Timed Interfaces

Stefan Stattelmann

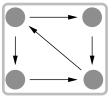
Seminar Games in Verification and Synthesis Summer Term 2008 Saarland University

original paper by

L. de Alfaro, T. Henzinger and M. Stoelinga

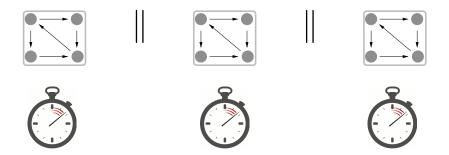
Component

Interface

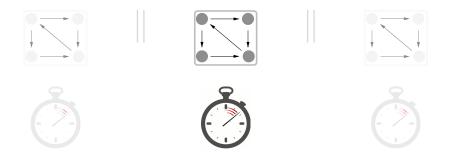


Timing Requirements

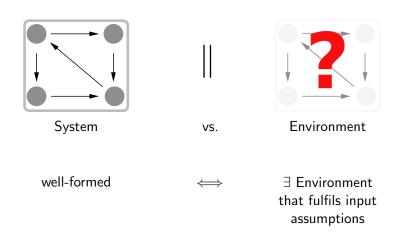
- complex real-time systems
- component based design
- interface describes component behavior



- model component interaction
- type system for interfaces



- well-formed?
- input assumptions: expected use
- output guarantees: correct input \Rightarrow correct output



Timed Interface Theory

We are interested in

- Well-formedness
- Compatibility
- Composition

Talk Outline

Composition and Compatibilty

Timed Interfaces as Timed Games

Timed Interface Automata

Solving Timed Games

Definition: Timed Interface

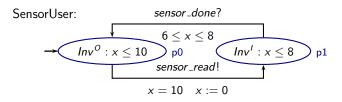
Timed interface $\mathcal{P} = (S_{\mathcal{P}}, s_{\mathcal{P}}^{init}, Acts_{\mathcal{P}}^{I}, Acts_{\mathcal{P}}^{O}, \rho_{\mathcal{P}}^{I}, \rho_{\mathcal{P}}^{O})$ with:

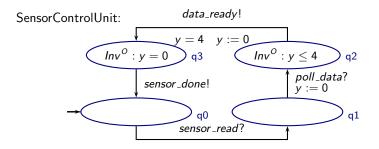
- ► S_P: set of states
- $s_{\mathcal{P}}^{init} \in S_{\mathcal{P}}$: initial state
- ► Acts^I_P and Acts^O_P: immediate input/output actions
- \mathbb{T} : set of timed actions $(\mathbb{T} = \mathbb{R}_{\geq 0} \text{ or } \mathbb{T} = \mathbb{N})$

•
$$Acts_{\mathcal{P}} = Acts_{\mathcal{P}}^{I} \cup Acts_{\mathcal{P}}^{O}$$

- $\Gamma_{\mathcal{P}}^{I} = Acts_{\mathcal{P}}^{I} \cup \mathbb{T}$: set of all input actions
- $\Gamma_{\mathcal{P}}^{O} = Acts_{\mathcal{P}}^{O} \cup \mathbb{T}$: set of all output actions
- $\rho_{\mathcal{P}}^{I} \subseteq S_{\mathcal{P}} \times \Gamma_{\mathcal{P}}^{I} \times S_{\mathcal{P}}$: input transition relation
- $\rho_{\mathcal{P}}^{O} \subseteq S_{\mathcal{P}} \times \Gamma_{\mathcal{P}}^{O} \times S_{\mathcal{P}}$: output transition relation

Example





Composability

Timed interfaces ${\mathcal P}$ and ${\mathcal Q}$ are composable if

• \mathcal{P} and \mathcal{Q} are well-formed

•
$$Acts^{O}_{\mathcal{P}} \cap Acts^{O}_{\mathcal{Q}} = \emptyset$$

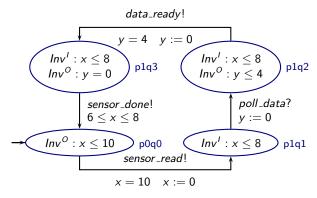
Shared actions: $shared(\mathcal{P}, \mathcal{Q}) := Acts_{\mathcal{P}} \cap Acts_{\mathcal{Q}}$

Interface Product

For ${\mathcal P}$ and ${\mathcal Q}$ composable timed interfaces

•
$$S_{\mathcal{P}\otimes\mathcal{Q}} = S_{\mathcal{P}} \times S_{\mathcal{Q}}$$

• $s_{\mathcal{P}\otimes\mathcal{Q}}^{init} = (s_{\mathcal{P}}^{init}, s_{\mathcal{Q}}^{init}).$
• $Acts_{\mathcal{P}\otimes\mathcal{Q}}^{I} = Acts_{\mathcal{P}}^{I} \cup Acts_{\mathcal{Q}}^{I} \setminus shared(\mathcal{P}, \mathcal{Q})$
• $Acts_{\mathcal{P}\otimes\mathcal{Q}}^{O} = Acts_{\mathcal{P}}^{O} \cup Acts_{\mathcal{Q}}^{O}.$
• $\rho_{\mathcal{P}\otimes\mathcal{Q}}^{I} = \{((s_{1}, s_{2}), \alpha, (s_{1}', s_{2}')|(s_{1}, \alpha, s_{1}') \in \rho_{\mathcal{P}}^{I} \text{ and } (s_{2}, \beta, s_{2}') \in \rho_{\mathcal{Q}}^{I}, \beta = \alpha \text{ if } \alpha \in Acts_{\mathcal{Q}}^{I} \text{ or } \beta = 0 \text{ otherwise} \} \cup \{((s_{1}, s_{2}), \alpha, (s_{1}', s_{2}')|(s_{2}, \alpha, s_{2}') \in \rho_{\mathcal{Q}}^{I} \text{ and } (s_{1}, \beta, s_{1}') \in \rho_{\mathcal{P}}^{I}, \beta = \alpha \text{ if } \alpha \in Acts_{\mathcal{P}}^{I} \text{ or } \beta = 0 \text{ otherwise} \}$
• $\rho_{\mathcal{P}\otimes\mathcal{Q}}^{O} = \{((s_{1}, s_{2}), \alpha, (s_{1}', s_{2}')|(s_{1}, \alpha, s_{1}') \in \rho_{\mathcal{P}}^{O} \text{ and } (s_{2}, \beta, s_{2}') \in \rho_{\mathcal{Q}}^{I}, \beta = \alpha \text{ if } \alpha \in Acts_{\mathcal{Q}}^{I} \text{ or } \beta = 0 \text{ otherwise} \} \cup \{((s_{1}, s_{2}), \alpha, (s_{1}', s_{2}')|(s_{2}, \alpha, s_{2}') \in \rho_{\mathcal{Q}}^{O} \text{ and } (s_{1}, \beta, s_{1}') \in \rho_{\mathcal{P}}^{I}, \beta = \alpha \text{ if } \alpha \in Acts_{\mathcal{P}}^{I} \text{ or } \beta = 0 \text{ otherwise} \}$

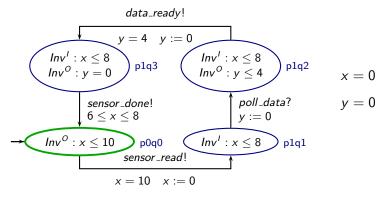


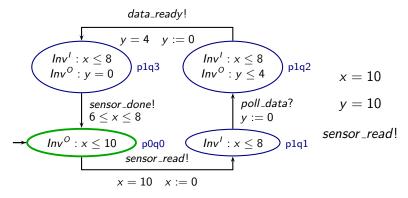
Error States

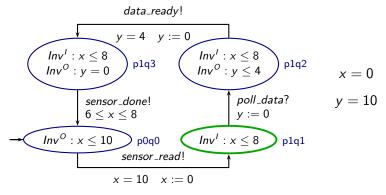
Problems with interface product:

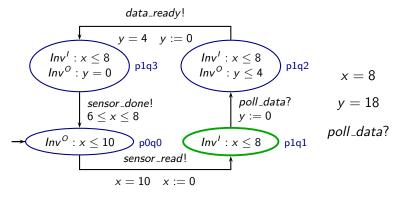
- timing requirements of components not synchronized
- one component could create output that cannot be accepted

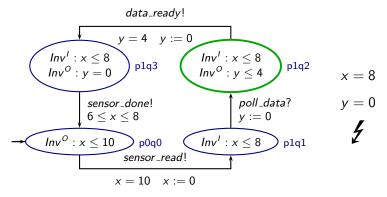
 \Rightarrow error state











Timed Interfaces as Timed Games [dAHS02]

- model interface as two-player game
- Player Input: Environment
- Player Output: Component
- Moves: timed actions wait for event immediate actions trigger event
- goal: time diverges or other player blocks

Definition: Moves and Outcome

Possible moves for player $\gamma \in \{I, O\}$ in state $s \in S_{\mathcal{P}}$

$$\blacktriangleright \ \Gamma_{\mathcal{P}}^{\gamma}(s) = \{ \alpha \in \Gamma_{\mathcal{P}}^{\gamma} \mid \exists s' \in S_{\mathcal{P}}.(s, \alpha, s') \in \rho_{\mathcal{P}}^{\gamma} \}$$

$$\blacktriangleright \ \ \Gamma^{\gamma}_{\mathcal{P}}(s) \neq \emptyset \implies (s,0,s) \in \rho^{\gamma}_{\mathcal{P}}$$

• $\Gamma_{\mathcal{P}}^{\gamma}(s) = \emptyset \implies$ player γ loses because he blocks

For $s \in S_{\mathcal{P}}$, $\alpha_I \in \Gamma_{\mathcal{P}}^I(s)$, $\alpha_O \in \Gamma_{\mathcal{P}}^O(s)$ and $bI \in \{I, O\}$, define outcome $\delta_{\mathcal{P}}(s, \alpha_I, \alpha_O) := (\alpha, s', bI)$

•
$$\alpha_I, \alpha_O \in \mathbb{T} \implies \alpha = \min\{\alpha_I, \alpha_O\}$$

 $bI = I \text{ if } \alpha_I < \alpha_O, bI = O \text{ otherwise (asymmetric!).}$

• If
$$\alpha_I \in Acts_{\mathcal{P}}$$
 and $\alpha_O \in \mathbb{T}$, then $\alpha = \alpha_I$ and $bI = I$.

- If $\alpha_I \in \mathbb{T}$ and $\alpha_O \in Acts_{\mathcal{P}}$, then $\alpha = \alpha_O$ and bI = O.
- If α_I, α_O ∈ Acts_P, choose α = α_I and bI = I or α = α_O and bI = O nondeterministically.

Definition: Strategies and Reachable States

Strategy $\pi^{\gamma} : S_{\mathcal{P}}^{*} \to \Gamma_{\mathcal{P}}^{\gamma}$ for player $\gamma \in \{I, O\}$ assigns move $\pi^{\gamma}(\bar{s}) \in \Gamma_{\mathcal{P}}^{\gamma}(s)$ to every $\bar{s} \in S_{\mathcal{P}}^{*}$ whose final state is s, if $\Gamma_{\mathcal{P}}^{\gamma} \neq \emptyset$. Otherwise, $\pi^{\gamma}(\bar{s})$ is undefined.

State $s \in S_{\mathcal{P}}$ is reachable if there are strategies π^{I} and π^{O} for player I and O s.t s is visited during game starting from $s_{\mathcal{P}}^{init}$ that is played according to π^{I} and π^{O} .

Well-formedness

Liveness

 sum of timed actions must not converge (no Zeno behavior [MPS95])

player must not block game

Blocking

- player runs out of moves
- one player always plays, but time does not converge

A timed interface is well-formed if there is strategy for both players to let time diverge or blame the other player for blocking the game.

Combining Interfaces

- ► one component might produce output that cannot be accepted by others ⇒ error state
- optimistic approach: restrict interface to make it work
- ► can't change components ⇒ change use (environment)
- guarantee safety by avoiding error states

Error States

Immediate error state:

 $(s,t) \in S_{\mathcal{P}\otimes\mathcal{Q}}$ with $\alpha \in shared(\mathcal{P},\mathcal{Q})$ such that $\exists s' : (s,\alpha,s') \in \rho_{\mathcal{P}}^{O}$ and $\forall t' : (t,\alpha,t') \notin \rho_{\mathcal{Q}}^{I}$ or $\exists t' : (t,\alpha,t') \in \rho_{\mathcal{Q}}^{O}$ and $\forall s' : (s,\alpha,s') \notin \rho_{\mathcal{P}}^{I}$. set of all immediate error states: *i-errors*(\mathcal{P},\mathcal{Q}) $\subseteq S_{\mathcal{P}\otimes\mathcal{Q}}$.

Time error state:

 $(s,t) \in S_{\mathcal{P} \otimes \mathcal{Q}}$ reachable in $\mathcal{P} \otimes \mathcal{Q}$, but there is no strategy to win the game for player I in $S_{\mathcal{P} \otimes \mathcal{Q}} \setminus i\text{-errors}(\mathcal{P}, \mathcal{Q})$. set of all time error states: $t\text{-errors}(\mathcal{P}, \mathcal{Q})$

Interface Composition

well-formed, composable interfaces \mathcal{P} and \mathcal{Q} are compatible if $(s_{\mathcal{P}}^{init}, s_{\mathcal{Q}}^{init}) \notin t$ -errors $(\mathcal{P}, \mathcal{Q})$

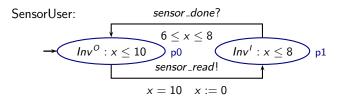
composition $\mathcal{P} \parallel \mathcal{Q}$ defined like $\mathcal{P} \otimes \mathcal{Q}$

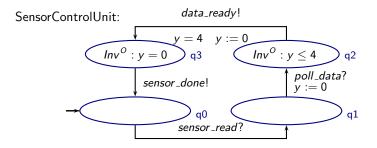
except for input transition relation:

 $U = S_{\mathcal{P} \otimes \mathcal{Q}} \setminus t\text{-}errors(\mathcal{P}, \mathcal{Q})$

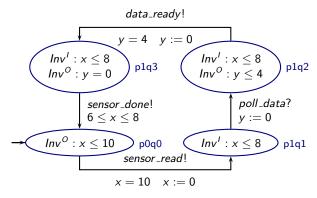
$$\rho_{\mathcal{P}\parallel\mathcal{Q}}^{I} = \rho_{\mathcal{P}\otimes\mathcal{Q}}^{I} \cap (U \times Acts_{\mathcal{P}\otimes\mathcal{Q}}^{I} \times U)$$

Examples revisited

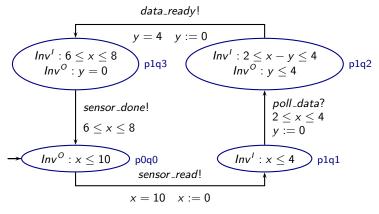




Examples revisited



Examples revisited



SensorUser || SensorControlUnit

Timed Interface Automata

- finite representation for timed interfaces
- similiar to timed automata ([AD94])
- reuse existing algorithms for calculating live states, composition and checking well-formedness

Definition: Timed Interface Automata

Timed interface automaton

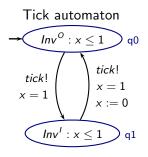
 $\mathcal{A} = (\mathcal{Q}_{\mathcal{A}}, q_{\mathcal{A}}^{\textit{init}}, \mathcal{X}_{\mathcal{A}}, \textit{Acts}_{\mathcal{A}}^{\textit{I}}, \textit{Acts}_{\mathcal{A}}^{\textit{O}}, \textit{Inv}_{\mathcal{A}}^{\textit{I}}, \textit{Inv}_{\mathcal{A}}^{\textit{O}}, \rho_{\mathcal{A}}) \text{ with:}$

- Q_A : set of *locations*
- ▶ $q_{\mathcal{A}}^{\textit{init}} \in Q_{\mathcal{A}}$: initial location
- ► X_A: set of clocks
- $Acts_{\mathcal{A}}^{I}$ and $Acts_{\mathcal{A}}^{O}$: sets of input and output actions
- ▶ $Inv_{\mathcal{A}}^{I} : Q_{\mathcal{A}} \mapsto \Xi[\mathcal{X}_{\mathcal{A}}]$ and $Inv_{\mathcal{A}}^{O} : Q_{\mathcal{A}} \mapsto \Xi[\mathcal{X}_{\mathcal{A}}]$ map an input/output invariant to each location
- ► $\rho_A \subseteq Q_A \times \Xi[X_A] \times Acts_A \times 2^{X_A} \times Q_A$ transition relation

Solving Timed Games

Checking for winning strategy of I

- compose automaton with Tick automaton
- check if there is strategy for $\Box \Diamond q_1 \lor \Diamond \Box bl = O$
- use algorithm for untimed games
- similar for player Output



Solving Timed Games

Reachable states

- definable by clock conditions
- use algorithms for timed automata [AD94]

Well-formedness

Check: reachable \implies both players have winning strategy

- new approach: model interface as asymmetric game
- restrict moves of input to guarantee safety and liveness
- optimistic
- automata representation allows use of existing algorithms
- \Rightarrow better model for interaction of real-time components

Thank you for your attention!

Questions?

References

- Rajeev Alur and David L. Dill.
 A theory of timed automata.
 Theoretical Computer Science, 126(2):183–235, 1994.
- L. de Alfaro, T. Henzinger, and M. Stoelinga. Timed interfaces, 2002.
- Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete controllers for timed systems (extended abstract), 1995.