(P, Q) C t-errors(P, Q) C Spgo.

Two well-formed and composable interfaces P and Q are compatible if (s, s3%) ¢ t-errors(P, Q). The
composition P || Q is then defined like P ® Q, except that the input transition relation is restricted to
péHQ = phoo N (U x Actshyg x U) with U = Spgo \ t-errors(P, Q).

3 Timed Interface Automata

Timed interface automata are a different representation for timed interfaces. They are very similar to timed
automata ([AD94]) and many algorithms for checking properties of timed automata also work for timed
interface automata.

Timed interface automata use clock variables to model progress of time. Those variables can be tested
and reset during transitions in the automaton to model timing constraints of the interface. Furthermore,
in a timed interface automaton it is possible to specify input and output invariants for Player I and O
respectively. These invariant are boolean formulas over clock values (also called clock conditions) that can
express timing requirements for the moves of one player, namely how long the player is allowed to let time
progress until she has to play a move. In other words, as long as the invariant for one player is true, she
is allowed to do nothing but she has do something before her invariant gets false or she will be blamed for
blocking time and hence, will lose the game.

Example

sensor_done!

data_ready!
l y=4 y:=0
sensor_done? poll_data?

y:=0

' 6<z<8
sensor_read! sensor_read? f

(a) SensorUser (b) SensorControlUnit

Figure 1: Two interfaces for sensor access

Consider the timed interface automata pictured in Figure 1. The first one describes a user interfaces which
periodically requests data from a sensor by sending the output event sensor_read. The request has to be
completed by the environment through sending the input event sensor_done to the interface within 8 time
units. Note how the input/output invariants within the states of the automaton describe which moves are
allowed for Players I and O in each when interpreting the interface as a game. No invariant means that a
player is allowed to play any move, in particular she can also let time diverge. The meaning of the ouput
invariant in state p0 is that Player O (a component with interface SensorUser) has to play an immmediate
move at least every 10 time units, which in this case means request data from the sensor. Otherwise, Player
O loses the game which means the interface specification is violated. Similarly, Player I (other components
that are connected with SensorUser) has to reply to this request within some timeframe.

The second interface SensorControlUnit waits for the input signal sensor_read and then starts polling data
for 4 time units at some point in time. After that, it acknowledges that data has been collected with the
output signal sensor_done. Consider the two possible combinations of those interfaces in Figure 2. If the
product SensorUser & SensorControlUnit is used to model the combined interface of both components, the
combination might reach a faulty state if the SensorControlUnit starts polling data too early or too late.
This is due to the fact that the product interface does not model the interaction between the two clock
variables of the original interfaces. Namely, if SensorControlUnit starts its clock y before clock variable x
of SensorUser has been running for at least 2 time units, SensorControlUnit will be done before SensorUser
can process the result. Similarly, if SensorControlUnit starts y after the value of x is greater than 4, when
SensorControlUnit is done it will be to late for SensorUser to accept the input.

Since the transition that starts the polling of data is triggered by the input event poll_data, it is possible to
fix this problem by requiring the Input Player to play the move poll_data in the right time frame. In other
words, the interface is restricted in a way such that no error states are entered. The resulting combined
interface with more restrictive transitions is shown in Figure 2b.

Definition
A timed interface automaton is a tuple A = (Q., ¢4, Xa, Actsﬂt, Actsg, Irwi, Invg, pa) such that:
e ()4 is a finite set of locations (states of the automaton).

o ¢V € Q4 is the initial location.

e X, is the finite set of clocks of the automaton.

data_ready!

data_ready!

Inv! :2<2—y<4
plg2

plg2
dome] poll_data?
sensor_done! <<
sensor_done! poll_data? 6<z<8 2sesd
6<x<8 y:=0 =7 = y:=0
Inv© : z <10 p0q0 Inv! 12 <8 plql Inv© :z <10 p0q0 Inv! 2 <4 plql
sensor_read! § sensor_read! f
=10 z:=0 =10 z:=0
(a) SensorUser ® SensorControlUnit (b) SensorUser || SensorControlUnit

Figure 2: Combined Interfaces

o Acts!y and Actsf?‘ are finite and disjoint sets of input and output actions. Actsa = Actsly U Actsg
describes the set of all actions in A.

. Invf‘l : Qa — C[X4] and Irwg : Qa — C[X4] map an input/output invariant to each location in A,
where C[X 4] is the set of clock conditions over clocks in A.

e pa C QuxC[Xy] X Acts g x 24 x Q 4 is the transition relation. A transition (p,g,a,r,q') € pa from
location p to location p’ can only be taken with action a if the current values of the clock variables
fulfil the clock condition g. During the transition, all clocks in r are set to 0.

A timed interface automaton A is nonempty if its initial state fulfils its input and output invariants when
all clock variables are set to 0. A nonempty timed interface automaton induces a timed interface P = [A]
with

Sp={(p.0) | P Qv e Xa = T)
B = (a4 f) = 0)

Acts{; = Actsﬁl and Actsg = Actsg

Transitions are such that Player I or O can let time pass (and increase the clocks in the interface state)
as long as [nvi or [m}g is valid in the corresponding automaton state, respectively. Furthermore, the
transitions p4 of A are translated to transitions p{; and pg in P in the obvious way such that each
player has to obey the invariants and reset the clocks encoded in the interface state according to the
original transition in A.

A timed interface automata is A well-formed if it is nonempty and its induced interface [A] is well-formed.
Product and composition of timed interface automata can be defined very similar to the way it is defined for
timed interfaces. Two well-formed timed interface automata A and B are composable if they do not share any
output actions or clock variables. For such automata the product can be defined similar to timed interfaces
and it holds that [A® B] = [A] ® [B]. Furthermore, well-formed and composable automata A and B are

said to be compatible if their corresponding interfaces are compatible and, in this case, the equivalence
[A [l B] = [A] || [B] holds.

The representation of timed interfaces as timed interface automata has the advantage that existing algorithms
for timed automata can be used to calculate reachable states and to check the well-formedness of the interface.

4 Algorithms for Timed Games

Deciding for which states player Input has a winning strategy is possible by reducing the timed game to an
untimed game with an w-regular goal. Consider the Tick automaton in Figure 3. For every timed interface
automata A, we can build the automaton A ® Tick. Player I has a strategy in [A] to win with the goal
that time diverges or player O can be blamed for blocking, iff there is a strategy in [.A ® T'ick] such that
q1 is visited infinitely often or Player Output can be blamed for blocking progress. This property can be
checked with existing algorithms for solving games. The same construction can be used to determine the
states where Player Output has a winning strategy.
The region graph of a timed interface automata can
be defined in the same way as for timed automata.
Since the reachable locations can be calculated on the
region graph, the reachable states of a timed interface
automaton can be calculated in the same way as for
a timed automata [AD94].

Checking the well-formedness of an timed interface
automaton A can therefore be done, with the tech-
niques described above, by testing if the reachability
of a location implies that Input and Output have a
winning strategy from there.

Figure 3: Tick automaton

5 Summary

Timed interfaces offer a more optimistic way to model the interaction of components in a complex system.
In contrast to other approaches for modeling such systems, like timed automata, the composition of timed
interfaces can handle and avoid error states a system could enter due to badly synchronized component
interaction, by restricting such actions. This approach is optimistic because it assumes that the less general
system is still useful in some context. The crucial new idea is to model component interaction as game
between Player Output (the component) and Player Input (environment), which makes it possible to en-
force safety and liveness properties by modifying the possible moves of Player Input without changing the
component. The representation of timed interfaces as timed interface automata allows the reuse of existing
algorithms to check the properties of interfaces. Therefore timed interfaces provide an elegant new approach
to interface theory.

References

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183-235, 1994.

[dAHS02] L. de Alfaro, T. Henzinger, and M. Stoelinga. Timed interfaces, 2002.

[MPS95] Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete controllers for timed
systems (extended abstract), 1995.

