
Timed Interfaces

Stefan Stattelmann

Seminar Games in Verification and Synthesis

Summer Term 2008

Saarland University

original paper by

L. de Alfaro, T. Henzinger and M. Stoelinga



Motivation

Component Interface Timing
Requirements

◮ complex real-time systems

◮ component based design

◮ interface describes component behavior



Motivation

‖ ‖

◮ model component interaction

◮ type system for interfaces



Motivation

‖ ‖

◮ well-formed?

◮ input assumptions: expected use

◮ output guarantees: correct input ⇒ correct output



Motivation

System

well-formed

‖

vs.

⇐⇒

Environment

∃ Environment
that fulfils input

assumptions



Timed Interface Theory

We are interested in

◮ Well-formedness

◮ Compatibility

◮ Composition



Talk Outline

Composition and Compatibilty

Timed Interfaces as Timed Games

Timed Interface Automata

Solving Timed Games



Definition: Timed Interface

Timed interface P = (SP , s init
P , Acts I

P , ActsO
P , ρI

P , ρO
P ) with:

◮ SP : set of states

◮ s init
P ∈ SP : initial state

◮ Acts I
P and ActsO

P : immediate input/output actions

◮ T: set of timed actions (T = R≥0 or T = N)

◮ ActsP = Acts I
P ∪ ActsO

P

◮ Γ I
P = Acts I

P ∪ T: set of all input actions

◮ ΓO
P = ActsO

P ∪ T: set of all output actions

◮ ρI
P ⊆ SP × Γ I

P × SP : input transition relation

◮ ρO
P ⊆ SP × ΓO

P × SP : output transition relation



Example

InvO
: x ≤ 10 p0 Inv I

: x ≤ 8 p1

sensor read!

x = 10 x := 0

6 ≤ x ≤ 8

sensor done?SensorUser:

q0 q1

InvO
: y = 0 q3 InvO

: y ≤ 4 q2

sensor read?

poll data?
y := 0

y = 4 y := 0

data ready !

sensor done!

SensorControlUnit:



Composability

Timed interfaces P and Q are composable if

◮ P and Q are well-formed

◮ ActsO
P ∩ ActsO

Q = ∅

Shared actions: shared(P,Q) := ActsP ∩ ActsQ



Interface Product

For P and Q composable timed interfaces

◮ SP⊗Q = SP × SQ

◮ s init
P⊗Q = (s init

P , s init
Q ).

◮ Acts I
P⊗Q = Acts I

P ∪ Acts I
Q \ shared(P,Q)

◮ ActsO
P⊗Q = ActsO

P ∪ ActsO
Q .

◮ ρI
P⊗Q = {((s1, s2), α, (s ′1, s

′
2)|(s1, α, s ′1) ∈ ρI

P and (s2, β, s ′2) ∈

ρI
Q, β = α if α ∈ Acts I

Q or β = 0 otherwise} ∪
{((s1, s2), α, (s ′1, s

′
2)|(s2, α, s ′2) ∈ ρI

Q and (s1, β, s ′1) ∈ ρI
P ,

β = α if α ∈ Acts I
P or β = 0 otherwise}

◮ ρO
P⊗Q = {((s1, s2), α, (s ′1, s

′
2)|(s1, α, s ′1) ∈ ρO

P and (s2, β, s ′2) ∈

ρI
Q, β = α if α ∈ Acts I

Q or β = 0 otherwise} ∪
{((s1, s2), α, (s ′1, s

′
2)|(s2, α, s ′2) ∈ ρO

Q and (s1, β, s ′1) ∈ ρI
P ,

β = α if α ∈ Acts I
P or β = 0 otherwise}



Example II

InvO
: x ≤ 10 p0q0 Inv I

: x ≤ 8 p1q1

Inv I
: x ≤ 8

InvO
: y = 0

p1q3
Inv I

: x ≤ 8

InvO
: y ≤ 4

p1q2

sensor read!

x = 10 x := 0

poll data?

y := 0

y = 4 y := 0

data ready !

sensor done!

6 ≤ x ≤ 8

SensorUser ⊗ SensorControlUnit



Error States

Problems with interface product:

◮ timing requirements of components not synchronized

◮ one component could create output that cannot be accepted

⇒ error state



Example III

InvO
: x ≤ 10 p0q0 Inv I

: x ≤ 8 p1q1

Inv I
: x ≤ 8

InvO
: y = 0

p1q3
Inv I

: x ≤ 8

InvO
: y ≤ 4

p1q2

sensor read!

x = 10 x := 0

poll data?

y := 0

y = 4 y := 0

data ready !

sensor done!

6 ≤ x ≤ 8

SensorUser ⊗ SensorControlUnit

x = 0

y = 0



Example III

InvO
: x ≤ 10 p0q0 Inv I

: x ≤ 8 p1q1

Inv I
: x ≤ 8

InvO
: y = 0

p1q3
Inv I

: x ≤ 8

InvO
: y ≤ 4

p1q2

sensor read!

x = 10 x := 0

poll data?

y := 0

y = 4 y := 0

data ready !

sensor done!

6 ≤ x ≤ 8

SensorUser ⊗ SensorControlUnit

x = 10

y = 10

sensor read!



Example III

InvO
: x ≤ 10 p0q0 Inv I

: x ≤ 8 p1q1

Inv I
: x ≤ 8

InvO
: y = 0

p1q3
Inv I

: x ≤ 8

InvO
: y ≤ 4

p1q2

sensor read!

x = 10 x := 0

poll data?

y := 0

y = 4 y := 0

data ready !

sensor done!

6 ≤ x ≤ 8

SensorUser ⊗ SensorControlUnit

x = 0

y = 10



Example III

InvO
: x ≤ 10 p0q0 Inv I

: x ≤ 8 p1q1

Inv I
: x ≤ 8

InvO
: y = 0

p1q3
Inv I

: x ≤ 8

InvO
: y ≤ 4

p1q2

sensor read!

x = 10 x := 0

poll data?

y := 0

y = 4 y := 0

data ready !

sensor done!

6 ≤ x ≤ 8

SensorUser ⊗ SensorControlUnit

x = 8

y = 18

poll data?



Example III

InvO
: x ≤ 10 p0q0 Inv I

: x ≤ 8 p1q1

Inv I
: x ≤ 8

InvO
: y = 0

p1q3
Inv I

: x ≤ 8

InvO
: y ≤ 4

p1q2

sensor read!

x = 10 x := 0

poll data?

y := 0

y = 4 y := 0

data ready !

sensor done!

6 ≤ x ≤ 8

SensorUser ⊗ SensorControlUnit

x = 8

y = 0

E



Timed Interfaces as Timed Games [dAHS02]

◮ model interface as two-player game

◮ Player Input: Environment

◮ Player Output: Component

◮ Moves:
timed actions wait for event
immediate actions trigger event

◮ goal: time diverges or other player blocks



Definition: Moves and Outcome

Possible moves for player γ ∈ {I , O} in state s ∈ SP

◮ Γ γ

P(s) = {α ∈ Γ γ

P | ∃s ′ ∈ SP .(s, α, s ′) ∈ ργ

P}

◮ Γ γ

P(s) 6= ∅ =⇒ (s, 0, s) ∈ ργ

P

◮ Γ γ

P(s) = ∅ =⇒ player γ loses because he blocks

For s ∈ SP , αI ∈ Γ I
P(s), αO ∈ ΓO

P (s) and bl ∈ {I , O},
define outcome δP(s, αI , αO) := (α, s ′, bl)

◮ αI , αO ∈ T =⇒ α = min{αI , αO}
bl = I if αI < αO , bl = O otherwise (asymmetric!).

◮ If αI ∈ ActsP and αO ∈ T, then α = αI and bl = I .

◮ If αI ∈ T and αO ∈ ActsP , then α = αO and bl = O.

◮ IfαI , αO ∈ ActsP , choose α = αI and bl = I or α = αO and
bl = O nondeterministically.



Definition: Strategies and Reachable States

Strategy πγ : S∗
P → Γ γ

P for player γ ∈ {I , O} assigns move
πγ(s̄) ∈ Γ γ

P(s) to every s̄ ∈ S∗
P whose final state is s, if Γ γ

P 6= ∅.
Otherwise, πγ(s̄) is undefined.

State s ∈ SP is reachable if there are strategies πI and πO for
player I and O s.t s is visited during game starting from s init

P that
is played according to πI and πO .



Well-formedness

Liveness

◮ sum of timed actions must not converge
(no Zeno behavior [MPS95])

◮ player must not block game

Blocking

◮ player runs out of moves

◮ one player always plays, but time does not converge

A timed interface is well-formed if there is strategy for both players
to let time diverge or blame the other player for blocking the game.



Combining Interfaces

◮ one component might produce output that cannot be
accepted by others ⇒ error state

◮ optimistic approach: restrict interface to make it work

◮ can’t change components ⇒ change use (environment)

◮ guarantee safety by avoiding error states



Error States

Immediate error state:
(s, t) ∈ SP⊗Q with α ∈ shared(P,Q) such that
∃s ′ : (s, α, s ′) ∈ ρO

P and ∀t ′ : (t, α, t ′) /∈ ρI
Q or

∃t ′ : (t, α, t ′) ∈ ρO
Q and ∀s ′ : (s, α, s ′) /∈ ρI

P .
set of all immediate error states: i-errors(P,Q) ⊆ SP⊗Q.

Time error state:
(s, t) ∈ SP⊗Q reachable in P ⊗Q, but there is no strategy to win
the game for player I in SP⊗Q \ i-errors(P,Q).
set of all time error states: t-errors(P,Q)



Interface Composition

well-formed, composable interfaces P and Q are compatible
if (s init

P , s init
Q ) /∈ t-errors(P,Q)

composition P ‖ Q defined like P ⊗Q

except for input transition relation:

U = SP⊗Q \ t-errors(P,Q)

ρI

P‖Q = ρI
P⊗Q ∩ (U × Acts I

P⊗Q × U)



Examples revisited

InvO
: x ≤ 10 p0 Inv I

: x ≤ 8 p1

sensor read!

x = 10 x := 0

6 ≤ x ≤ 8

sensor done?SensorUser:

q0 q1

InvO
: y = 0 q3 InvO

: y ≤ 4 q2

sensor read?

poll data?
y := 0

y = 4 y := 0

data ready !

sensor done!

SensorControlUnit:



Examples revisited

InvO
: x ≤ 10 p0q0 Inv I

: x ≤ 8 p1q1

Inv I
: x ≤ 8

InvO
: y = 0

p1q3
Inv I

: x ≤ 8

InvO
: y ≤ 4

p1q2

sensor read!

x = 10 x := 0

poll data?

y := 0

y = 4 y := 0

data ready !

sensor done!

6 ≤ x ≤ 8

SensorUser ⊗ SensorControlUnit



Examples revisited

InvO
: x ≤ 10 p0q0 Inv I

: x ≤ 4 p1q1

Inv I
: 6 ≤ x ≤ 8

InvO
: y = 0

p1q3
Inv I

: 2 ≤ x − y ≤ 4

InvO
: y ≤ 4

p1q2

sensor read!

x = 10 x := 0

poll data?

2 ≤ x ≤ 4

y := 0

y = 4 y := 0

data ready !

sensor done!

6 ≤ x ≤ 8

SensorUser ‖ SensorControlUnit



Timed Interface Automata

◮ finite representation for timed interfaces

◮ similiar to timed automata ([AD94])

◮ reuse existing algorithms for calculating live states,
composition and checking well-formedness



Definition: Timed Interface Automata

Timed interface automaton
A = (QA, qinit

A ,XA, Acts I
A, ActsO

A , Inv I
A, InvO

A , ρA) with:

◮ QA: set of locations

◮ qinit
A ∈ QA: initial location

◮ XA: set of clocks

◮ Acts I
A and ActsO

A : sets of input and output actions

◮ Inv I
A : QA 7→ Ξ[XA] and InvO

A : QA 7→ Ξ[XA] map an
input/output invariant to each location

◮ ρA ⊆ QA × Ξ[XA] × ActsA × 2XA × QA transition relation



Solving Timed Games

Checking for winning strategy of I

◮ compose automaton with Tick
automaton

◮ check if there is strategy for
�♦q1 ∨ ♦�bl = O

◮ use algorithm for untimed games

◮ similar for player Output

Tick automaton

InvO
: x ≤ 1 q0

Inv I
: x ≤ 1 q1

tick!

x = 1

tick!

x = 1

x := 0



Solving Timed Games

Reachable states

◮ definable by clock conditions

◮ use algorithms for timed automata [AD94]

Well-formedness

Check: reachable =⇒ both players have winning strategy



Summary

◮ new approach: model interface as asymmetric game

◮ restrict moves of input to guarantee safety and liveness

◮ optimistic

◮ automata representation allows use of existing algorithms

⇒ better model for interaction of real-time components



Thank you for your attention!

Questions?



References

Rajeev Alur and David L. Dill.
A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

L. de Alfaro, T. Henzinger, and M. Stoelinga.
Timed interfaces, 2002.

Oded Maler, Amir Pnueli, and Joseph Sifakis.
On the synthesis of discrete controllers for timed systems
(extended abstract), 1995.


	Composition and Compatibilty
	Timed Interfaces as Timed Games
	Timed Interface Automata
	Solving Timed Games

