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Motivation

Component Interface Timing
Requirements

◮ complex real-time systems

◮ component based design

◮ interface describes component behavior



Motivation

‖ ‖

◮ model component interaction

◮ type system for interfaces



Motivation

‖ ‖

◮ well-formed?

◮ input assumptions: expected use

◮ output guarantees: correct input ⇒ correct output



Motivation
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Timed Interface Theory

We are interested in

◮ Well-formedness

◮ Compatibility

◮ Composition



Talk Outline

Composition and Compatibilty

Timed Interfaces as Timed Games

Timed Interface Automata

Solving Timed Games



Definition: Timed Interface

Timed interface P = (SP , s init
P , Acts I

P , ActsO
P , ρI

P , ρO
P ) with:

◮ SP : set of states

◮ s init
P ∈ SP : initial state

◮ Acts I
P and ActsO

P : immediate input/output actions

◮ T: set of timed actions (T = R≥0 or T = N)

◮ ActsP = Acts I
P ∪ ActsO

P

◮ Γ I
P = Acts I

P ∪ T: set of all input actions

◮ ΓO
P = ActsO

P ∪ T: set of all output actions

◮ ρI
P ⊆ SP × Γ I

P × SP : input transition relation

◮ ρO
P ⊆ SP × ΓO

P × SP : output transition relation



Example

InvO
: x ≤ 10 p0 Inv I

: x ≤ 8 p1

sensor read!

x = 10 x := 0

6 ≤ x ≤ 8

sensor done?SensorUser:

q0 q1

InvO
: y = 0 q3 InvO

: y ≤ 4 q2

sensor read?

poll data?
y := 0

y = 4 y := 0

data ready !

sensor done!

SensorControlUnit:



Composability

Timed interfaces P and Q are composable if

◮ P and Q are well-formed

◮ ActsO
P ∩ ActsO

Q = ∅

Shared actions: shared(P,Q) := ActsP ∩ ActsQ



Interface Product

For P and Q composable timed interfaces

◮ SP⊗Q = SP × SQ

◮ s init
P⊗Q = (s init

P , s init
Q ).

◮ Acts I
P⊗Q = Acts I

P ∪ Acts I
Q \ shared(P,Q)

◮ ActsO
P⊗Q = ActsO

P ∪ ActsO
Q .

◮ ρI
P⊗Q = {((s1, s2), α, (s ′1, s

′
2)|(s1, α, s ′1) ∈ ρI

P and (s2, β, s ′2) ∈

ρI
Q, β = α if α ∈ Acts I

Q or β = 0 otherwise} ∪
{((s1, s2), α, (s ′1, s

′
2)|(s2, α, s ′2) ∈ ρI

Q and (s1, β, s ′1) ∈ ρI
P ,

β = α if α ∈ Acts I
P or β = 0 otherwise}

◮ ρO
P⊗Q = {((s1, s2), α, (s ′1, s

′
2)|(s1, α, s ′1) ∈ ρO

P and (s2, β, s ′2) ∈

ρI
Q, β = α if α ∈ Acts I

Q or β = 0 otherwise} ∪
{((s1, s2), α, (s ′1, s

′
2)|(s2, α, s ′2) ∈ ρO

Q and (s1, β, s ′1) ∈ ρI
P ,

β = α if α ∈ Acts I
P or β = 0 otherwise}



Example II

InvO
: x ≤ 10 p0q0 Inv I

: x ≤ 8 p1q1

Inv I
: x ≤ 8

InvO
: y = 0

p1q3
Inv I

: x ≤ 8

InvO
: y ≤ 4

p1q2

sensor read!

x = 10 x := 0

poll data?

y := 0

y = 4 y := 0

data ready !

sensor done!

6 ≤ x ≤ 8

SensorUser ⊗ SensorControlUnit



Error States

Problems with interface product:

◮ timing requirements of components not synchronized

◮ one component could create output that cannot be accepted

⇒ error state



Example III

InvO
: x ≤ 10 p0q0 Inv I

: x ≤ 8 p1q1

Inv I
: x ≤ 8

InvO
: y = 0

p1q3
Inv I

: x ≤ 8

InvO
: y ≤ 4

p1q2

sensor read!

x = 10 x := 0

poll data?

y := 0

y = 4 y := 0

data ready !

sensor done!

6 ≤ x ≤ 8

SensorUser ⊗ SensorControlUnit

x = 0

y = 0



Example III

InvO
: x ≤ 10 p0q0 Inv I

: x ≤ 8 p1q1

Inv I
: x ≤ 8

InvO
: y = 0

p1q3
Inv I

: x ≤ 8

InvO
: y ≤ 4

p1q2

sensor read!

x = 10 x := 0

poll data?

y := 0

y = 4 y := 0

data ready !

sensor done!

6 ≤ x ≤ 8

SensorUser ⊗ SensorControlUnit

x = 10

y = 10

sensor read!



Example III

InvO
: x ≤ 10 p0q0 Inv I

: x ≤ 8 p1q1

Inv I
: x ≤ 8

InvO
: y = 0

p1q3
Inv I

: x ≤ 8

InvO
: y ≤ 4

p1q2

sensor read!

x = 10 x := 0

poll data?

y := 0

y = 4 y := 0

data ready !

sensor done!

6 ≤ x ≤ 8

SensorUser ⊗ SensorControlUnit

x = 0

y = 10



Example III

InvO
: x ≤ 10 p0q0 Inv I

: x ≤ 8 p1q1

Inv I
: x ≤ 8

InvO
: y = 0

p1q3
Inv I

: x ≤ 8

InvO
: y ≤ 4

p1q2

sensor read!

x = 10 x := 0

poll data?

y := 0

y = 4 y := 0

data ready !

sensor done!

6 ≤ x ≤ 8

SensorUser ⊗ SensorControlUnit

x = 8

y = 18

poll data?



Example III

InvO
: x ≤ 10 p0q0 Inv I

: x ≤ 8 p1q1

Inv I
: x ≤ 8

InvO
: y = 0

p1q3
Inv I

: x ≤ 8

InvO
: y ≤ 4

p1q2

sensor read!

x = 10 x := 0

poll data?

y := 0

y = 4 y := 0

data ready !

sensor done!

6 ≤ x ≤ 8

SensorUser ⊗ SensorControlUnit

x = 8

y = 0

E



Timed Interfaces as Timed Games [dAHS02]

◮ model interface as two-player game

◮ Player Input: Environment

◮ Player Output: Component

◮ Moves:
timed actions wait for event
immediate actions trigger event

◮ goal: time diverges or other player blocks



Definition: Moves and Outcome

Possible moves for player γ ∈ {I , O} in state s ∈ SP

◮ Γ γ

P(s) = {α ∈ Γ γ

P | ∃s ′ ∈ SP .(s, α, s ′) ∈ ργ

P}

◮ Γ γ

P(s) 6= ∅ =⇒ (s, 0, s) ∈ ργ

P

◮ Γ γ

P(s) = ∅ =⇒ player γ loses because he blocks

For s ∈ SP , αI ∈ Γ I
P(s), αO ∈ ΓO

P (s) and bl ∈ {I , O},
define outcome δP(s, αI , αO) := (α, s ′, bl)

◮ αI , αO ∈ T =⇒ α = min{αI , αO}
bl = I if αI < αO , bl = O otherwise (asymmetric!).

◮ If αI ∈ ActsP and αO ∈ T, then α = αI and bl = I .

◮ If αI ∈ T and αO ∈ ActsP , then α = αO and bl = O.

◮ IfαI , αO ∈ ActsP , choose α = αI and bl = I or α = αO and
bl = O nondeterministically.



Definition: Strategies and Reachable States

Strategy πγ : S∗
P → Γ γ

P for player γ ∈ {I , O} assigns move
πγ(s̄) ∈ Γ γ

P(s) to every s̄ ∈ S∗
P whose final state is s, if Γ γ

P 6= ∅.
Otherwise, πγ(s̄) is undefined.

State s ∈ SP is reachable if there are strategies πI and πO for
player I and O s.t s is visited during game starting from s init

P that
is played according to πI and πO .



Well-formedness

Liveness

◮ sum of timed actions must not converge
(no Zeno behavior [MPS95])

◮ player must not block game

Blocking

◮ player runs out of moves

◮ one player always plays, but time does not converge

A timed interface is well-formed if there is strategy for both players
to let time diverge or blame the other player for blocking the game.



Combining Interfaces

◮ one component might produce output that cannot be
accepted by others ⇒ error state

◮ optimistic approach: restrict interface to make it work

◮ can’t change components ⇒ change use (environment)

◮ guarantee safety by avoiding error states



Error States

Immediate error state:
(s, t) ∈ SP⊗Q with α ∈ shared(P,Q) such that
∃s ′ : (s, α, s ′) ∈ ρO

P and ∀t ′ : (t, α, t ′) /∈ ρI
Q or

∃t ′ : (t, α, t ′) ∈ ρO
Q and ∀s ′ : (s, α, s ′) /∈ ρI

P .
set of all immediate error states: i-errors(P,Q) ⊆ SP⊗Q.

Time error state:
(s, t) ∈ SP⊗Q reachable in P ⊗Q, but there is no strategy to win
the game for player I in SP⊗Q \ i-errors(P,Q).
set of all time error states: t-errors(P,Q)



Interface Composition

well-formed, composable interfaces P and Q are compatible
if (s init

P , s init
Q ) /∈ t-errors(P,Q)

composition P ‖ Q defined like P ⊗Q

except for input transition relation:

U = SP⊗Q \ t-errors(P,Q)

ρI

P‖Q = ρI
P⊗Q ∩ (U × Acts I

P⊗Q × U)



Examples revisited

InvO
: x ≤ 10 p0 Inv I

: x ≤ 8 p1

sensor read!

x = 10 x := 0

6 ≤ x ≤ 8

sensor done?SensorUser:

q0 q1

InvO
: y = 0 q3 InvO

: y ≤ 4 q2

sensor read?

poll data?
y := 0

y = 4 y := 0

data ready !

sensor done!

SensorControlUnit:



Examples revisited

InvO
: x ≤ 10 p0q0 Inv I

: x ≤ 8 p1q1

Inv I
: x ≤ 8

InvO
: y = 0

p1q3
Inv I

: x ≤ 8

InvO
: y ≤ 4

p1q2

sensor read!

x = 10 x := 0

poll data?

y := 0

y = 4 y := 0

data ready !

sensor done!

6 ≤ x ≤ 8

SensorUser ⊗ SensorControlUnit



Examples revisited

InvO
: x ≤ 10 p0q0 Inv I

: x ≤ 4 p1q1

Inv I
: 6 ≤ x ≤ 8

InvO
: y = 0

p1q3
Inv I

: 2 ≤ x − y ≤ 4

InvO
: y ≤ 4

p1q2

sensor read!

x = 10 x := 0

poll data?

2 ≤ x ≤ 4

y := 0

y = 4 y := 0

data ready !

sensor done!

6 ≤ x ≤ 8

SensorUser ‖ SensorControlUnit



Timed Interface Automata

◮ finite representation for timed interfaces

◮ similiar to timed automata ([AD94])

◮ reuse existing algorithms for calculating live states,
composition and checking well-formedness



Definition: Timed Interface Automata

Timed interface automaton
A = (QA, qinit

A ,XA, Acts I
A, ActsO

A , Inv I
A, InvO

A , ρA) with:

◮ QA: set of locations

◮ qinit
A ∈ QA: initial location

◮ XA: set of clocks

◮ Acts I
A and ActsO

A : sets of input and output actions

◮ Inv I
A : QA 7→ Ξ[XA] and InvO

A : QA 7→ Ξ[XA] map an
input/output invariant to each location

◮ ρA ⊆ QA × Ξ[XA] × ActsA × 2XA × QA transition relation



Solving Timed Games

Checking for winning strategy of I

◮ compose automaton with Tick
automaton

◮ check if there is strategy for
�♦q1 ∨ ♦�bl = O

◮ use algorithm for untimed games

◮ similar for player Output

Tick automaton

InvO
: x ≤ 1 q0

Inv I
: x ≤ 1 q1

tick!

x = 1

tick!

x = 1

x := 0



Solving Timed Games

Reachable states

◮ definable by clock conditions

◮ use algorithms for timed automata [AD94]

Well-formedness

Check: reachable =⇒ both players have winning strategy



Summary

◮ new approach: model interface as asymmetric game

◮ restrict moves of input to guarantee safety and liveness

◮ optimistic

◮ automata representation allows use of existing algorithms

⇒ better model for interaction of real-time components



Thank you for your attention!

Questions?
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