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1 Basic Definitions and Notations
In this section we introduce our notation and some basic definitions. Its main purpose is to provide a
reference for everything that is unfamiliar to you. Nevertheless, we recommend you to read this section
at least once to know what is in there. Consider that there are some definitions that are first used in
later lectures. So don’t be confuesed if you cannot put them into any context at the moment.

1.1 Integers and Sets
We use the symbol N to denote the set of non-negative integers and N+ to denote the set of positive
integers. Arbitrary elements of N are abbreviated by small roman letters, preferably n,m and j. For all
n,m ∈ N with n ≤ m we use [n,m] to denote the set {n, n + 1, ...,m} and shorten the special case of
[0, n− 1] by [n]. Consider that [0] = ∅ and [∞] = N. To talk about the parity of an integer n ∈ N we use
the function Par with

Par(n) =
{

0 if n is even
1 if n is odd

To denote sets, we use big roman letters like S, P and Q. The cardinality of a set S is denoted by |S|
where for infinite sets S we define |S| to be ∞. The power set of S is denoted by 2S .

1.2 Functions, Tuples and Relations
To denote functions we use small roman letters, mostly f, g and h. For a function f : A→ B and C ⊆ A
we use f(C) as a shorthand for the set { b ∈ B | c ∈ C ∧ f(c) = b }.

If X is a set and n ∈ N we use Xn to denote the set of n-ary tuples over X and number its components
from 0 to n − 1. By X>n we denote the set

⋃∞
j=n+1X

j and the function prj for j ∈ N can be used to
project to the j-th component of a tuple of arbitrary length. If the tuple has no such component prj is
undefined. To denote concrete tuple instances, we use round brackets, e.g. (1, 2, 3) ∈ N3.

The relations <,≤,=, >,≥ over N are defined as usual. For n ∈ N and a, b ∈ Nn we use the
lexicographical ordering to compare a and b, e.g. (0, 3, 2) < (1, 2, 0) and (1, 1, 2) > (1, 1, 1). Finally, with
<j ,≤j ,=j ,≥j , >j for j ∈ N, we can compare two tuples a, b ∈ N>j by lexicographically comparing them
from component 0 to j, e.g. (1, 2, 3, 4) <2 (1, 2, 4) and (7, 3, 5) ≥1 (7, 3, 9).

1.3 Alphabets and Words
An alphabet is a non-empty, finite set of symbols, usually denoted by Σ or Υ. The elements of an alphabet
are called letters. Let an alphabet Σ be given, then the concatenation w = w0w1...wn−1 of finitely many
letters of Σ is called a finite word over Σ, where n defines the length of w also denoted by |w|. The only
word of length 0 is the empty word denoted by ε.

The concatenation of infinitely many letters defines an infinite word which has infinite length. We
usually use small roman letters like w to denote finite words and small greek letters like α, β, γ denote
infinite words. If we just talk about words, we mean either finite or infinite words and fall back to denote
them by small roman letters. The set of all finite words over Σ is denoted by Σ∗ and the set of all infinite
words by Σω. For Σ∗ \{ε} we use the shortcut Σ+. Given some word w we have that for all n ∈ [|w|] the
n-th letter of w is denoted by wn and the first letter is at w0. In case w is finite and non-empty we use
Lst(w) to extract the last letter of w.

Like letters, we can concatenate finite words w with words w′ to new words w′′ = ww′. For a word
w = w′w′′ we call w′ a prefix of w and w′′ a suffix. If a word w is a prefix of a word w′ we denote this
by w v w′ and use Pref(w) to denote the set of all prefix of w.

For n,m, j ∈ N and n ≤ m we also use w[j] to denote the unique prefix w′ ∈ Pref(w) with |w| = j+ 1
and w>j to denote the unique suffix of w with w = w[j]w>j and use w[n,m] as shortcut for w[m]>n−1.
Finally, for a word w over Σ and a ∈ Σ we use Idx(w, a) :={n ∈ N | wn = a } to denote the set of all
indices n of a word w with an a at index n. This set is also called the index set of w and a. Further,
we use Occ(w) :={ a ∈ Σ | ∃n ∈ N. wn = a } to denote the set of all letters occurring in a word w, also
called the occurrence set of w, and Inf(w) :={ a ∈ Σ | ∀n ∈ N. ∃m ∈ N. m ≥ n ∧ wm = a } to denote the
set of all letters occurring infinitely often in the word w, called the infinity set of w.
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1.4 Languages and Regular Expressions
If Σ is an alphabet then each subset of Σ∗ is a language over finite words and each subset of Σω is a
language over infinite words. The concatenation of two languages K ⊆ Σ∗ and M ⊆ Σ∗ ∪ Σω is denoted
by KM and defined as KM :={ww′ | w ∈ K ∧ w′ ∈ M }. To define languages over finite words we can
use regular expressions. To construct a regular expression we can use the following grammar for arbitrary
a ∈ Σ:

R := ∅ | ε | a | RR | R+R | R∗

Additionally, we use R+ as a shortcut for RR∗. From a regular expression R to a language L(R) we
get by using the semantics given in the following. Languages definable this way will be called regular
languages.

• L(∅) := ∅

• L(ε) :={ε}

• ∀a ∈ Σ. L(a) :={a}

• L(R1R2) :=L(R1)L(R2)

• L(R1 +R2) :=L(R1) ∪ L(R2)

• L(R∗) :={w0w1...wn ∈ Σ∗ | ∃p0p1...pm ∈ N∗. ∀j ∈ [m].
p0 = 0 ∧ pm = n ∧ pj ≤ pj+1 ∧ w[pj , pj+1] ∈ L(R) }

To define languages over infinite words we use ω-regular expressions, given by the grammar:

E := RRω | E + E

Here, R refers to the already defined grammar of regular expressions. Finally, the semantics for the new
grammatical elements E is given by:

• L(E1 + E2) = L(E1) ∪ L(E2)

• L(R1(R2)ω) :=L(R1){w0w1w2... ∈ Σω | ∃p0p1p2... ∈ Nω. ∀j ∈ N.
p0 = 0 ∧ pj ≤ pj+1 ∧ w[pj , pj+1] ∈ L(R) }

As for regular expressions we call languages definable this way ω-regular languages. Consider that we
assume for these definitions that Σ is always given and fixed. However, to make things more readable,
we often just infer Σ from the context, meaning that each single symbol in an (ω-)regular expression not
defined somewhere else and unequal to ε and ∅ is assumed to be in Σ. This way giving the (ω-)regular
expression is enough to properly define the language. To provide a more readable notation we will use
big roman letters for variables and small letters for all other symbols. Sometimes we will also drop the
L( ) part if it is clear that we talk about a language.
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2 Introduction
Many of todays problems in computer science are no longer concerned with programs that transform data
and then terminate, but with non-terminating systems which have to interact with a possibly antagonistic
environment. An example is the controller regulating the anti-lock braking system in a car. It receives
a constant input stream of sensor readings like wheel speed of each wheel and selectively applies the
brakes on one wheel to maintain a uniform wheel speed. Thus, we are not interested in whether the
terminator terminates and generates correct output, but we need the controller to run forever (which
over-approximates an arbitrary long car ride) and control the wheel speed in a manner that avoids
locking brakes.

The emergence of so-called reactive systems requires new approaches to verification and synthesis.
Over the course of the last fifty years it turned out to be very fruitful to model and analyze reactive
systems in a game-theoretic framework, which captures the antagonistic and strategic nature of the
interaction between the system and its environment.

This approach can be traced back to work on the synthesis problem for boolean circuits, nowadays
known as Church’s problem: given a requirement on the input-output behavior of circuits expressed
in some suitable formalism, find a circuit that satisfies the given requirement (or determine that there
is no such circuit). This problem can be interpreted as a game between two agents: an environment
generating an infinite stream of input bits, each of which is answered by an output bit generated by the
circuit. The requirement on the input-output behavior determines the winner of each execution: if the
pair of bitstreams satisfies the requirement, then the circuit wins, otherwise the environment wins. In
this view, Church’s problem boils down to finding a finitely represented rule which prescribes for every
finite sequence of input bits an output bit such that every input stream is answered by an output stream
in a way that the pair of streams satisfies the given requirement.

As an example, consider the conjunction of the following three requirements:

1. Whenever the input bit is 1, then the output bit is 1, too.

2. At least one out of every three consecutive output bits is a 1.

3. If there are infinitely many 0’s in the input stream, then there are infinitely many 0’s in the output
stream.

Note that the first two requirements are satisfied by always outputting a 1, a strategy that is spoiled by
the third requirement. However, the following strategy satisfies all three requirements: if the input bit is
a 0, answer with a 0, unless the last two output bits were already 0, in this case output a 1. On the other
hand, every 1 in the input stream is answered by a 1. This strategy is implemented by the automaton
with output in the following where the label 1/1 stands for “process a 1 and output a 1”.

s0 s1 s2

1/1

0/0

1/1

0/0

1/1

0/1

An example run of the automaton given in the following.

state s0 s1 s2 s0 s1 s0 s0 s1 s2 s0 s1 s2 · · ·
input 0 0 0 0 1 1 0 0 0 0 0 · · ·

output 0 0 1 0 1 1 0 0 1 0 0 · · ·

In this course we will see how to model such a synthesis problem as a two-player game and how to
compute a finite-state representation of a strategy satisfying the requirements.
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To model the general synthesis problem for reactive systems, another level of abstraction is added to
the game described above: an infinite, graph-based, two-player game is played in a graph without dead
ends whose set of vertices is partitioned into the positions of Player 0 and the positions of Player 1. The
players construct a play, an infinite path through the graph, according to the following rule: a token is
placed at an initial vertex and whenever the token is at a position of Player i, she has to move the token
to some successor. After ω moves, the winning condition of the game, a subset of the plays of the graph,
determines the winner of the play. A strategy for Player i in such a game is a mapping prescribing a legal
move for every play prefix ending in a position of Player i. A strategy is winning from a given vertex, if
every play that starts in this vertex and is played according to the strategy is won by Player i. A game
is determined, if from each vertex, one of the players has a winning strategy.

In this framework, the seminal Büchi-Landweber Theorem, which solves Church’s problem as special
case, reads as follows: every infinite game in a finite graph with ω-regular winning condition is determined
and finite-state strategies – strategies implemented by finite automata with output – suffice to win these
games and can be computed effectively. Ever since, this result was extended along different dimensions,
e.g., the number of players, the type of graph the game is played in, the type of winning condition, the
nature of the interaction between the players (alternation or concurrency), the presence or absence of
probabilistic influences, and complete or incomplete information for the players about the evolution of
the play.

The synthesis problem for reactive systems can be solved as follows: we model the system and its
environment by a finite graph whose edge relation describes the interaction between the environment and
the system; the requirement on the system is expressed as ω-regular winning condition. Applying the
Büchi-Landweber Theorem yields an automaton with output so that every execution that is controlled by
the automaton satisfies the requirement (or it yields a strategy for the environment witnessing that the
requirement cannot be satisfied). Hence, the size of the automaton implementing the winning strategy
influences the size of the synthesized controller for the reactive system.

Controllers for reactive systems can be synthesized by solving infinite games, which amounts to
determining for every vertex the player who has a winning strategy and to compute such a strategy.
The computational complexity of solving a game and the size of finite-state winning strategies for a game
are influenced by the expressiveness and succinctness of the formalism employed to specify the winning
condition.

2.1 Course Overview
This course is divided into an introduction and three main parts, each dealing with one aspect of infinite
games.

In the introduction, we give all necessary definitions to reason about infinite games and introduce
basic winning conditions based on acceptance conditions for automata on infinite objects: reachability
and safety, Büchi and co-Büchi, and parity.

In the first main part, we consider games with finite-state strategies, strategies implemented by finite-
automata with output. The Büchi-Landweber Theorem states that such strategies suffice for all games
with ω-regular winning conditions. Furthermore, we will discuss the tight relation between finite-state
strategies and game reductions, the classical way to compute finite-state strategies.

In the second main part, we consider infinite games played on infinite graphs. Since we still want
to solve them algorithmically, we need infinite graphs that can be represented finitely: we show how to
determine the winner and winning strategies for games played on the configuration graphs of pushdown
automata. These automata can model recursive programs with finite data domains, using the pushdown
stack to model the stack of function calls.

In the last part, we consider an application of infinite games to logics: Rabin’s theorem states that
monadic second-order logic over the binary tree is decidable, i.e., there is an algorithm that given a
sentence ϕ decides whether it is satisfiable or not. We will introduce monadic second-order logic and
parity tree automata, which are equally expressive. Infinite games are used to prove that such automata
are closed under negation (which is on step we need to do when proving the equivalence of automata and
logic) and to solve the emptiness problem for tree automata. Thus, given a formula ϕ, one translates it
into an equivalent automaton, which is non-empty if and only if ϕ is satisfiable.
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2.2 Arenas, Strategies and Games

First we define the main structure of a game: its arena. The idea of an arena is to describe the rules the
two players have to follow and additionally, the order in which the players make their moves. To get an
intuition of what an arena looks like, consider the graphical example in Figure 1.

v4

v1

v3 v5

v7

v0 v2

v6 v8

Figure 1: Graphical example for an arena. The round
vertices describe the vertices owned by Player 0, the
angled ones the vertices owned by Player 1. The edges
in between describe the moves the players can do.

In general an arena is a directed graph consisting of
vertices and edges. To assign the players, the ver-
tices are partitioned into two classes, the vertices of
Player 0 and the vertices of Player 1. Graphically,
we distinguish this assignment by using round ver-
tices for Player 0 (round as the symbol for zero) and
angled vertices for Player 1 (angled as the symbol
for one). We also say the players own these vertices.

To play on an arena, we assume the existence of
a token on one of the vertices. If the vertex is owned
by Player 0, she has to move the token, otherwise
Player 1 can move it. The next vertex, the token can
be moved to, is then given by the edges, where if a
vertex has multiple outgoing edges, the correspond-
ing player, owning that vertex, has the possibility to
choose one of them.

Finally, since we want to play games with infinite
behaviour, we only consider arenas that have at least
one outgoing edge for each vertex. This way, we ensure that the token cannot end in a deadlock after
some time. We summarize these mentioned ideas in the following formal definition.

Definition 2.1. An arena A = (V, V0, V1, E) is a tuple where

• V is a finite set of vertices,

• V0 ⊆ V is the set of vertices owned by Player 0,

• V1 = V \V0 is the set of vertices owned by Player 1,

• E ⊆ V × V is a set of directed edges

and each vertex v ∈ V has at least one outgoing edge, formally: ∀v ∈ V. ∃v′ ∈ V. (v, v′) ∈ E. The
size of A, denoted by |A|, is defined to be |V |.

Sometimes, we only want to consider some part of an arena like in the example the part only consisting
of the vertices v4, v5, v7 and v8 and the edges between these vertices (Figure 2).

v4 v5

v7 v8

Figure 2: Sub-arena of the arena given in Figure 1.

We then also call this part a sub-arena of the original arena. As the vertices, the arena is restricted
to, are enough to clearly describe the corresponding sub-arena we can introduce the following definition
for a sub-arena. Consider that we have to ensure that the resulting arena is valid, meaning there is an
outgoing edge for each remaining vertex.
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Definition 2.2. Let A = (V, V0, V1, E) be an arena and V ′ ⊆ V such that every vertex in V ′ has a
successor vertex in V ′. The sub-arena of A, denoted by A�V ′, is defined as

A�V ′ = (V ∩ V ′, V0 ∩ V ′, V1 ∩ V ′, E ∩ (V ′ × V ′)).

We continue by adding some further useful definitions. We already have seen that the players move a
token through the arena. If we do that forever, these moves define an infinite sequence of vertices the
token visits. Such an infinite sequence we also call a play on the arena. An example for a play is given
in Figure 3.

v3 v4 v8 v5 v7 v6 ...

Figure 3: Some play on the arena of Figure 1 starting in v3.

Consider that a play is always an infinite object and depends on the initial vertex the token is placed on.
Formally, we get:

Definition 2.3. A play on an arena A = (V, V0, V1, E) is an infinite sequence ρ = ρ0ρ1ρ2... ∈ V ω
such that for all n ∈ N holds (ρn, ρn+1) ∈ E. We say a play starts in vertex v iff v = ρ0. We denote
the set of all possible plays on A with Plays(A) and the set of all possible plays starting in vertex v
with Plays(A, v).

Coming along with the definition of a play is the definition of a strategy which fixes all possible decisions
of a player regarding the moves already made. On the one hand, these decisions depend on the structure
of the arena, on the other hand they also depend on the decisions of the other player. Accordingly, a
player should have the possibility to react differently, if the other player chooses a different outgoing edge
in the previous move. We say that a strategy may depend on the history, where the history fixes the
finite prefix of a play that has already been played. To describe this formally, we define a strategy of a
player as a function that gets the actual history of moves and then chooses the next outgoing edge. This
way we fix all possible behaviors of that player without considering the strategy of the other player. If
a play then results from using this strategy, we call it consistent with the strategy. Consider that there
can by multiple plays that are consistent with the strategy of one of the players but just one play that is
consistent with both strategies. We formally put these ideas into the following definitions.

Definition 2.4. A strategy for Player i in an arena A = (V, V0, V1, E) is a function σ : V ∗Vi → V
such that whenever σ(wv) = v′ then also (v, v′) ∈ E.

By convention we use i to denote an arbitrary player. The strategies for an arbitrary Player i is denoted
by σ, the strategies of the corresponding other Player i − 1 is denoted by τ . If we talk about concrete
players we use σ for Player 0 and τ for Player 1.

Definition 2.5. A play ρ on an arena A = (V, V0, V1, E) is consistent with a strategy σ in A iff for
all n ∈ N with ρn ∈ Vi we have that σ(ρ[n]) = ρn+1. We denote the set of all plays consistent with
σ and starting in some vertex v ∈ V with Plays(A, σ, v).

Note that for every arena A, every strategy σ and τ and every initial vertex v there exists only one play
that is consistent with τ and σ or formally |Plays(A, σ, v)∩Plays(A, τ, v)| = 1. An example for a strategy
of Player 0 that is consistent with the play given in Figure 3 is indicated below. Consider that we indeed
only fix the decisions of Player 0.

w v3 v3v4v8 v3v4v8v5v7 v3v4v8v5v7v6v7 ...
σ(w) v4 v5 v6 v6 ...
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One might observe that our definition of a strategy is too expressive for practical usage, since it may have
to fix infinitely many different decisions. Accordingly, we may be interested in some weaker representa-
tions. One of them is the class of a positional strategies. Here, the strategy is not allowed to depend on
the actual history, meaning at each vertex the strategy chooses always the same successor. Consequently,
when using a positional strategy, a player has always to chose the same outgoing edge if the token is in
a vertex he owns. The formal definition is given in the following. Later in the lecture, we will also see
some more complex representations that arise if we additionally allow the usage of some finite memory.

Definition 2.6. A strategy σ for Player i in an arenaA = (V, V0, V1, E) is positional iff σ(wv) = σ(v)
for all w ∈ V ∗ and v ∈ Vi.

As a positional strategy for a player i is practically equivalent to a function σ just mapping vertices
owned by player i to some successor vertex (formally: f : Vi → V ) we usually will express them as such
functions. Nevertheless, technically we still mean a strategy in the original sense, since otherwise notions
like consistency of plays are not properly defined anymore.

We now are able to define the notion of a game. So far, the players are only able to play infinitely long
on an arena, but there is no notion of when a player is winning that play. Therefore, we start with a very
general characterization. Regarding the set of all possible plays, we just specify a subset of this set and
say Player 0 is winning the play if it is in the set. We get the following definition of a game.

Definition 2.7. A game G = (A,Win) is a tuple containing an arena A and a set of winning plays
Win ⊆ Plays(A). We call a play ρ winning for Player 0 iff ρ ∈ Win and winning for Player 1
otherwise.

As an example consider the game Ge = (A,Win) where A = (V, V0, V1, E) is defined by the arena
depicted in Figure 1 and the winning condition is defined as Win = { ρ ∈ Plays(A) | Occ(ρ) 6= V }. A
play is winning for Player 0 in this game iff at least one of the vertices of the arena is not visited. Next,
we characterize when a strategy is winning or not:

Definition 2.8. Let G = (A,Win) be a game with A = (V, V0, V1, E) and σ be a strategy for
Player i on A. The strategy σ is a winning strategy from vertex v ∈ V for Player i iff every play
ρ ∈ Plays(A, v) consistent with σ is winning for Player i.

Consider that we defined the notion of winning strategies per initial vertex. This way, we can introduce
the notion of a winning region.

Definition 2.9. The winning region Wi(G) of a game G = (A,Win) with A = (V, V0, V1, E) is
defined for Player i as the set of vertices v ∈ V for which there exists a winning strategy starting
from vertex v for Player i.

If G is clear from the context we just write Wi instead of Wi(G). Regarding our example game Ge
given above, Player 0 has a winning strategy for all vertices. She just has always to take the edges
(v1, v0), (v3, v4) and (v7, v8) if in the vertices v1, v3 and v7 correspondingly. This way she avoids visiting
the vertices v2 and v6 and since at least two vertices can be avoided, starting a play in one of them cannot
help. Consequently, we have for the winning regions: W0 = V and W1 = ∅. Further note that this is a
positional strategy.

Remark 2.1. For all games G it holds that W0(G) ∩W1(G) = ∅.

Proof. Let G = (A,Win) with A = (V, V0, V1, E). Suppose that there exists v ∈W0(G) ∩W1(G) 6= ∅. By
Definition 2.9 there exists a strategy σ winning for Player 0 from v and a strategy τ winning for Player 1
from v. Let ρ = ρ0ρ1ρ2... be the single, unique element of Plays(A, σ, v) ∩ Plays(A, τ, v). It follows by
Definition 2.8 that ρ is winning for Player 0 and ρ is winning for Player 1. By Definition 2.7 it follows
that ρ ∈Win and ρ /∈Win. This is a contradiction against our supposition concluding the proof.
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We already have seen that the winning regions of the two players are always disjoint. Accordingly, there
is no vertex in the arena that can be in both winning regions at the same time. Another interesting
question is whether it is possible that a vertex is in none of the two regions, or in other words whether
the winning regions build a partition of the vertex set. This property is also known as determinacy of a
game and defined as follows:

Definition 2.10. A game G = (A,Win) with A = (V, V0, V1, E) is determined iff the winning regions
of both players describe a partition of V .

Consider that, in contrast to Remark 2.1, we introduce determinacy as a definition here. As a consequence,
one can reason that not all games are determined in general. However, the construction of a game that is
not determined is a complicated task and only from theoretical interest. Correspondingly, we just want
to suggest the interested reader the book Classical descriptive set theory by Alexander Kechris here.

We conclude this section with two further definitions. First we extend the idea of positional strategies to
games, where we require that in every vertex one of the two players can win the game with a positional
strategy. Consider that this definition implies determinacy of the game which is why we call it positional
determinacy.

Definition 2.11. A game G = (A,Win) with A = (V, V0, V1, E) is positionally determined iff for
every vertex v ∈ V there exists a positional winning strategy σ for some Player i.

Further, we introduce the idea of a uniform winning strategy. In contrast to usual winning strategies a
uniform winning strategy can be used no matter in which vertex the corresponding play starts in.

Definition 2.12. Let the game G = (A,Win) with A = (V, V0, V1, E) be given and σ be a strategy
for Player i on A. The strategy σ is a uniform winning strategy iff it is winning from every vertex
in Wi(G).

Consider that not for every positionally determined game there exists a uniform positional winning
strategy (Exercise 1.4).

2.3 Reachability Games

We continue by analyzing some common types of games, where we start with reachability games. Here,
we are interested whether Player 0 is able to move the token into a specific area of the arena, where an
area is just a set of vertices. We call this condition the reachability condition, since we ask whether the
token can reach that area. The set of vertices, from which at least one vertex should be reached, is called
the reachability set. Accordingly, a reachability game then consists of an arena and a reachability set,
usually denoted by R. Formally we have:

Definition 2.13. Let the reachability condition reach(R) on a set R ⊆ V for an arena A =
(V, V0, V1, E) be defined as:

reach(R) :={ ρ ∈ Plays(A) | Occ(ρ) ∩R 6= ∅ }

Then we call the game G = (A,reach(R)) a reachability game with reachability set R.

An example for a reachability game is given in Figure 4, where we graphically denote the reachability set
by using doubly framed vertices. In this game Gr Player 0 has to reach either v4 or v5. This is possible
from each v ∈W0(Gr) = {v3, v4, v5, v6, v7, v8} as the following uniform winning strategy σ shows.

σ(v1) = v0 σ(v3) = v4 σ(v7) = v8 σ(v8) = v5

8



v4

v1

v3 v5

v7

v0 v2

v6 v8

Figure 4: Example for a reachability game. We use doubly framed vertices to denote the reachability set.

We can already make some general observations from this strategy. For example if we start in a vertex
of the reachability set, like in vertex v5, we already have won so it does not matter which successor we
or our opponent choose. We also win if we start in a vertex next to the reachability set that we control,
like vertex v8. We then just can move into the reachability set and have won in the next step.
But how can we win if we do not control a vertex next to the reachability set? In general there are two
possibilities. Either Player 1 has no other choice than moving into the reachability set or he can avoid
moving there. In the first case, we can derive that we also win from that vertex, in the second case we
cannot derive anything so far.

It remains to argue about the remaining vertices that cannot reach the reachability set in one step,
like vertex v7. The idea is to recursively use the arguments made already before. If we own the vertex
and we can move into a vertex where we already have argued that we will win from that vertex, we will
also win from the predecessor vertex. If our opponent owns that vertex, we only can win if he is forced
to move to vertices where we know that we will win.

This general construction of arguing about the winning regions is called the attractor construction
and can be formally described as follows.

Construction 2.1. Let an arena A = (V, V0, V1, E) be given. The attractor construction on A is
defined for each Player i, for all n ∈ N and R ⊆ V as:

CPrei(R) = { v ∈ Vi | ∃v′ ∈ V. (v, v′) ∈ E ∧ v′ ∈ R }
∪ { v ∈ V1−i | ∀v′ ∈ V. (v, v′) ∈ E ⇒ v′ ∈ R }

Attr0
i (R) = R

Attrn+1
i (R) = Attrni (R) ∪ CPrei(Attrni (R))

Attri(R) =
⋃
n∈N

Attrni (R)

An execution of the attractor construction for the game in Figure 4 is depicted in Figure 5. Consider
that Attr3

0({v4, v5}) = Attr4
0({v4, v5}) such that it follows that Attrn0 ({v4, v5}) = Attrm0 ({v4, v5}) =

Attr0({v4, v5}) for all n,m ∈ N greater than two. Consider that in general we always reach such a
situation after at least |A| many steps, since we have Attr0

i (R) ⊆ Attr1
i (R) ⊆ Attr2

i (R) ⊆ . . . .

Remark 2.2. For every reachability game G = (A,reach(R)) and every Player i it holds:

∀n,m ≥ |A|. Attrni (R) = Attrmi (R) = Attri(R)

Remark 2.3. The attractor Attri(R) on an arena A = (V, V0, V1, E) for some Player i and vertex set
R ⊆ V can be computed in linear time in |E|.

Proof. See Exercise 2.2.
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v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr0
0({v4, v5}) =
{v4, v5}

v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr1
0({v4, v5}) =

{v4, v5} ∪ {v3, v8}

v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr2
0({v4, v5}) =

{v3, v4, v5, v8} ∪ {v3, v7, v8}

v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr3
0({v4, v5}) =

{v3, v4, v5, v7, v8} ∪ {v3, v6, v7, v8}

v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr4
0({v4, v5}) =

{v3, v4, v5, v6, v7, v8}

Figure 5: Visual representation of the attractor construction for the game of Figure 4. The corresponding
attractor sets are denoted by the areas marked yellow.

For our example game Gr holds that W0(GR) equals Attr0(R). We can generalize this result as follows.

Lemma 2.1. For every reachability game G = (A,reach(R)) with A = (V, V0, V1, E) it holds that
W0(G) = Attr0(R) and W1(G) = V \Attr0(R).

Proof. To show the lemma we first show Attr0(R) ⊆ W0(G). Therefore, we introduce the notion
of a so called distance function. The distance function δ : Attr0(R) → N for a reachability game
G = (A,reach(R)) with A = (V, V0, V1, E) is defined as

δ(v) = min{n ∈ N | v ∈ Attrn0 (R) } (1)

where min ∅ =∞. From Construction 2.1 we can derive the following properties for vertices v ∈ Attr0(R).

• δ(v) > 0 ∧ v ∈ V0 ⇒ (∃v′ ∈ V. (v, v′) ∈ E ∧ δ(v′) < δ(v)) (2)

Let δ(v) = n, then by (1) it follows that v ∈ Attrn0 (R) and v /∈ Attrn−1
0 (R). By construction it

follows that v ∈ { v ∈ V0 | ∃v′ ∈ V. (v, v′) ∈ E ∧ v′ ∈ Attrn−1
0 (R) } ⊆ CPre0(Attrn−1

0 (R)) so the
corresponding v′ exists and by (1) we finally get δ(v′) ≤ n− 1 < n.

• δ(v) > 0 ∧ v ∈ V1 ⇒ (∀v′ ∈ V. (v, v′) ∈ E ⇒ δ(v′) < δ(v)) (3)

Let δ(v) = n, then by (1) it follows that v ∈ Attrn0 (R) and v /∈ Attrn−1
0 (R). By construction it

follows that v ∈ { v ∈ V1 | ∀v′ ∈ V. (v, v′) ∈ E ∧ v′ ∈ Attrn−1
0 (R) } ⊆ CPre0(Attrn−1

0 (R)) and by
(1) we finally get for the corresponding v′ that δ(v′) ≤ n− 1 < n.
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We are now able to construct a winning strategy σ for each play starting in Attr0(R).

σ(v) =
{

v′ for some (v, v′) ∈ E with δ(v′) < δ(v) if ∞ > δ(v) > 0
v′ for some (v, v′) ∈ E otherwise

(4)

Consider that by (2) we can always construct such a strategy and that our strategy is positional. It
remains to prove that σ is indeed a winning strategy. Let ρ = ρ0ρ1ρ2... ∈ Plays(A, σ,Attr0(R)) be an
arbitrary play consistent with σ and starting in Attr0(R). We show by induction on δ(ρ0) = n that there
exists an index m with ρm ∈ R.

Induction Base: n = 0

From δ(ρ0) = 0 it follows by (1) that ρ0 ∈ Attr0
0(R) and by construction that ρ0 ∈ R.

Induction Hypothesis:

∀n ∈ N. ∀ρ ∈ Plays(A, σ,Attr0(R)). δ(ρ0) = n⇒ ∃m ∈ N. ρm ∈ R

Induction Step: n > 0

If ρ0 ∈ V0 it follows by consistency that δ(ρ1) < n. The same follows by (3) if ρ0 ∈ V1. Then since
ρ1 ∈ Attr0(R) and since σ is positional we have the play ρ′ = ρ1ρ2ρ3 · · · ∈ Plays(A, σ,Attr0(R)).
By induction hypothesis there exists an m′ ∈ N with ρ′m′ ∈ R. Correspondingly, for m = m′+ 1 we
have ρm ∈ R.

It follows that Player 0 has a winning strategy from each vertex v ∈ Attr0(R) and consequently
Attr0(R) ⊆ W0(G). Next, we show V \Attr0(R) ⊆ W1(G). Let X = V \Attr0(R). From Construc-
tion 2.1 we get the following for arbitrary v ∈ V .

• v ∈ (X ∩ V0)⇒ ∀(v, v′) ∈ E. v′ ∈ X (5)

Assume there exists a v′ ∈ V with (v, v′) ∈ E and v′ /∈ X. Then by definition it follows v′ ∈ Attr0(R)
and correspondingly, there exists an n ∈ N such that v′ ∈ Attrn0 (R). But then by Construction 2.1
it follows that v ∈ Attrn+1

0 (R) and also v ∈ Attr0(R). Accordingly, such a v′ cannot exist.

• v ∈ (X ∩ V1)⇒ ∃(v, v′) ∈ E. v′ ∈ X (6)

Assume that for all v′ ∈ V with (v, v′) ∈ E we have v′ /∈ X. Then by definition it follows
v′ ∈ Attr0(R) and there exists an n ∈ N such that v′ ∈ Attrn0 (R). But then by construction it
follows that v ∈ Attrn+1

0 (R) and v ∈ Attr0(R) concluding that the corresponding v′ exists.

We can now give a strategy τ for Player 1, defined arbitrarily for v /∈ X, that wins from all vertices in X.

τ(v) = v′ for some (v, v′) ∈ E with v′ ∈ X (7)

Consider that by (6) such a strategy can always be constructed and that τ is a positional strategy. We
show that τ is indeed a winning strategy, so let ρ = ρ0ρ1ρ2... ∈ Plays(A, τ,X) be an arbitrary play. We
show by induction on n ∈ N that all ρn ∈ X. By definitions of X it follows then also ρn /∈ R and that ρ
is a winning play for Player 0.

Induction Base: n = 0

By definition ρ0 ∈ X.

Induction Hypothesis:

∀n ∈ N. ∀ρ ∈ Plays(A, τ,X). ρn ∈ X

Induction Step: n > 0

By induction hypothesis we know that ρn−1 ∈ X. We distinguish two cases. If ρn−1 ∈ V0 then
by (5) it follows that each successor is an element of X, so also ρn ∈ X. If ρn−1 ∈ V1 then
ρn = τ(ρn−1) ∈ X by (7) and consistency.

We have shown that Attr0(R) ⊆ W0(G) and that V \Attr0(R) ⊆ W1(G). Together with the result of
Remark 2.1 we finally get W0(G) = Attr0(R) and W1(G) = V \Attr0(R).
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We can conclude the following theorem from the proof of Lemma 2.1, where solving a game is defined as
computing the winning regions and the winning strategies from these regions for both players.

Theorem 2.1. Reachability games are determined with uniform positional winning strategies. They
can be solved in linear time in the number of edges of the underlying arena.

Proof. We already have shown in the proof of Lemma 2.1 that a reachability game G = (A,reach(R))
with A = (V, V0, V1, E) is determined since W0(G) = Attr0(R) and W1(G) = V \Attr0(R). Further,
we also have seen that players only need positional strategies to win the game form the corresponding
winning regions. Finally consider that the strategies, defined in the proof, are winning independent from
which state in the winning regions the plays start. Altogether, it follows that the game is positionally
determined with uniform strategies. For the given complexity results see Exercise 2.2.

2.4 Safety Games
The next type of winning condition we want to analyze is the so called safety condition. Where for the
reachability condition Player 0 is asked to reach a specific region of the arena, in the safety condition
Player 0 is not allowed to leave a specific region. We also call this region the safe region of the arena.
Formally we get the following game:

Definition 2.14. Let the safety condition safe(S) on the set S ⊆ V for an arena A = (V, V0, V1, E)
be defined as:

safe(S) :={ ρ ∈ Plays(A) | Occ(ρ) ⊆ S }

Then we call the game G = (A, safe(S)) a safety game with safety set S.

An example for such a game is given in Figure 6. As for reachability games we mark the safe region of the
game with double framed vertices. Here Player 0 can win exactly from the set W0 = {v1, v2, v5, v7, v8}
since in v4 Player 1 can move to the unsafe vertex v0 and from v3 Player 0 can only move to v6,
which is unsafe, or v4 from which we already have seen that Player 1 can move to an unsafe region.
Correspondingly, W1 = {v0, v3, v4, v5}.

v4

v1

v3 v5

v7

v0 v2

v6 v8

Figure 6: Example for a safety game. The doubly framed vertices mark the safe region.

As we can observe in the game above, the goal of both players exactly have swapped in comparison to
reachability games. Player 1 now tries to reach the unsafe region of the arena and Player 0 has to avoid
this. To generalize this observation we first introduce the notion of a complemented arena and finally get
to the lemma given below.

Definition 2.15. For an arena A = (V, V0, V1, E) we define the complemented arena Ā as:
Ā = (V, V1, V0, E)
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Lemma 2.2. Let A = (V, V0, V1, E) be an arena, G = (A, safe(S)) be a safety game with S ⊆ V
and G′ = (Ā,reach(V \S)) be a reachability game. Then every strategy σ winning for Player i from
a vertex v ∈ V in the game G′ is also a winning strategy for Player 1− i from v in the game G.

Proof. See Exercise 2.3.

Corollary 2.1. Let A = (V, V0, V1, E) be an arena, G = (A, safe(S)) be a safety game with S ⊆ V and
G′ = (Ā,reach(V \S)) be a reachability game. Then Wi(G) = W1−i(G′) for each Player i.

Proof. See Exercise 2.3.

Finally we can conclude the following theorem.

Theorem 2.2. Safety games are determined with uniform positional winning strategies and can be
solved in linear time in the number of edges of the underlying arena.

Proof. The result directly follows from Corollary 2.1 and Theorem 2.1.

2.5 Büchi Games
We already have seen games that are won by Player 0 or her opponent by reaching some set of vertices in
the arena. After this goal is reached, it is clear who has won the game such that theoretically the players
could stop playing the game.

We will now consider games where we overcome this. Therefore, we extend the condition of reaching
a set once to reaching it infinitely often. Correspondingly, Player 0 not only has to find a strategy to
reach the set but her strategy also has to be able to come back after every visit. This winning condition
is called the Büchi condition and yields to the following game definition.

Definition 2.16. Let the Büchi condition büchi(F ) on a set F ⊆ V for an arena A = (V, V0, V1, E)
be defined as:

büchi(F ) :={ ρ ∈ Plays(A) | Inf(ρ) ∩ F 6= ∅ }

Then we call the game G = (A,büchi(F )) a Büchi game with recurrence set F .

We also call the vertices of the recurrence set accepting vertices. An example for a Büchi game is given
by Figure 7. In this game, the goal of Player 0 is to visit v4 or v6 infinitely often. This is only achievable
from the vertices v3, v6 and v7 since Player 0 can cycle between v6 and v7 forever and move into this
area from v3. From the other vertices Player 1 can force the play into the set {v0, v1, v2} and can
stay there by always moving back to v1 from v0 and v2. Accordingly, we have W0 = {v3, v6, v7} and
W1 = {v0, v1, v2, v4, v5, v8}.

v4

v1

v3 v5

v7

v0 v2

v6 v8

Figure 7: A Büchi game where the recurrence set is denoted by doubly framed vertices.
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v4

v1

v3 v5

v7

v0 v2

v6 v8

Recur0({v4, v6}) =
{v4, v6}

v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr0
0({v4, v6}) =
{v4, v6}

v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr1
0({v4, v6}) =

{v4, v6} ∪ {v3, v7}

v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr0({v4, v6}) =
{v3, v4, v6, v7}

v4

v1

v3 v5

v7

v0 v2

v6 v8

W 0
1 ({v4, v6}) =

{v0, v1, v2, v5, v8}

v4

v1

v3 v5

v7

v0 v2

v6 v8

CPre1({v0, v1, v2, v5, v8}) =
{v0, v1, v2, v4, v5, v8}

v4

v1

v3 v5

v7

v0 v2

v6 v8

Recur1({v4, v6}) =
{v6}

v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr0
0({v6}) =
{v6}

v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr1
0({v6}) =

{v6} ∪ {v3, v7}

v4

v1

v3 v5

v7

v0 v2

v6 v8

Attr0({v6}) =
{v3, v6, v7}

v4

v1

v3 v5

v7

v0 v2

v6 v8

W 1
1 ({v4, v6}) =

{v0, v1, v2, v4, v5, v8}

v4

v1

v3 v5

v7

v0 v2

v6 v8

W1(G) =
{v0, v1, v2, v4, v5, v8}

Figure 8: Execution of the recurrence construction on the example of Figure 7. The essential parts of the
calculations of Recurn(F ), Attrn

i (R) and CPrei(F ) are highlighted by , and , respectively.
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We are interested in solving Büchi games. From our example it seems that we have somehow to distinguish
the different goals of Player 0 and Player 1. Player 0 eventually needs to cycle between some vertices in
F . Player 1 eventually needs to cycle between some vertices not in F . In the example these vertices are
v6 and v7 for Player 0 and v0, v1 and v2 for Player 1.

But how can we generalize this observation? The problem is that we cannot just focus on one of
the two players and handle the other player later as for reachability games. The reason is that we need
information of the infinite behaviour for both. Accordingly, we have to first analyze where in the arena
the players can fulfill their infinite goal. Having that, we can finally fix the remaining parts. This idea is
realized in the following construction.

Construction 2.2. Let an arena A = (V, V0, V1, E) be given. The recurrence construction on A is
defined for each Player i, for all n ∈ N and F ⊆ V as:

Recur0(F ) = F

Wn
1 (F ) = V \Attr0(Recurn(F ))

Recurn+1(F ) = F \CPre1(Wn
1 (F ))

We start with the set of vertices F that we want to see infinitely often. These vertices can only be reached
by Player 0 in their attractor. Consequently, if Player 0 is not even able to reach them we must be in
the winning region of Player 1. Finally, in contrast to reachability games, it does not help to reach the
vertices at least once. So even if Player 0 is in an accepting vertex, if Player 1 can force her to move into
his winning region, she will loose the play. Accordingly, we have to remove these accepting vertices from
our consideration. But then Player 0 also cannot win if she can only reach such a bad accepting vertex.
Accordingly we have to refine our attractor until we have excluded every one of them, what can be done
in finitely many steps.
Remark 2.4. For every Büchi game G = (A,büchi(F )) it holds:

∀n,m ≥ |A|. Recurn(F ) = Recurm(F )
In the end, Player 0 wins for the remaining attractor vertices because she can reach the remaining accept-
ing vertices by the attractor construction and their successors are elements of the attractor. Accordingly,
she can revisit them again by the same reason. An example execution of the construction is depicted in
Figure 8. We can summarize the complete result formally as follows.

Lemma 2.3. For every Büchi game G = (A,büchi(F )) it holds that W1(G) =
⋃
n∈NW

n
1 (F ) and

W0(G) = V \W1(G).

Proof. Let G = (A,büchi(F )) be a Büchi game with A = (V, V0, V1, E) and X = V \
⋃
n∈NW

n
1 (F ).

We first show X ⊆ W0(G). By Remark 2.4 we know that ∀m ≥ |A|. Recurm+1(F ) = Recurm(F ) and
correspondingly X = Attr0(Recurm(F )). It holds that:

• Recurm(F ) ⊆ CPre0(X) (1)

To show this let v ∈ Recurm(F ) be arbitrary. Then by construction v ∈ F \CPre1(Wm
1 (F )) and

correspondingly v /∈ CPre1(Wm
1 (F )). We distinguish two cases:

Case 1: v ∈ V0

Def. CPre⇒ ∃v′ ∈ V. (v, v′) ∈ E ∧ v′ /∈Wm
1 (F )

⇒ ∃v′ ∈ V. (v, v′) ∈ E ∧ v′ ∈ V \Wm
1 (F )

Def. CPre⇒ v ∈ CPre0(V \Wm
1 (F ))

Case 1: v ∈ V1

Def. CPre⇒ ∀v′ ∈ V. (v, v′) ∈ E ⇒ v′ /∈Wm
1 (F )

⇒ ∀v′ ∈ V. (v, v′) ∈ E ⇒ v′ ∈ V \Wm
1 (F )

Def. CPre⇒ v ∈ CPre0(V \Wm
1 (F ))

⇒ v ∈ CPre0(Attr0(Recurm(F )))
⇒ v ∈ CPre0(X)
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As shown in the proof of Lemma 2.1 we can use the attractor to derive a strategy σA to reach Recurm(F ).
Using this strategy, we define the strategy σ for Player 0 as follows.

σ(v) =
{

σA(v) if v ∈ Attr0(Recurm(F )) \Recurm(F )
v′ for some v′ ∈ X with (v, v′) ∈ E if v ∈ Recurm(F )

(2)

Consider that by (1) the choice for the case v ∈ Recurm(F ) is always possible. We show that σ is a
winning strategy for Player 0 from X, so let ρ = ρ0ρ1ρ2... ∈ Plays(A, σ,X) be arbitrary. We first show:

• ∀n ∈ N. ρn ∈ X (Proof by induction on n) (3)

Induction Base: n = 0

ρ0 ∈ X directly follows from ρ ∈ Plays(A, σ,X).
Induction Hypothesis:

∀n ∈ N. ρn ∈ X

Induction Step: n > 0

By induction hypothesis we know that ρn−1 ∈ X. By (2) we only need to show the case
ρn−1 ∈ Recurm(F ). All other cases can be shown analogously as in the proof of Lemma 2.1.
If ρn−1 ∈ V0 then ρn = σ(ρn−1) and the result follows from (2) and (1). If ρn−1 ∈ V1 then
ρn ∈ X follows directly from (1).

We need to show that the set F is visited infinitely often by ρ, or formally: ∀n ∈ N. ∃j ≥ n. ρj ∈ F .
Accordingly, let n ∈ N be arbitrary. By (3) we know that ρn ∈ X. If ρn ∈ Recurm(F ) choose j = n and
we are done since Recurm(F ) ⊆ F by construction. For ρn /∈ Recurm(F ) the result follows by Lemma 2.1
and the choice of our strategy.

It remains to show
⋃
n∈NW

n
1 (F ) ⊆ W1(G) what is by Remark 2.1 sufficient to complete our proof.

By Remark 2.4 we know for m = |A| that
⋃
n∈NW

n
1 (F ) = Wm

1 (F ). We define a distance function
δ : Wm

1 (F )→ N as follows:

δ(v) = min{n ∈ N | v ∈Wn
1 (F ) } (4)

We can show the following:

• ∀v ∈Wm
1 ∩ F. δ(v) > 0 (5)

Consider that W 0
1 (F ) = V \Attr0(F ) and that by Construction 2.1 we have that F ⊆ Attr0(F ).

Accordingly we know W 0
1 ∩ F = ∅ and the result follows for v ∈Wm

1 ∩ F by (4).

• ∀v ∈Wm
1 (F ) ∩ V0. ∀v′ ∈ V. (v, v′) ∈ E ⇒ δ(v′) ≤ δ(v) (6)

Let v ∈Wm
1 (F )∩V0 and v′ ∈ V with (v, v′) be arbitrary. Further, let n = δ(v) be the minimal n such

that that v ∈ Wn
1 (F ). We show the sufficient condition that v′ ∈ Wn

1 (F ) = V \Attr0(Recurn(F )).
For the sake of contradiction assume that v′ /∈ Wn

1 (F ) and accordingly v′ ∈ Attr0(Recurn(F )).
Then, as v ∈ V0, it follows that v ∈ CPre0(Attr0(Recurn(F ))) and further v ∈ Attr0(Recurn(F ))
by Construction 2.2. But this is a contradiction against v ∈Wn

1 (F ) = V \Attr0(Recurn(F )). As a
consequence, v′ must be part of Wn

1 (F ).

• ∀v ∈Wm
1 (F ) ∩ V1. ∃v′ ∈ V. (v, v′) ∈ E ∧ δ(v′) ≤ δ(v) (7)

Let v ∈Wm
1 ∩V1 be arbitrary and n = δ(v) be the minimal n such that that v ∈Wn

1 (F ). We have to
show that there exists a v′ ∈ V with (v, v′) ∈ E such that δ(v′) ≤ n. For the sake of contradiction
assume that no such v′ exists. Then for all v′ with (v, v′) ∈ E we have that δ(v′) > δ(v) and
accordingly v′ /∈ Wn

1 (F ). It follows that all v′ with (v, v′) ∈ E are part of Attr0(Recurn(F )) such
that we get that v ∈ CPre0(Attr0(Recurn(F ))). It follows that also v′ ∈ Attr0(Recurn(F )) by
Construction 2.2 which is a contradiction against v ∈ Wn

1 (F ). Accordingly, there must exist at
least one v′
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• ∀v ∈Wm
1 (F ) ∩ F ∩ V1. ∃v′ ∈ V. (v, v′) ∈ E ∧ δ(v′) < δ(v) (8)

Let v be arbitrary with δ(v) = n. By (5) we know n > 0 such that by (4) follows v ∈ Wn
1 (F ) and

v /∈ Wn−1
1 (F ). It follows v ∈ V \Attr0(Recurn(F )) and accordingly v /∈ Attr0(Recurn(F )). By

Construction 2.1 it follows also v /∈ Recurn(F ) and v /∈ F \CPre1(Wn−1
1 (F )). It follows by v ∈ F

that also v ∈ CPre1(Wn−1
1 (F )). Accordingly by definition of CPre it follows that there exists a

v′ ∈ V with (v, v′) ∈ E and v′ ∈Wn−1
1 (F ). Accordingly δ(v′) is at most n− 1.

• ∀v ∈Wm
1 (F ) ∩ F ∩ V0. ∀v′ ∈ V. (v, v′) ∈ E ⇒ δ(v′) < δ(v) (9)

Let v and v′ arbitrary with δ(v) = n. As already shown in (8) it follows v ∈ CPre1(Wn−1
1 (F )) and

by definition of CPre that (v, v′) ∈ E and v′ ∈Wn−1
1 (F ). As before it follows δ(v′) ≤ n− 1.

We now can construct a strategy τ for Player 1 defined on Wm
1 (F ).

τ(v) =
{

v′ for some (v, v′) ∈ E with δ(v′) < δ(v) if v ∈ F ∩Wm
1 (F )

v′ for some (v, v′) ∈ E with δ(v′) ≤ δ(v) if v ∈Wm
1 (F ) \F

(10)

Consider that case v ∈ F ∩Wm
1 (F ) is always realizable by (8) and the other case by (7). It remains to

show that τ is winning for Player 1 from Wm
1 (F ). Let ρ = ρ0ρ1ρ2... ∈ Plays(A, τ,Wm

1 (F )) be arbitrary.
By (6) and (10) we have that δ(ρn) ≥ δ(ρn+1) for all n ∈ N. Now assume ρ is not winning for Player 1,
so there are infinitely many different positions n0, n1, n2, ... ∈ N with ρnj ∈ F for all j ∈ N. By (9) and
(10) we know δ(ρ0) > δ(ρn0+1) > δ(ρn1 + 1) > ... such that there must exist a j ∈ N with δ(ρnj ) = 0.
But since ρnj

∈ F this is a contradiction against (5). Accordingly τ is winning for all plays starting in
Wm

1 (F ) and by that Wm
1 (F ) ⊆W1(G) concluding the proof.

Theorem 2.3. Büchi games are determined with uniform positional winning strategies. They can
be solved in polynomial time in the number of edges of the underlying arena.

Proof. Positional determinacy with uniform winning strategies follows directly from the proof of
Lemma 2.3. The given complexity results are achievable directly through Construction 2.2.

2.6 Co-Büchi Games
Analogous to reachability and safety conditions being complementary, we call the complement of a Büchi
condition a co-Büchi condition and consider games with such a winning condition.

Definition 2.17. Let the co-Büchi condition cobüchi(C) on a set C ⊆ V for an arena A =
(V, V0, V1, E) be defined as:

cobüchi(C) :={ ρ ∈ Plays(A) | Inf(ρ) ⊆ C }

Then we call the game G = (A,cobüchi(C)) a co-Büchi game with persistence set C.

For an example consider the game given in Figure 9. Here, Player 0 wins from every initial vertex. A
winning strategy is given by going from v1 to v2, from v3 to v6, from v7 to v8 and from v8 to v5. Using
this strategy, Player 0 avoids visiting v4 more than once since the only incoming edge comes from v3
and is never taken. But then also v0 is only visited finitely often, because she does not use the edge
from v1. As a consequence, v3 can only be visited finitely often as well and the same holds for v6 since
Player 0 never takes the edge back from v7. Finally, we get the similar results, as for reachability and
safety games, summarized in Lemma 2.4, Corollary 2.2 and Theorem 2.3.

Lemma 2.4. Let A = (V, V0, V1, E) be an arena, G = (A,cobüchi(C)) be a co-Büchi game with
C ⊆ V and G′ = (Ā,büchi(V \C)) be a Büchi game. Then every strategy σ winning for Player i
from a vertex v ∈ V in the game G′ is also a winning strategy for Player 1− i from v in the game G.

Proof. Analogous to the proof of Lemma 2.2.
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v4

v1

v3 v5

v7

v0 v2

v6 v8

Figure 9: Example for a co-Büchi game. The doubly framed vertices mark the persistence region.

Corollary 2.2. Let A = (V, V0, V1, E) be an arena, G = (A,cobüchi(C)) be a co-Büchi game with
C ⊆ V and G′ = (Ā,büchi(V \C)) be a Büchi game. Then Wi(G) = W1−i(G′) for each Player i.

Proof. Analogous to the proof of Corollary 2.1.

Theorem 2.4. Co-Büchi games are determined with uniform positional winning strategies and can
be solved in polynomial time in the number of edges of the underlying arena.

Proof. The result is a direct consequence of Corollary 2.2 and Theorem 2.3.

2.7 Parity Games
The last type of games we want to consider in this chapter are so called parity games. Here, each vertex
is marked with a color, represented by natural numbers. Player 0 wins a play, if the minimal color seen
infinitely often is even, Player 1 wins a play if it is odd. Accordingly, the winner of a game depends
on the parity of the smallest color seen infinitely often, giving the game its name. To have a suitable
representation of the coloring we use a color function Ω that returns us the color for each vertex.

Definition 2.18. Let the parity condition parity(Ω) on a color function Ω : V → [k] for some
arena A = (V, V0, V1, E) and some k ∈ N be defined as:

parity(Ω) :={ ρ ∈ Plays(A) | Par(min(Ω(Inf(ρ)))) = 0 }

Then we call the game G = (A,parity(Ω)) a parity game with color function Ω.

v4
0

v1
3

v3
1

v5
1

v7
3

v0
4

v2
2

v6
2

v8
0

Figure 10: Example for a parity game. The color of each vertex is given in its upper right corner.

An example for a parity game is given in Figure 10. Player 0 wins this game from the vertices v3, v6
and v7. Her strategy is to cycle between v6 and v7 such that the minimal color visited infinitely often
is 2. From v3 Player 0 can reach this region in one step. Player 1 wins from the remaining vertices.
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His strategy is to either cycle between v0 and v1 or to cycle between v1, v2 and v5, depending on which
cycle Player 0 chooses infinitely often in v1. Whatever strategy Player 0 chooses for v1, the minimal color
visited infinitely often is either 3 or 1 this way. Player 1 then also wins from v8 by moving to v5 and from
v4 by moving to v0 or to v8. Consider that both player have uniform winning strategies.

One might observe that a parity condition is a nested combination of Büchi and co-Büchi conditions,
i.e. Player 0 needs to avoid seeing odd colors infinitely often and has to see even colors infinitely often.
However seeing large odd colors infinitely often does not cause problems as long as a smaller even color
is seen infinitely often. The dual property is given for Player 1. On the other hand, Büchi and co-Büchi
games are just a special case of Parity games as shown in the following.

Remark 2.5.

1. Every Büchi game G = (A,büchi(F )) can be represented as a parity game G′ = (A,parity(Ω)).

2. Every co-Büchi game G = (A,cobüchi(C)) can be represented as a parity game G′ = (A,parity(Ω)).

Proof. We can represent a Büchi game G = (A,büchi(F )) with arena A = (V, V0, V1, E) by the parity
game G′ = (A,parity(Ω : V → [3])) with

Ω(v) =
{

0 if v ∈ F
1 if v /∈ F

and we can represent a co-Büchi game G = (A,cobüchi(C)) with arena A = (V, V0, V1, E) by the parity
game G′ = (A,parity(Ω : V → [2])) with

Ω(v) =
{

2 if v ∈ C
1 if v /∈ C

Then in both cases the parity condition exactly defines the Büchi and co-Büchi condition, respectively,
and as a consequence we have for both cases that G = G′.

As for all other games presented so far, we can ask ourself what is the weakest notion of strategies the
players need to win parity games. The answer is given by the following theorem.

Theorem 2.5. Parity games are determined with uniform positional winning strategies.

Proof. Let G = (A,parity(Ω : V → [k])) be a parity game with A = (V, V0, V1, E). We prove the
theorem by induction over |V | = n.

Induction Base: n = 1

Let V = {v}, by Definition 2.1 it follows that E = {(v, v)}. Accordingly, there is only one unique
play ρ = vω, independently from the player owning the vertex and its strategy. As a consequence,
Player 0 wins the game if Par(Ω(v)) = 0 and Player 1 wins the game otherwise. Consider that there
is only one possible strategy for the player owning v, which is positional.

Induction Hypothesis:

∀n ∈ N. ∀G = (A,parity(Ω)). |A| = n⇒ G is pos. determined with uniform winning strategies

Induction Step: n > 1

Let d = min(Ω(V )) be the minimal color occurring in the game with Par(d) = i. Further let
D = { v ∈ V | Ω(v) = d } be the set of states colored with d and A = Attri(D) 6= ∅ be its attractor.
Finally let σA be the strategy defined trough the attractor forcing plays from A into D.

Case 1: A = V

We define a winning strategy for Player i as follows

σ(v) =
{

σA(v) if v ∈ A \D
v′ for some (v, v′) ∈ E if v ∈ D
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It holds that σ is a winning strategy for Player i from each v ∈ V . To show this let v ∈ V ,
ρ = ρ0ρ1ρ2... ∈ Plays(A, σ, v) and n ∈ N be arbitrary. By A = V it follows that ρn ∈ A and
by construction of σ we know that there must be an m ≥ n such that ρm ∈ D. Accordingly,
we have that ∀n ∈ N. ∃m ≥ n. ρm ∈ D what is equivalent to Inf(ρ) ∩ D 6= ∅. Finally, by
Ω(D) = d and minimality of d it follows with Par(d) = i that ρ ∈ parity(Ω) for i = 0 and
ρ /∈ parity(Ω) for i = 1. Thus, σ is a uniform positional winning strategy from V = Wi(G)
for Player i.

Case 2: A ⊂ V

Consider the sub-arena A′ = A�(V \A) defining the game G′ = (A′,parity(Ω′ : V \A→ [k]))
with Ω′(v) = Ω(v) for all v ∈ V \A. This sub-arena is always defined since for each v ∈ V \A
there exists an edge back to V \A. If this would not be the case then all outgoing edges of
v would lead into A. But this is a contradiction against A = Attri(D) and v /∈ A since then
by definition of the attractor it would hold v ∈ A. It follows from A 6= ∅ that |A′| < |A| such
that the induction hypothesis is applicable. Correspondingly, the G′ is positionally determined
with uniform winning strategies σ′ and τ ′. We distinguish two further subcases:

Subcase 1: W1−i(G′) = ∅
We show that Wi(G) = V by using the following positional winning strategy σ for Player i.

σ(v) =


σ′(v) if v ∈Wi(G′)
σA(v) if v ∈ A \D
v′ for some (v, v′) ∈ E if v ∈ D

(1)

To show that σ is indeed a winning strategy let v ∈ V and ρ = ρ0ρ1ρ2... ∈ Plays(A, σ, v)
be arbitrary. First assume that for some position m ∈ N we have that ρj ∈ V \A for
every j ≥ m. Then by (1) it follows that ρ′ = ρmρm+1ρm+2... ∈ Plays(A′, σ′, V \A)
and together with the inductive properties of σ′ that ρ′ is winning for Player i in G′.
Accordingly, for q = min{Ω(ρj) | j ≥ m } we have that Par(q) = i and it holds that
∀j ≥ m. ∃p ≥ j. Ω(ρp) = q. As a consequence the same holds for all j ∈ N. Thus ρ is
also winning for Player i in G.
Next assume that for all m ∈ N there exists a j ≥ m such that ρj ∈ A. Then by definition
of (1) and the attractor construction we know that there exists p ≥ j such that ρp ∈ D.
As a consequence we have that ∀m ∈ N. ∃p ≥ m. ρp ∈ D and ρ must be winning for
Player i in G.

Subcase 2: W1−i(G′) 6= ∅
Let B = Attr1−i(W1−i(G′)) 6= ∅ be the attractor of W1−i(G′) in the game G. Then the
sub-arena A′′ = A �(V \B) defines the game G′′ = (A′′,parity(Ω′′ : V \B → [k])) with
Ω′′(v) = Ω(v) for all v ∈ V \B. Again this sub-arena is defined since its vertices are in
the complement of an attractor for some set in the original game. Further we know that
|A′′| < |A| such that the induction hypothesis is applicable and the game G′′ is positionally
determined with uniform winning strategies σ′′ and τ ′′. We show that

Wi(G) = Wi(G′′) and W1−i(G) = W1−i(G′′) ∪B

by showing Wi(G′′) ⊆ Wi(G) and W1−1(G′′) ∪ B ⊆ W1−1(G). We first show that σ′′ is
a positional winning strategy for Player i from Wi(G′′) in the game G. Accordingly, let
ρ = ρ0ρ1ρ2... ∈ Plays(A, σ′′,Wi(G′′)) be arbitrary. It holds that for all m ∈ N we have
that ρm ∈ Wi(G′′) since parity games are prefix independent for similar reasons as for
Büchi and co-Büchi games and the winning regions define a trap for each Player i (see
Exercise 2.3). It follows that Wi(G′′) is also a trap on the whole arena A since Player i
can only move to vertices in A′′, as σ′′ is defined on A′′, and Player 1− i cannot move to
vertices v′ ∈ B, not part of A′′, from some vertex v since B is defined as the attractor of
Player 1 − i and then it would hold that v ∈ B as well. It follows that ρ ∈ parity(Ω′′)
for i = 0 and ρ /∈ parity(Ω′′) for i = 1. Correspondingly also ρ ∈ parity(Ω) for i = 0
and ρ /∈ parity(Ω) for i = 1.

It remains to show that there is a uniform positional strategy τ for Player 1 − i winning
from W1−i(G). We define τ as follows.
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τ(v) =


τ ′′(v) if v ∈W1−i(G′′)
τA(v) if v ∈ B \W1−i(G′)
τ ′(v) if v ∈W1−i(G′)

(2)

where τA is the strategy defined through the attractor of B enforcing plays from B into
W1−i(G′). We show that τ is indeed a winning strategy for Player 1 − i. Let the play
ρ = ρ0ρ1ρ2... ∈ Plays(A, τ,W1−i(G′′) ∪ B) be arbitrary. If there exists a position m ∈ N
such that ρm ∈ W1−i(G′) we know that ρj ∈ W1−i(G′) for all j ≥ m since W1−i(G′) is a
trap on A. This holds since W1−i(G′) is a trap on A′, Player 1− i will not leave A′ since
τ ′ only is defined on A′ and Player i cannot move from some vertex v ∈W1−i(G) to some
vertex v′ ∈ A not in A′ as A is defined as an attractor for Player i and then it would
hold that also v ∈ A. Accordingly, the play ρ′ = ρmρm+1ρm+2... ∈ Plays(A′, τ ′,W1−i(G′))
is winning for Player 1 − i, thus ρ′ /∈ parity(Ω′) if i = 0 and ρ′ ∈ parity(Ω′) if i = 1.
Correspondingly, also ρ /∈ parity(Ω) if i = 0 and ρ ∈ parity(Ω) if i = 1 such that ρ is
winning for Player i. It remains to consider the case, where ρ starts in Wi−1(G′′) and for
all m ∈ N we have ρm /∈ B. For i = 0 it follows that ρ ∈ parity(Ω′′) and correspondingly
also ρ ∈ parity(Ω). For i = 1 it follows that ρ /∈ parity(Ω′′) and correspondingly also
ρ /∈ parity(Ω). Anyway, the play ρ is winning for Player i− 1.

Lemma 2.5. For every parity game G = (A,parity(Ω: V → [k])) exists a dual parity game
G′ = (Ā,parity(Ω′)) such that parity(Ω′) = V ω \parity(Ω). We also say parity games are
self-dual.

Proof. For a parity game G = (A,parity(Ω : V → [k])) with arena A = (V, V0, V1, E) we can create the
dual game G′ = (Ā,parity(Ω′ : V → [k+1])) by shifting the colors by one, accordingly Ω′(v) = Ω(v)+1.
Then every strategy σ′, winning for Player i in G′, is a winning strategy τ for player Player 1 − i in G
(even → odd, odd → even).

Consequence 2.1. The problem to determine whether it holds that v ∈ W0(G) for a given parity game
G = (A,parity(Ω)) with A = (V, V0, V1, E) and v ∈ V is in NP ∩ Co-NP.

Proof. We prove the statement by giving an NP-algorithm and a Co-NP-algorithm.

NP-algorithm:
To show that the problem is in NP it is sufficient to show that there are polynomially-sized cer-
tificates, proving that v ∈W0(G), which can be verified polynomial time. We choose as certificates
positional strategies σ, winning for Player 0 from v. Accordingly, let a winning strategy σ be given.
Then we construct the new game Gσ = (Aσ,parity(Ω))) with the new arena Aσ = (V, V0, V1, Eσ)
and Eσ = E ∩ (V1 × V ∪ σ). The resulting game Gσ is a solitary parity game for Player 1 and can
be solved in polynomial time (see Exercise 4.3). So we can compute the winning regions W0(Gσ)
and W1(Gσ) and corresponding winning strategies σ and τ . But as Plays(A, σ, v) = Plays(Aσ, v)
by construction, it follows that σ is a winning strategy iff v ∈W0(Gσ).

Co-NP-algorithm:
To show that the problem is in Co-NP it is sufficient to show that there are polynomially-sized
certificates, proving that v /∈ W0(G), which can be verified in polynomial time. By determinacy,
we can choose as certificates positional strategies τ , winning for Player 1 from v. Accordingly, let
a winning strategy τ be given. As for the NP-algorithm we can create the corresponding solitary
game Gτ and solve it. As before, Plays(A, τ, v) = Plays(Aτ , v) by construction such that τ is
winning for Player 1 iff v ∈W1(Gτ ).

We are interested in solving parity games. Consider that we already have given some kind of algorithm
by the proof of Theorem 2.5. We can simply translate the inductive construction of the proof into an
algorithm with recursive calls. The corresponding algorithm is also known as McNaughton’s algorithm
and has exponential worst case running time. However, we want to consider a different algorithm here,
called the progress measure algorithm. We start with the following definition.
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Definition 2.19. Let G = (A,parity(Ω: V → [k])) be a parity game with A = (V, V0, V1, E),
d = min{ j ∈ N | j ≥ k − 1 ∧ Par(j) = 1 }. A score sheet s of G is either > or a vector ~s such that

~s = (s1, s3, ..., sd−2, sd) ∈ ×
c∈[d+1],
Par(c)=1

[nc + 1]

where nc = |{ v ∈ V | Ω(v) = c }|. The set of all score sheets of G is denoted by Sh(G).

Consider the example game Ge depicted in Figure 10. Here, we have d = 5 such that the set Sh(Ge) is
given by the set Sh(Ge) = {0, 1, 2} × {0, 1, 2} × {0} ∪ {>}.

Definition 2.20. Let s ∈ Sh(G) be a score sheet of some parity game G = (A,parity(Ω: V → [k]))
with A = (V, V0, V1, E) and c ∈ [k]. We define the addition of c to s, denoted by s⊕ c, as follows:

s⊕ c =


(s1, ..., sc−1, 0, ..., 0) if s = (s1, s3, ..., sd) ∧ Par(c) = 0
(s1, ..., sc′−2, sc′ + 1, 0, ..., 0) if s = (s1, s3, ..., sd) ∧ Par(c) = 1

∧ c′ = max{ j ≤ c | Par(j) = 1 ∧ sj < nj}
> otherwise

Let e.g. s = (1, 1, 0) ∈ Sh(Ge), then s⊕ 3 = (1, 2, 0), (s⊕ 3)⊕ 3 = (2, 0, 0) and (s⊕ 3)⊕ 2 = (1, 0, 0). It
holds the following.

Lemma 2.6. Let G = (A,parity(Ω: V → [k])) be a parity game with A = (V, V0, V1, E),
d = min{ j ∈ N | j ≥ k − 1 ∧ Par(j) = 1 } and P1 = { j ∈ [d + 1] | Par(j) = 1 }. Then it
holds for all c ∈ P1 that ⊕ c is ≤-monotone, i.e.

∀s, s′ ∈ Sh(G). s ≤ s′ ⇒ s⊕ c ≤ s′ ⊕ c

Proof. Let c ∈ P1 and s, s′ ∈ Sh(G) be arbitrary. We have to show that s ≤ s′ ⇒ s⊕ c ≤ s′ ⊕ c.

Case 1: s′ = >

⇒ s′ ⊕ c = > ≥ s⊕ c

Case 2: s = >

⇒ s′ = > ⇒ Case 1

Case 3: s = s′

⇒ s⊕ c = s′ ⊕ c

Case 4: s = (s1, s3, ..., sd) ∧ s′ = (s′1, s′3, ..., s′d) ∧ s 6= s′

Then ∃n ∈ P1. sn < s′n ∧ ∀m ∈ P1. m < n⇒ sm = s′m. Let c′ = max{ j ∈ N | j ≤ c ∧ sj ≤ nj }
and c′′ = max{ j ∈ N | j ≤ c ∧ s′j ≤ nj }.

Subcase 1: Par(c) = 0 ∧ n < c

s⊕ c
= (s1, s3, ..., sc−1, 0, ..., 0)
≤ (s1, s3, ..., s

′
n, ..., s

′
c−1, 0, ..., 0)

= (s′1, s′3, ..., s′n, ..., s′c−1, 0, ..., 0)
= s′ ⊕ c

Subcase 2: Par(c) = 0 ∧ n ≥ c
s⊕ c

= (s1, s3, ..., sc−1, 0, ..., 0)
= (s′1, s′3, ..., s′c−1, 0, ..., 0)
= s′ ⊕ c

Subcase 3: Par(c) = 1 ∧ n < c′′

It follows that n ≤ c′ such that

s⊕ c
= (s1, s3, ..., sn, ..., sc′ + 1, 0, ..., 0)
≤ (s1, s3, ..., s

′
n, ..., s

′
c′′ + 1, 0, ..., 0)

= (s′1, s′3, ..., s′n, ..., s′c′′ + 1, 0, ..., 0)
= s′ ⊕ c

Subcase 4: Par(c) = 1 ∧ n ≥ c′′

It follows that j ≥ c′ ≥ c′′ such that

s⊕ c
= (s1, s3, ..., sc′ + 1, 0, ..., 0)
≤ (s1, s3, ..., s

′
c′ + 1, 0, ..., 0)

= (s′1, s′3, ..., s′c′ + 1, 0, ..., 0)
= s′ ⊕ c

Consider that in the transformation above
s′c′+1 = sc′+1 for j > c′ and s′c′+1 = s′c′′+1
for j = c′ = c′′.
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Definition 2.21. Let G = (A,parity(Ω: V → [k])) with A = (V, V0, V1, E) be a parity game. A
function ℘ : V → Sh(G) is a progress measure for G iff

• ∀v ∈ V0. ∃v′ ∈ V. (v, v′) ∈ E ∧ ℘(v) ≥ ℘(v′)⊕ Ω(v) and

• ∀v ∈ V1. ∀v′ ∈ V. (v, v′) ∈ E ⇒ ℘(v) ≥ ℘(v′)⊕ Ω(v).

We denote the set of all progress measures for G by PM(G) and define the function ‖·‖ : PM(G)→ 2V
as ‖℘‖ = { v ∈ V | ℘(v) 6= >}.

An example for a progress measure ℘e for our game Ge would be given as follows:

v v0 v1 v2 v3 v4 v5 v6 v7 v8
℘e(v) > > > (1, 0, 0) > > (0, 0, 0) (0, 1, 0) >

In general, we can make the following observation.

Lemma 2.7. Let G = (A,parity(Ω: V → [k])) be a parity game with A = (V, V0, V1, E).

i) For every progress measure ℘ ∈ PM(G) it holds that ‖℘‖ ⊆W0(G)

ii) There exists a progress measure ℘ ∈ PM(G) with ‖℘‖ = W0(G).

Proof. For the proof of i) see Exercise 5.2. It remains to show ii). By Theorem 2.5 there exists a
positional winning strategy σ for Player 0 from W0(G). We define the function sh : V ∗ → Sh(G) recur-
sively as sh(ε) = ~0 and sh(wv) = sh(w) ⊕ Ω(v). Further define ←−sh : V ∗ → Sh(G) as ←−sh (w0w1...wn) =
sh(wnwn−1...w0). We then can define the function ℘ : V → Sh(G):

℘(v) =
{

max{←−sh (w) | w ∈ Pref(ρ) ∧ ρ ∈ Plays(A, σ, v) } if v ∈W0(G)
> if v ∈W1(G)

It remains to show the following two statements concluding the proof:

• ∀v ∈W0(G). ℘(v) 6= >

As > is the maximal element in Sh(G), we have to prove that for all ρ ∈ Plays(A, σ, v) and all
w ∈ Pref(ρ) it holds that ←−sh (w) 6= >. Let P1 = { j ∈ [d] | Par(j) = 1 } and ςc : Sh(G) → N ∪ {∞}
for c ∈ P1 be defined as:

ςc(s) =
{
∞ if s = >
sc if s = (s1, s3, ..., sd)

Additionally, we define the function scc : V ∗ → N as follows:

scc(w) =


scc(w′) if w = w′v′ ∧ Ω(v′) > c

scc(w′) + 1 if w = w′v′ ∧ Ω(v′) = c

0 otherwise

Now, let ρ ∈ Plays(A, σ, v) be arbitrary and let w ∈ Pref(ρ) with m = |w|. Consider that always
scc(wR) ≤ nc for wR = wm−1...w0. Otherwise, there would be j > nc many occurrences of an odd
color without a smaller even color in between. It follows that there would exist indices p and q with
w = w′wpwp+1...wqw

′′, wp = wq, Par(Ω(wp)) = 1 and Ω(wt) ≥ Ω(wp) for all t ∈ [p, q]. But then
the play w′(wp...wq−1)ω is consistent with σ which is a contradiction against the fact that σ is a
winning strategy.
We have to show that ςc(←−sh (w)) 6=∞ for all c ∈ P1. We show this by proving that

∀n ∈ [m]. ∀c ∈ P1. ςc(←−sh (wnwn+1...wm−1)) = scc(wm−1wm−2...wn)

This then especially shows that ςc(←−sh (w)) 6=∞ for all c ∈ P1. We show the statement by downward
induction over n.
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Induction Base: n = m− 1

⇒ ςc(←−sh (wm−1)) = ςc(sh(wm−1)) = ςc(~0⊕ Ω(wm−1)) =

Ω(wm−1) = c : 1 = scc(ε) + 1 = scc(wm−1)

Ω(wm−1) 6= c : 0 = scc(ε) = scc(wm−1)

Induction Hypothesis:

∀n ∈ [m]. ∀c ∈ P1. ςc(←−sh (wnwn+1...wm−1)) = scc(wm−1wm−2...wn)

Induction Step: n < m− 1

⇒ ςc(←−sh (wnwn+1...wm−1)) = ςc(sh(wm−1...wn)) = ςc(sh(wm−1...wn+1)⊕ Ω(wn))

By induction hypothesis we have that ςc(←−sh (wn+1...wm−1)) = scc(wm−1...wn+1) for all c ∈ P1.
We distinguish three cases.

Case 1: Ω(wn) = c

Consider that we have ςc(←−sh (wn+1...wm−1)) = scc(wm−1...wn+1). It must hold that
scc(wm−1...wn+1) < nc, since otherwise scc(wm−1...wn+1wn) > nc and we already have
argued that this is impossible. It follows that

ςc(←−sh (wn...wm−1)) = ςc(←−sh (wn+1...wm−1)) + 1 = scc(wm−1...wn+1) + 1
= scc(wm−1...wn)

Case 2: Ω(wn) < c

By Case 1 we have that ςΩ(wn)(←−sh (wn...wm−1)) = scΩ(wn)(wm−1...wn) ≤ nΩ(wn) and
accordingly ←−sh (wn...wm−1) 6= >. It follows that

ςc(←−sh (wn...wm−1)) = 0 = scc(wm−1...wn)

Case 3: Ω(wn) > c

By Case 1 we have that ςΩ(wn)(←−sh (wn...wm−1)) = scΩ(wn)(wm−1...wn) ≤ nΩ(wn) and
accordingly ←−sh (wn...wm−1) 6= >. It follows that

ςc(←−sh (wn...wm−1)) = ς(←−sh (wn+1...wm−1)) = scc(wm−1...wn+1) = scc(wm−1...wn)

• ℘ is indeed a progress measure

We have to show that the progress measure conditions are fulfilled for all vertices v ∈ V . We
distinguish three cases.

Case 1: v ∈ V0 ∩W0(G)

Note that for all w = w0w1...wn ∈ V ∗ we have that vw is consistent with σ if and only if w is
consistent with σ and w0 = σ(v). We have that ℘(v) ≥ ℘(σ(v))⊕ Ω(v) by

℘(v)
= max{←−sh (vw) | vw ∈ Pref(ρ) ∧ ρ ∈ Plays(A, σ, v) }
= max{ sh(wnwn−1...w0v) | vw ∈ Pref(ρ) ∧ ρ ∈ Plays(A, σ, v) }
= max{ sh(wnwn−1...w0)⊕ Ω(v) | w ∈ Pref(ρ) ∧ ρ ∈ Plays(A, σ, σ(v)) }
= max{ sh(wnwn−1...w0) | w ∈ Pref(ρ) ∧ ρ ∈ Plays(A, σ, σ(v)) } ⊕ Ω(v)
= max{←−sh (w) | w ∈ Pref(ρ) ∧ ρ ∈ Plays(A, σ, σ(v)) } ⊕ Ω(v)
= ℘(σ(v))⊕ Ω(v)

Case 2: v ∈ V1 ∩W0(G)

Note that for all w = w0w1...wn ∈ V ∗ we have that vw is consistent with σ if and only if w is
consistent with σ and (v, w0) ∈ E. We have that ℘(v) ≥ ℘(v′)⊕ Ω(v) for all (v, v′) ∈ E by
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℘(v)
= max{←−sh (vw) | vw ∈ Pref(ρ) ∧ ρ ∈ Plays(A, σ, v) }
= max{ sh(wnwn−1...w0v) | vw ∈ Pref(ρ) ∧ ρ ∈ Plays(A, σ, v) }
= max{ sh(wnwn−1...w0)⊕ Ω(v) | w ∈ Pref(ρ) ∧ ρ ∈ Plays(A, σ, v′) ∧ (v, v′) ∈ E }
= max{max{ sh(wnwn−1...w0) | w ∈ Pref(ρ) ∧ ρ ∈ Plays(A, σ, v′) } ⊕ Ω(v) | (v, v′) ∈ E }
= max{max{←−sh (w) | w ∈ Pref(ρ) ∧ ρ ∈ Plays(A, σ, v′) } ⊕ Ω(v) | (v, v′) ∈ E }
= max{℘(v′)⊕ Ω(v) | (v, v′) ∈ E }
≥ ℘(v′)⊕ Ω(v) for all (v, v′) ∈ E

Case 3: v ∈W1(G)

We have that ℘(v) = > which is the maximal element such that ℘(v) ≥ ℘(v′) ⊕ Ω(V ) for all
(v, v′) ∈ E.

Definition 2.22. Let G = (A,parity(Ω)) be a parity game with A = (V, V0, V1, E) and let
PG = {℘ | ℘ : V → Sh(G) } with ℘, ℘′ ∈ PG . We define ℘ to be smaller or equal than ℘′, de-
noted by ℘ v ℘′, iff

∀v ∈ V. ℘(v) ≤ ℘′(v)

We use ℘ @ ℘′ to denote ℘ v ℘′ ∧ ℘ 6= ℘′.

Corollary 2.3. Let G be a parity game. Then it holds that L = (PG ,v) is a complete lattice.

Definition 2.23. Let G = (A,parity(Ω)) be a parity game with A = (V, V0, V1, E). Then for every
v ∈ V we define the function Liftv : PG → PG as follows:

Liftv(℘)(u) =


℘(u) if u 6= v

max{℘(v),min{℘(v′)⊕ Ω(v) | (v, v′) ∈ E }} if u = v ∧ u ∈ V0

max{℘(v),max{℘(v′)⊕ Ω(v) | (v, v′) ∈ E }} if u = v ∧ u ∈ V1

Lemma 2.8. Let G = (A,parity(Ω)) be a parity game with A = (V, V0, V1, E). Then it holds for
all v ∈ V that Liftv is v-monotone, i.e.

∀℘, ℘′ ∈ PG . ℘ v ℘′ ⇒ Liftv(℘) v Liftv(℘′)

Proof. By Definition 2.22 we have to show that

∀v ∈ V. ∀℘, ℘′ ∈ PG . ∀u ∈ V. ℘(u) ≤ ℘′(u)⇒ Liftv(℘)(u) ≤ Liftv(℘′)(u)

Accordingly, let ℘, ℘′ ∈ PG and v, u ∈ V be arbitrary.

Case 1: u 6= v

⇒ Liftv(℘)(u) = ℘(u) ≤ ℘′(u) = Liftv(℘′)(u)

Case 2: u = v ∧ u ∈ V0

Liftv(℘)(u)

= max{℘(u),min{℘(v′)⊕ Ω(v) | (v, v′) ∈ E }}
℘(u)≤℘′(u)
≤ max{℘′(u),min{℘(v′)⊕ Ω(v) | (v, v′) ∈ E }}

Lem. 2.6
≤ max{℘′(u),min{℘′(v′)⊕ Ω(v) | (v, v′) ∈ E }}

= Liftv(℘)(u)
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Case 3: u = v ∧ u ∈ V1

Liftv(℘)(u)

= max{℘(u),max{℘(v′)⊕ Ω(v) | (v, v′) ∈ E }}
℘(u)≤℘′(u)
≤ max{℘′(u),max{℘(v′)⊕ Ω(v) | (v, v′) ∈ E }}

Lem. 2.6
≤ max{℘′(u),max{℘′(v′)⊕ Ω(v) | (v, v′) ∈ E }}

= Liftv(℘)(u)

Lemma 2.9. Let G = (A,parity(Ω)) be a parity game with A = (V, V0, V1, E). It holds that ℘ is
a progress measure for G iff for all v ∈ V it holds that Liftv(℘) v ℘, i.e. ℘ is a pre-fixed point.

Proof. Let G = (A,parity(Ω)) be some parity game with A = (V, V0, V1, E).

“⇒”:

Assume that ℘ is a progress measure and let v ∈ V be arbitrary. By Definition 2.22 it is sufficient to
show that ℘(u) ≥ Liftv(℘)(u) for all u ∈ V . We distinguish three cases.

Case 1: v 6= u

We have that Liftv(℘)(u) = ℘(u) and accordingly ℘(u) ≥ ℘(u).

Case 2: v = u ∧ u ∈ V0

⇒ ∃u′ ∈ V. (u, u′) ∈ E ∧ ℘(u) ≥ ℘(u′)⊕ Ω(u)
⇒ ℘(u) ≥ min{℘(u′)⊕ Ω(u) | (u, u′) ∈ E }
⇒ ℘(u) ≥ max{℘(u),min{℘(u′)⊕ Ω(u) | (u, u′) ∈ E }
⇒ ℘(u) ≥ Liftv(℘)(u)

Case 3: v = u ∧ u ∈ V1

⇒ ∀u′ ∈ V. (u, u′) ∈ E ⇒ ℘(u) ≥ ℘(u′)⊕ Ω(u)
⇒ ℘(u) ≥ max{℘(u′)⊕ Ω(u) | (u, u′) ∈ E }
⇒ ℘(u) ≥ max{℘(u),max{℘(u′)⊕ Ω(u) | (u, u′) ∈ E }
⇒ ℘(u) ≥ Liftv(℘)(u)

“⇐”:

Let Liftv(℘) v ℘ for all v ∈ V . By Definition 2.22 we know that ∀v ∈ V. ∀u ∈ V. ℘(u) ≥ Liftv(℘)(u).
We have two show two statements:

1. ∀v ∈ V0. ∃v′ ∈ V. (v, v′) ∈ E ∧ ℘(v) ≥ ℘(v′)⊕ Ω(v)

Let v ∈ V0 be arbitrary, then for u = v it holds that

℘(v) ≥ Liftv(℘)(v)
⇒ ℘(v) ≥ max{℘(v),min{℘(v′)⊕ Ω(v) | (v, v′) ∈ E }}
⇒ ℘(v) ≥ min{℘(v′)⊕ Ω(v) | (v, v′) ∈ E }
⇒ ∃v′ ∈ V. (v, v′) ∈ E ∧ ℘(v) ≥ ℘(v′)⊕ Ω(v)

2. ∀v ∈ V1. ∀v′ ∈ V. (v, v′) ∈ E ⇒ ℘(v) ≥ ℘(v′)⊕ Ω(v)

Let v ∈ V1 be arbitrary, then for u = v it holds that

℘(v) ≥ Liftv(℘)(v)
⇒ ℘(v) ≥ max{℘(v),max{℘(v′)⊕ Ω(v) | (v, v′) ∈ E }}
⇒ ℘(v) ≥ max{℘(v′)⊕ Ω(v) | (v, v′) ∈ E }
⇒ ∀v′ ∈ V. (v, v′) ∈ E ∧ ℘(v) ≥ ℘(v′)⊕ Ω(v)
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Construction 2.3. Let G = (A,parity(Ω)) be a parity game with A = (V, V0, V1, E). Further let
℘0 be the unique element in PG such that ℘0(v) = ~0 for all v ∈ V . The progress measure construction
on G is then defined for all n ∈ N as:

℘nG =


℘0 if n = 0
Liftv(℘n−1

G ) if n > 0 ∧ ∃v ∈ V. ℘n−1
G @ Liftv(℘n−1

G )
℘n−1 if n > 0 ∧ ∀v ∈ V. Liftv(℘n−1

G ) v ℘n−1
G

℘G = max{℘nG | n ∈ N }

Lemma 2.10. Let G = (A,parity(Ω)) be a parity game with A = (V, V0, V1, E). Then it holds that
W0(G) = ‖℘G‖ and W1(G) = V \ ‖℘G‖.

Proof. By Lemma 2.7 ii there exists a progress measure ℘∗ with ‖℘∗‖ = W0(G). The following holds:

• ℘G is a least pre-fixed point of the Liftv-operators

Directly follows from Construction 2.3, Lemma 2.8 and the Knaster–Tarski theorem.

• ℘∗ is a pre-fixed point of the Liftv-operators

Directly follows from Lemma 2.9.

We can conclude that ℘G v ℘∗, i.e. ℘G(v) ≤ ℘∗(v) for all v ∈ V . Thus, by ‖℘∗‖ = W0(G), we also have
that ℘G(v) ≤ ℘∗(v) < > for all v ∈W0(G). It follows that W0(G) ⊆ ‖℘G‖ and together with Lemma 2.7 i
we get W0(G) = ‖℘G‖. Finally by Theorem 2.5 it follows that W1(G) = V \ ‖℘G‖.

Reconsider the example given in Figure 10. Using the progress measure algorithm we can now solve
the game. An example execution is depicted in Figure 11. As we have already discussed earlier the
result is indeed a progress measure such that we get for the winning regions W0 = {v3, v6, v7} and
W1 = {v0, v1, v2, v4, v5, v8}.

Theorem 2.6. Every parity game G = (A,parity(Ω: V → [k])) with A = (V, V0, V1, E) can be
solved in O(k · log|V | · |E| · ( |V |d 1

2ke
)d 1

2ke) time and O(|V | · log|V | · k) space.

Proof. We use Construction 2.3 to solve parity games. By Lemma 2.10 we get the winning regions for
both players and from the proof of Lemma 2.7 i it follows that we also get a positional winning strategy
for Player 0. As by Lemma 2.5 parity games are self-dual we also get a winning strategy for Player 1 by
solving the dual game.

In Construction 2.3 we only need to store the actual ℘iG of each iteration i. We have that ℘iG only consists
of a score sheets for every vertex v ∈ V and score sheets are tuples of length k

2 . Finally we have that a
score sheet only contains values of size at most |V | such that they can be stored in log|V |. It directly
follows that we need at most O(k · |V | · log|V |) space. The number of iterations is bounded by |Sh(G)|
and in each iteration we have to execute Liftv iterations for all v ∈ V which have to inspect each edge at
most once. Reading and writing the score sheets needs at least k · log|V | time such that the upper time
bound finally follows from

|Sh(G)| ≤
∏

c∈[k],
Par(c)=1

(nc + 1) ≤ ( |V |d 1
2ke

)d 1
2ke

where the last inequation follows from the fact, that the sum of all nc exactly sums up to |V | and choosing
an equalized portion of vertices for each color maximizes the product.
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Figure 11: Progress measure algorithm for the game of Figure 10. The Liftv-operations are marked.
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3 Memory

3.1 Finite State Strategies
In the last chapter, we already have seen several games which were all positionally determined with
uniform winning strategies. Accordingly, there was always an easy way to represent the correspond-
ing winning strategies directly. We now want to leave this world and come to the first games that are

v0 v1 v2

Figure 12: Arena A for the game G = (A,Win) with
Win = { ρ ∈ Plays(A) | Inf(ρ) = {v0, v1, v2} }.

not positionally determined any more. As a first
example consider the game G = (A,Win) depicted
in Figure 12. In this game, the winning condition
is defined as Win = { ρ ∈ Plays(A) | Inf(ρ) =
{v0, v1, v2} } such that the goal of Player 0 is to visit
every vertex infinitely often. This goal is not reach-
able using a positional strategy since then Player 0

would always go from v1 to v0 or to v2. Accordingly, if starting in v1 every consistent play would never
reach the other vertex she is not going to. However, Player 0 still can win the game from every vertex,
she only has to alternate between the two possible successors. Thus, a possible winning strategy σ for all
histories w ∈ V ∗ would be given as follows:

σ(wv1) =
{

v2 if Lst(w) = v0

v0 otherwise

Consider that this is only one way to describe this strategy. An alternative representation is given by
using a finite automaton, that reads a play history w as input and outputs the desired successor σ(w).
The corresponding automaton for our strategy σ can be found in Figure 13.

q0 q1

v0, v2

v1/v2

v0, v2

v1/v0

Figure 13: Automaton representing the finite state strategy σ from the example of Figure 12.

Our notation for the edge labeling of the automaton can be read as follows. A transition v/v′−→ means that
we read the input v ∈ V0 and output the vertex v′. A transition v−→ means that we only read v ∈ V1 but
output nothing as it is not our turn. An example run of the automaton, starting in v1, would then be
given as follows:

current state: q0 q1 q1 q0 q0 q1

input/output: v1
output−→ v2 v1

output−→ v0 v1
output−→ v2

We will now formally define our idea of such an automaton. However, we will not directly use the
representation as above as it has some disadvantages for later definitions. Instead, we start with something
called a memory structure that more or less represents the memory of a player. The idea is that every
state in the memory structure describes a specific situation in the game where we always can answer in
the same way. By that, we have a positional decision again. Not on the vertex of the game any more but
on the vertex of the game together with the current memory state of our memory structure. We only
have to update this state with every move in the arena correspondingly. Formally, we get the following:

Definition 3.1. A memory structure M = (M, init,upd) for an arena A = (V, V0, V1, E) is a triple
consisting of

• a finite set M of memory states,

• an initialization function init : V →M and

• an update function upd: M × V →M

The size of M, denoted by |M|, is defined to be |M |.
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Note, that we still miss a corresponding output function that describes our next move in the arena. But
at first, we want to move in our memory structure multiple steps at once. Therefore, we extend the
corresponding update function as follows.

Definition 3.2. Let M = (M, init,upd) be a memory structure for an arena A = (V, V0, V1, E).
We define the function upd∗ : V + →M as follows:

upd∗(wv) =
{

init(v) if w = ε

upd(upd∗(w), v) otherwise

Informally, upd∗(w) gives the memory content that has been reached after processing w. We continue by
defining our output function, called the next-move function.

Definition 3.3. Let A = (V, V0, V1, E) be an arena andM = (M, init,upd) be a memory structure
for A. A next-move function for Player i is a mapping nxt : Vi×M → V satisfying (v,nxt(v,m)) ∈ E
for all v ∈ Vi and m ∈M .

Together,M and nxt then define a strategy σ for Player i via σ(w) = nxt(Lst(w),upd∗(w)). We also say
σ is finite-state and implemented by M. We define the size of σ to be |M |. This may be a bit abusive,
since σ might also be implementable by smaller memory structures. However, we will only use the size
of a strategy, if the memory structure, that implements it is clear from the context. Finally note, that if
σ is positional, it can be implemented by a memory structure of size one, and vice versa.

3.2 Reductions
We now are interested in how we can compute such finite state strategies. Remember, that our idea for a
memory structure was that we can use a positional strategy on the memory structure again. But we have
to somehow connect it to the underlying arena again. Therefore, we use a cartesian product construction.

Definition 3.4. Let A = (V, V0, V1, E) be an arena and M = (M, init,upd) be a memory struc-
ture for A. We denote by A × M the by A and M induced and expanded arena, defined as
A×M = (V ×M,V0 ×M,V1 ×M,E′) with

((v,m), (v′,m′)) ∈ E′ ⇔ (v, v′) ∈ E ∧ upd(m, v′) = m′

for all v, v′ ∈ V and m,m′ ∈M .

A play through the extended arena can then be constructed from a play through the original arena as
follows.

Definition 3.5. Let A = (V, V0, V1, E) be an arena, M = (M, init,upd) be a memory structure for
A and ρ ∈ Plays(A). We define the extended play ext(ρ) = (ρ0,m0)(ρ1,m1)... ∈ Plays(A×M) with
m0 = init(ρ0) and mn recursively defined as mn = upd(mn−1, ρn) for all n ∈ N+.

Consider that it also holds that mn = upd∗(ρ[n]). But how can we use this extended arena now to solve
our original game. The idea is, that we extend the arena by choosing the right memory structure in such
a way, that it represents a simpler game, where we can use positional strategies again. If this game is
of a form that we already know we can solve it and the resulting winning strategies gives us together
with the memory structure a winning strategy for the original game. Accordingly, we more or less reduce
the harder game to a simpler game by choosing the right memory structure. Such a reduction can be
formally expressed a follows.

Definition 3.6. Let G = (A,Win) and G′ = (A′,Win′) be two games andM be a memory structure
for A. We say G is reducible to G′ via memory structure M, denoted by G ≤M G′, iff

1. A′ = A×M 2. ∀ρ ∈ Plays(A). ρ ∈Win ⇔ ext(ρ) ∈Win′
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We can finalize our idea with the following lemma.

Lemma 3.1. Let G = (A,Win) be a game with A = (V, V0, V1, E) and V ′ ⊆ V . Then, if G ≤M Gp,
for some game Gp, and Player i has positional winning strategy σp in Gp from { (v, init(v)) | v ∈ V ′ },
she also has a finite-state winning strategy σ with memory M in G from V ′.

Proof. Let M = (M, init,upd). Then by Definition 3.6 we have that Gp = (A ×M,Winp) for some
winning condition Winp and with A×M = (V ×M,V0 ×M,V1 ×M,E′). We define nxt(v,m) = v′ for
σp(v,m) = (v′,m′) for all m,m′ ∈M , v ∈ Vi and v′ ∈ V . Let then σ be defined as the induced strategy
by σ(w) = nxt(Lst(w),upd∗(w)) for all w ∈ V ∗.

We have to show that σ is winning from every v ∈ V ′. So let v ∈ V ′ and ρ ∈ Plays(A, σ, v) be
arbitrary. Further, let ρ′ = ext(ρ), which is a play of Gp starting in (v, init(v)). We first show that
ρ′ ∈ Plays(A×M, σp, (v, init(v))). To do so, we show that every prefix (ρ0,m0)...(ρn,mn) ∈ Pref(ρ′) is
consistent with σp. The proof goes via induction over n ∈ N.

Induction Base: n = 0

The prefix (ρ0,m0) = (v, init(v)) is trivially consistent with σp.

Induction Hypothesis:

∀n ∈ N. w ∈ Pref(ρ′) ∧ |w| = n+ 1⇒ w is consistent with σp

Induction Step: n > 0

By induction hypothesis ρ′[n − 1] = (ρ0,m0)(ρ1,m1)...(ρn−1,mn−1) is consistent with σp. If it is
not Player i’s turn, i.e. (ρn−1,mn−1) ∈ Vi−1 ×M , then ρ′[n − 1](ρn,mn) is trivially consistent
with σp, so let (ρn−1,mn−1) ∈ Vi × M . It follows that ρn−1 ∈ Vi and correspondingly, that
ρn = σ(ρ[n− 1]) = nxt(ρn−1,upd∗(ρ[n− 1])). Thus, by Definition 3.1

∃m ∈M. σp(ρn−1,upd∗(ρ[n− 1])) = σp(ρn−1,mn−1) = (ρn,m)

It remains to show that m = mn. We have mn = upd(mn−1, ρn) by Definition 3.5. Finally, with
Definition 3.4 we get

σp(ρn−1,mn−1) = (ρn,m) ⇒ ((ρn−1,mn−1), (ρn,m)) ∈ E′ ⇒ m = upd(mn−1, ρn) = mn

We now have that ext(ρ) ∈ Plays(A×M, σp, (v, init(v)) for every v ∈ V ′. As σp is a winning strategy, it
follows that ext(ρ) ∈ Winp and with Definition 3.6 we can conclude that ρ ∈ Win. Thus, σ is winning
for every v ∈ V ′.

Corollary 3.1. Let G = (A,Win) ≤M (A×M,Win′) = G′ for some arena A = (V, V0, V1, E). Then the
following holds:

• Wi(G) = { v ∈ V | (v, init(v)) ∈Wi(G′) } for both Player i.

• If G′ is determined with uniform positional winning strategies then G is determined with uniform
finite state strategies implemented by M.

Let us continue with some examples. Therefore, we first need a new type of game that we can reduce to
a game type where we already know how to solve it. Such a new type is given by weak Muller games.

Definition 3.7. Let the weak Muller condition wmuller(F) on a set F ⊆ 2V for an arena
A = (V, V0, V1, E) be defined as:

wmuller(F) :={ ρ ∈ Plays(A) | Occ(ρ) ∈ F }

Then we call the game G = (A,wmuller(F)) a weak Muller game with acceptance set F .

We reduce weak Muller games to weak parity games as follows. Remember that we have defined weak
parity games in Exercise 4.2.
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Lemma 3.2. Weak Muller games are reducible to weak parity games.

Proof. Let G = (A,wmuller(F)) be a weak Muller game with A = (V, V0, V1, E). We choose a memory
structure M = (M, init,upd) with M = 2V , init(v) = {v} and upd(m, v) = S ∪ {v} for all v ∈ V and
m ∈ M . We want to show that G = (A,wmuller(F)) ≤M (A ×M,wparity(Ω)) = G′ where Ω is
defined as

Ω(v, s) =
{

2 · |V | − 2 · |S| if s ∈ F
2 · |V | − 2 · |S|+ 1 if s /∈ F

We have that upd∗(w) = Occ(w) for all w ∈ V ∗. Let ρ ∈ Plays(A) be arbitrary. It follows by construction
that

∃n ∈ N. ∀m ≥ n. Occ(ρ[m]) = Occ(ρ) ∧ ∀m′ < n. Occ(ρ[m′]) ⊆ Occ(ρ[n])

Now consider the play ext(ρ) = (ρ0,m0)(ρ1,m1)... ∈ Plays(A×M). By the conditions above we get that

• ∀m′ < n. Ω(ρn′ ,mn′) ≥ Ω(ρn,mn)

• ∀m ≥ n. Ω(ρn′ ,mn′) = Ω(ρn,mn)

It follows that the minimal color in ext(ρ) is Ω(ρn,mn) which is even if mn = Occ(ρ) ∈ F and odd
otherwise. It follows that

ρ ∈ wmuller(F) ⇔ ext(ρ) ∈ parity(Ω)

concluding the proof.

It follows that we can solve weak Muller games by reducing them to weak parity games. However, for
this reduction we use a memory structure of exponential size such that the resulting winning strategies
for the weak Muller games can be of exponential size as well. The question arises, whether we still can
improve our memory structure to get smaller strategies? It turns out that this is not possible and we will
now show why this is the case. Therefore, we show the following.

Lemma 3.3. There exits a family Gn = (An,wmuller(Fn)) of weak muller games with |F| = 2
and |An| ∈ O(n) such that every An has a designated vertex v where

• Player 0 has a winning strategy from v, but

• every finite-state winning strategy for Player 0 from v has at least 2n states.

Proof. Consider the arena An, depicted in Figure 14, with vertex set Vn. It contains n widgets made of
the vertices sj , hj , uj , and dj for all j ∈ N as well as the vertices c0, c1, d, vA and vB . At every vertex
sj Player 0 has to decide to go to uj , to dj or to hj . At every hj , Player 1 has then to decide to move
to uj or dj . We define Fn = {Vn \{vA}, Vn \{vB}}, i.e. Player 0 needs to visit all vertices except for vA
or all vertices except for vB . Notice that in the case where the play reaches the vertex c1 twice Player 1
can win by going to vA one time and to vB the other time. As a consequence, An and Fn satisfy the
requirements formulated by the lemma.
Now, consider the vertex v = s1. First, we show that Player 0 has a winning strategy from this vertex.
This strategy can be described as follows. When at some sj for the first time she moves to hj from where
Player 1 can either go to uj or to dj in the next move. When at vertex c0 for the first time, Player 0
moves to c1 from where Player 1 either visits vA or vB and then moves to s1 again. Now, when at some
sj for the second time, Player 0 moves to dj if Player 1 moved to uj from hj and vice versa. This way
ever vertex in every widget is visited at least once. Finally, when at c0 for the second time she moves to
d and stays there forever. Correspondingly, the strategy ensures that every vertex except for one of the
set {vA, vB} is visited.
Now, assume that Player 0 has a winning strategy σ from s1 implementable with less than 2n memory
states. We start by showing that, when at vertex sj for some j ∈ [1, n] for the first time, the strategy
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prescribes a move to hj . Assume this is not the case, i.e. say it prescribes a move to uj
1. Then after

coming back in the second round, which has to be taken by Player 0 as otherwise c1 is not visited, the
strategy prescribes a move to either dj or hj or to uj again. In case it moves to hj , Player 1 answers by
moving to uj again. This way the vertex dj is not visited yet. In case it does not move to hj , hj itself is
not visited yet. Accordingly, Player 0 has to move to c1 again, when at c0. Thereby, she allows Player 1
to visit the missing vertex of the set {vA, vB}, not visited in the first round. At this point, Player 0 has
lost the game since Fn contains no set containing both, vA and vB .

s1 h1

u1

d1

s2 h2

u2

d2

s3 ... sn hn

un

dn

c0

d

c1

vA

vB

Figure 14: The arena An for the weak Muller game Gn of Lemma 3.3.

As a consequence, Player 0 always has to move to hj when at vertex sj in the second round. From each hj
Player 1 has two choices. Hence, there are 2n different play prefixes leading from s1 to c0. As there are less
than 2n memory states at least two of them lead into the same memory state, i.e. upd∗(w) = upd∗(w′)
for two different play prefixes w and w′ from s1 to c0. Hence, from c0 onward, the strategy will makes the
same moves to extend the play prefixes w and w′. Accordingly, the play continuations of these prefixes
can only differ in a choices of Player 1, like at a vertex hj , e.g. the continuation of w can visit uj while
the continuation of w′ will visit dj . Hence, the strategy has to visit dj after the play prefix w and uj after
the prefix w′. However, this is impossible since it prescribes the same moves for w and w′. Hence, one
of the corresponding plays will be losing contradicting the fact that σ is a winning strategy for Player 0
from s1.

3.3 Muller Games

We now will analyze more complex games and reductions for them. We start with Muller games.

Definition 3.8. Let the Muller condition muller(F) on a set F ⊆ 2V for an arena
A = (V, V0, V1, E) be defined as

muller(F) :={ ρ ∈ Plays(A) | Inf(ρ) ∈ F }

Then we call the game G = (A,muller(F)) a Muller game with acceptance set F .

As an example consider the family of Muller games DJWn = (An,muller(Fn)) with An depicted in
Figure 15 and formally defined as An = (V, V0, V1, E) with V = V0 ∪ V1, V0 = { vj | j ∈ [1, n] }, V1 =
{ v′j | j ∈ [1, n] } and E = V0×V1∪V1×V0 and Fn = {F ⊆ V | |F ∩V0| = max{ j ∈ [1, n] | v′j ∈ F ∩V1 } }.
In this game, Player 1 can choose to visit a non-empty set S ⊆ V0 infinitely often. The goal of Player 0
is to answer to this choice by choosing a vertex vj ∈ V1 infinitely often, such that j = |S|. Further, she
is not allowed to choose a vertex with higher index infinitely often.

1the case of dj is analogous
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v1

v2

v3

...

vn

v′1

v′2

v′3

...

v′n

Figure 15: Graphical representation of the arenas for the family of Muller games DJWn.

Which player wins the games DJWn? The crucial point here is picking the right memory structure to
implement a winning strategy. We claim that Player 0 has a uniform finite-state winning strategy from
every vertex using memory that stores in which order the vertices from V0 appeared for the latest time.
As an example consider the game DJW4 and the play prefix v1v1v2v2v1v2v4v4v4v1v2. The last vertex
from V0 that appeared is v2. The second-to-last vertex from V0 that appeared is v4. The third-to-last is
also v4 which had a later occurrence, so it is ignored. The only other vertex from V0 that appeared is
v1. Hence, the memory state for this play should store the list v2v4v1. Updating this list when visiting a
vertex v ∈ V0 is done by removing v from the list, if it appears, and putting it in front of the list again.
There is no update when visiting vertices in V1. We need one additional information in our memory to
implement a winning strategy. We mark the position where we deleted v by a ] , e.g. when visiting v2
we update v1] v2v3v4 to v2v1] v3v4. The ] will be used to determine the infinity set of the plays.

v1 v′1 v2 v′2 v1 v′2 v4 v′4 v4 v′1 v2 v′2 v4 v′2 v4 v′1 ...

v1] v2v3v4 → goto v′1

cardinality: 1

v2v1] v3v4 → goto v′2

cardinality: 2

v1v2] v3v4 → goto v′2

cardinality: 2

v4v1v2v3] → goto v′4

cardinality: 4

v4] v1v2v3 → goto v′1

cardinality: 1

v4v2] v1v3 → goto v′2

cardinality: 2

v4v2] v1v3 → goto v′2

cardinality: 2

v4] v2v1v3 → goto v′1

cardinality: 1

Figure 16: Example play and strategy, where the current memory state is depicted in the additional boxes.

Consider the example play of DJW4 depicted in Figure 16. The memory states reached are depicted in
the boxes above and below the vertices in V0, where we start at some arbitrary initial list. Using this
memory, Player 0 always moves to the vertex v′j where j is the cardinality of the set of vertices to the left
of ] in the current memory state. For example, her first move leads to v′1, since only one vertex is on the
left side of ] in the memory state v1] v2v3v4. Her second move leads to v′2 since there are two vertices on
the left side of ] in the memory state v2v1] v3v4.

Now, consider an infinite play ρ that is consistent with this strategy. From some point onward, only
vertices from Inf(ρ) are visited by ρ. After this position, only vertices from Inf(ρ) ∩ V0 are moved to
the front of the list and after some time no vertex from V0 \ Inf(ρ) is on the left of ] . Furthermore,
infinitely often exactly Inf(ρ) ∩ V0 is to the left of ] . If this would not be the case, then some vertex
would stay forever to the right of the ] , but this vertex is seen infinitely often and every visit moves it
to the left of the ] . Hence, using the strategy described above, Player 0 will infinitely often move to
v′|Inf(ρ)| and only finitely often to some v′j with j > |Inf(ρ)|. Thus, the strategy is indeed winning for
Player 0. In the following we show that a generalization of this book-keeping of the latest appearance of
vertices suffices for every Muller game. To this end, we introduce the so called “latest-appearance-record”
memory structure or shortly LAR.
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Memory structure 3.1. Let G = (A,muller(F)) be a Muller game with arena A = (V, V0, V1, E)
and F ⊆ 2V . Further, let ] /∈ V be some new symbol different from all vertices of A. An LAR over
V is a word l = v0v1...vm] vm+1...vn ∈ (V ∪ {]})∗ with m ∈ [n+ 1] such that

V = {v0, ..., vn} ∧ ∀j, j′ ∈ [n+ 1]. (j 6= j′ ⇒ vj 6= vj′)

We use LARV to denote the set of all LAR’s over V . The memory structure MLAR is then defined
as MLAR = (LARV , init,upd) where init : V → LARV is some arbitrary function and

upd(v0v1...vm] vm+1...vn, vj) = vjv0v1...vj−1] vj+1...vn

for all l = v0v1...vm] vm+1...vn ∈ LARV . Further, we denote by hit(l) = {v0, ..., vm}, the so called
the “hit-set” of l.

Theorem 3.1. Muller games are reducible to parity games.

Proof. Let G = (A,muller(F)) be a Muller game with arena A = (V, V0, V1, E) and F ⊆ 2V . We
want to show that G ≤MLAR (A ×MLAR,parity(Ω)) for some coloring function Ω. Before we do so,
we first will show some general, useful properties. Therefore, let ρ = ρ0ρ1ρ2... ∈ Plays(A) be arbitrary
and l = l0l1l2... be the sequence of LARs corresponding to that play, i.e. ln = upd∗(ρ[n]) for all n ∈ N.
Further let Sq,p = { ρj | j ∈ [q, p] } for p, q ∈ N. Then the following holds:

• ∀q ∈ N. ∀p ≥ q. Sq,p = { vj | j ∈ [|Sq,p|] } for lp = v0v1...vm] vm+1...vn (1)

We show this by induction on p− q.

Induction Base: p = q

We have that lq = lp = upd(lp−1, ρp) = ρpv1...vm−1] vm+1...vn = v0v1...vm−1] vm+1...vn. It
follows that Sp,p = { ρj | j ∈ [p, p] } = {ρp} = {v0} = { vj | j ∈ [1] } = { vj | j ∈ [|Sp,p|] }.

Induction Hypothesis:

∀q ∈ N. ∀p ≥ q. Sq,p = { vj | j ∈ [|Sq,p|] } for lp = v0v1...vm] vm+1...vn

Induction Step: p > q

Let lp−1 = v′0...v
′
m′] v

′
m′+1...v

′
n. By induction hypothesis we get Sq,p−1 = { v′j | j ∈ [|Sq,p−1|] }.

Further, it holds that lp = upd(lp−1, ρp) = ρpv
′
0v
′
1...v

′
m−1] v

′
m+1...v

′
n with v′m = ρp. It follows

that vj = v′j−1 for all j ∈ [1,m] and vj = v′j for j ∈ [m+ 1, n]. Further, we get:

Sq,p = { ρj | j ∈ [q, p] } = { ρj | j ∈ [q, p− 1] } ∪ {ρp} = Sq,p−1 ∪ {ρp} = Sq,p−1 ∪ {v0} =
{ v′j | j ∈ [|Sq,p−1|] } ∪ {v0}

It remains to show that { v′j | j ∈ [|Sq,p−1|] } ∪ {v0} = { vj | j ∈ [|Sq,p|] }. We distinguish two
cases:

Case 1: m ≤ |Sq,p−1|

It follows v′m = ρp ∈ Sq,p−1 such that |Sq,p| = |Sq,p−1|. We get

{ v′j | j ∈ [|Sq,p−1|] } ∪ {v0}
= { v′j | j ∈ [|Sq,p|] } ∪ {v0}
= { v′j | j ∈ [0,m− 1] } ∪ { v′j | j ∈ [m, |Sq,p|] } ∪ {v0}
= { vj | j ∈ [1,m] } ∪ { vj | j ∈ [m, |Sq,p|] } ∪ {v0}
= { vj | j ∈ [|Sq,p|] }

Case 2: m > |Sq,p−1|

It follows v′m = ρp /∈ Sq,p−1 such that |Sq,p| = |Sq,p−1|+ 1. We get
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{ v′j | j ∈ [|Sq,p−1|] } ∪ {v0}
= { v′j | j ∈ [0, |Sq,p| − 1] } ∪ {v0}
= { vj | j ∈ [1, |Sq,p|] } ∪ {v0}
= { vj | j ∈ [|Sq,p|] }

• There exists an n ∈ N such that hit(ln′) ⊆ Inf(ρ) for all n′ ≥ n (2)

Let n0 = max{n ∈ N | ρn /∈ Inf(ρ) }+ 1, then Occ(ρn0ρn0+1...) = Inf(ρ). Furthermore, let n1 ≥ n0
be such that Inf(ρ) = { ρj | j ∈ [n0, n1] }. Then by (1) the first |Inf(ρ)| entries of ln1 are exactly
the vertices of Inf(ρ).
Now let n2 ≥ n1 be such that Occ(ρ[n1 + 1, n2]) = Inf(ρ). Then as before, by (1) the first |Inf(ρ)|
entries are exactly the vertices of Inf(ρ). Further, ] appears before the first element of V \ Inf(ρ).
After n2 only vertices from Inf(ρ) occur. Thus, repeating the argument of (1) all later LARs are
exactly Inf(ρ). Finally, we have that ] is always at a position smaller or equal to |Inf(ρ)|+ 1 such
that hit(ln′) ⊆ Inf(ρ) for all n′ ≥ n2.

• Infinitely often, it holds that hit(ln) = Inf(ρ) (3)

Let n ≥ n2 be a position such that ln has exactly Inf(ρ) as the first |Inf(ρ)| entries of ρ. Such
a position exists as shown in (2). Now, consider the entry v ∈ V at the last position in ln with
v ∈ Inf(ρ). Then there exists an n′ > n with ρn′ = v where w.l.o.g. we can assume that n′ is the
minimal position with this property. Then by construction we have that v is still at the last entry
in ln′−1 of vertices in Inf(ρ). Thus, for ln we have that v is in the first position and ] is at position
|Inf(ρ)|+ 1. Together with (2) it follows that hit(ln′) = Inf(ρ). Repeating the argument it follows
by induction that there are infinitely many such positions n′.

We now are ready to define our coloring function Ω: V × LARV → N:

Ω(v, l) =
{

2 · |V | − 2 · |hit(l)| if hit(l) ∈ F
2 · |V | − 2 · |hit(l)|+ 1 if hit(l) /∈ F

We have to show that ρ ∈ muller(F) iff ext(ρ) = (ρ0, l0)(ρ1, l1)... ∈ parity(Ω). We have that

ρ ∈ muller(F)
⇔ Inf(ρ) ∈ F
⇔ ∃F ∈ F . (∀m ∈ N. ∃n ≥ m. hit(ln) = F )

∧ (∃m′ ∈ N. ∀n′ ≥ m′. hit(ln′) ⊆ F )
⇔ ∃F ∈ F . ∃m′ ∈ N. ∀m ≥ m′. ∃n ≥ m. hit(ln) = F

Ω(ρn, ln) = 2 · |V | − 2 · |hit(ln)|
= 2 · |V | − 2 · |F |
≤ 2 · |V | − 2 · |hit(lm)|
= Ω(ρm, lm)

⇔ ext(ρ) ∈ parity(Ω)

Corollary 3.2. Ever Muller game G = (A,muller(F)) is determined with uniform finite state winning
strategies of size |A| · |A|! and can be solved in exponential time.

Proof. We have to solve the parity game G′ = (A ×MLAR,parity(Ω)) with A = (V, V0, V1, E) and Ω
defined as in the proof of Theorem 3.1. We have that G′ has n = |V | · |V |! many vertices, m = |E| · |V | · |V |!
many edges and d = 2 · |V | many colors. As the positional winning strategies for both players in G′ are
a one to one representation of the corresponding finite-state winning strategy in G we get that these
strategies have at least size |A| · |A|!. Using the progress measure algorithm we finally get the exponential
upper bound for solving Muller games by

O(|E|·|V |·|V |!·(|V |·|V |!)|V |) = O(|E|·|V |·|V |!·2|V |·log(|V |·|V |!)) = O(|E|·|V |·|V |!·2|V |·(log(|V |)+
∑|V |

j=1
log(j)))
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Consider that the complexity of solving Muller games depends on the way of representing F . We will close
this chapter by a list of some possible representations of F and discuss the computational complexity of
solving Muller games using these representations.

Explicit Representation:

The easiest way to represent F is by giving it explicitly as a list of all subsets.

F = {{v0}, {v1}, {v2}, {v0, v3}, {v1, v2}, {v0, v1, v2}, {v0, v1, v2, v3}}

Boolean Formula:

We also can encode the set as a boolean formula consisting of variables xv for all vertices v. Every
clause then represents a subset of F by imposing constrains to membership and non-membership
properties. An example for such a formula and its encoding is given below.

(xv0 ∧ xv1 ∧ xv2 ∧ xv3) ∨ → {v1}

(xv0 ∧ xv1 ∧ xv2 ∧ xv3) ∨ → {v2}

(xv0 ∧ xv1 ∧ xv2 ∧ ) ∨ → {v0, v3}, {v0}

( xv1 ∧ xv2 ∧ xv3) ∨ → {v0, v1, v2}, {v1, v2}

(xv0 ∧ xv1 ∧ xv2 ∧ ) ∨ → {v0, v1, v2, v3}, {v0, v1, v2}

Boolean Circuit:

Another possibility is the encoding as a boolean circuit instead of a boolean formula. There is the
possibility that it can be smaller than the formula as shared subformulas can use the same gates.

Tree:

We can also represent F as a tree defined by the following inductive definition:

• The root is labeled by the set of all vertices.
• Children of a node labeled with F ∈ F are the ⊆-maximal subsets F ′ ⊆ F with F ′ /∈ F .
• Children of a node labeled with F /∈ F are the ⊆-maximal subsets F ′ ⊆ F with F ′ ∈ F .

{0, 1, 2, 3}

{0, 2, 3} {0, 1, 3} {1, 2}

{2} {0, 3} {1} {0, 3} {1} {2}

{3} {3} ∅ ∅∅∅

∈ F

/∈ F

∈ F

/∈ F

Directed Acyclic Graph:

We can improve the previous representation of a tree to a directed acyclic graph.

{0, 1, 2, 3}

{0, 2, 3} {0, 1, 3} {1, 2}

{2}{0, 3} {1}

{3} ∅

∈ F

/∈ F

∈ F

/∈ F
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Color Function:

We can color each vertex v by a color function Ω: V → [k] for some k ∈ N, define an explicit list
F ′ ⊆ 2[k] and represent F as

F = {F ⊆ V | Ω(F ) ∈ F ′ }

Important Subset:

If we choose a subset W ⊆ V and define F ′ ⊆ 2W as an explicit list, then we can represent F as

F = {F ⊆ V | F ∩W ∈ F ′ }

Theorem 3.2.

a) Solving Muller games is in P if F is given as an explicit list.

b) Solving Muller games is in NP ∩ Co-NP if F is given as a tree.

c) Solving Muller games is Pspace-complete if F is given in any of the other representations.

3.4 Limits of Reductions
In the previous subsection, we have seen several reductions, e.g. how to reduce Muller games to parity
games. A natural question concerns the limits of such reductions, i.e. can parity games be reduced to
safety games? It turns out that this is impossible. A parity condition is harder than a safety condition.
On an intuitive level, this hardness can be phrased as follows. In a parity game, the coloring controls
which vertices have to be seen infinitely often and which ones may only be visited finitely often. On the
other hand, in a safety game, the set S of safe vertices only specifies which vertices cannot be visited,
not even once, which is a much weaker condition. Such informal statements will be made precise now.
We will introduce the Borel hierarchy, which characterizes the complexity of languages2 in terms of
their topological complexity. Starting from very simple languages it consists of infinitely many levels of
languages. Then, we will show that reductions cannot go “down” the hierarchy. A complicated language
cannot be reduced to a simpler one, i.e. one that is on a lower level of the hierarchy.
We begin by defining the hierarchy, whose basic sets are the so-called open ones.

Definition 3.9. Let V be a finite set. A set L ⊆ V ω is called open iff it is of the form KV ω for
some K ⊆ V ∗.

Intuitively, an open set is a abstract reachability property. As soon as a prefix of a ρ ∈ V ω is in K, ρ is in
L. However note, that K might be arbitrarily complicated, i.e. the set K = { 0p ∈ B∗ | p is a prime }Bω
is open. As expected, reachability winning conditions are open, as we have reach(R) = (V ∗R)V ω. We
now can formally define the Borel hierarchy.

Definition 3.10. Let V be a finite set. The Borel hierarchy on V ω consists of levels Σn and Πn

for every n ∈ N+, defined recursively as follows:

• Σ1 = {L ⊆ V ω | L is open }

• Πn = {L ⊆ V ω | V ω \L ∈ Σn }

• Σn+1 = {L ⊆ V ω | L =
⋃
j∈N Lj for infinitely many Lj ∈ Πn with j ∈ N }

Consider that the languages Lj not necessarily to be different from each other.

The Borel hierarchy also has levels Σα and Πα for countably infinite ordinals α. However, all winning
conditions we consider here are in the first three levels of the hierarchy, i.e. in Σn or Πn for n ≤ 3.
Hence, we omit the definition of the higher levels.

2and therefore also winning conditions for infinite games
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First, we show that the classes Σn and Πn indeed form a hierarchy.

Lemma 3.4. For every n ∈ N+, we have that Σn ∪Πn ⊆ Σn+1 ∩Πn+1.

Proof. Let V be a finite set and L ⊆ V ω. Then it holds that

L ∈ Σn ⇒ V ω \L ∈ Πn ⇒ V ω \L ∈ Σn+1 ⇒ L ∈ Πn+1

and therefore also

L ∈ Πn ⇒ V ω \L ∈ Σn ⇒ V ω \L ∈ Πn+1 ⇒ L ∈ Σn+1.

Next, we show L ∈ Σn ⇒ L ∈ Σn+1 and L ∈ Πn ⇒ L ∈ Πn+1 by induction over n ∈ N+.

Induction Base: n = 1

Let L ∈ Σ1 be arbitrary. We have to show that L ∈ Σ2, i.e. L =
⋃
j∈N Lj for infinitely many

Lj ∈ Π1 with j ∈ N. For w = w0w1...wn ∈ V ∗ let

Kw = {w0...wn′v | n′ < n ∧ v 6= wn′+1 }

be the set of shortest words that are not equal to a prefix of w. As L is in Σ1 and therefore open,
we have that L = KV ω for some K ⊆ V ∗. We show

L =
⋃
w∈K V

ω \KwV
ω

which suffices to show L ∈ Σ2 since every KwV
ω ∈ Σ1 and accordingly every V ω \KwV

ω in Π1.

“⇒”:

Let v0v1v2... ∈ L be arbitrary. We have that there exists a prefix w = v0...vn with w ∈ K. If
w = ε, then we have that Kw = ∅ and V ω \KwV

ω = V ω. As a consequence, we have that
v0v1v2... ∈

⋃
w∈K V

ω \KwV
ω. Now, consider the case w 6= ε. Then, we have v0v1v2... /∈ KwV

ω

and therefore v0v1v2... ∈ V ω \KwV
ω. Finally, we get v0v1v2... ∈

⋃
w∈K V

ω \KwV
ω.

“⇐”:

Let v0v1v2... /∈ L and w ∈ K be arbitrary. Note that w 6= ε since ε ∈ K implies L = KV ω = V ω

which contradicts v0v1v2... /∈ L. Furthermore, we have v0v1v2... ∈ KwV
ω, since w is not a

prefix of v0v1v2.... Thus, v0v1v2... /∈ V ω \KwV
ω and as this holds for every w ∈ K we can

conclude that v0v1v2... /∈
⋃
w∈K V

ω \KwV
ω.

It remains to consider Π1. The result directly follows from L ∈ Σ1 ⇒ L ∈ Σ2 and

L ∈ Π1 ⇒ V ω \L ∈ Σ1 ⇒ V ω \L ∈ Σ2 ⇒ L ∈ Π2

Induction Hypothesis:

∀n ∈ N+. (L ∈ Σn ⇒ L ∈ Σn+1) ∧ (L ∈ Πn ⇒ L ∈ Πn+1)

Induction Step: n > 1

We have that

L ∈ Σn ⇒ L =
⋃
j∈N Lj with Lj ∈ Πn−1

IH⇒ L =
⋃
j∈N Lj with Lj ∈ Πn ⇒ L ∈ Σn+1

where we apply the induction hypothesis to every Lj with j ∈ N. The proof for Πn is similar to
the proof in induction base. We have that

L ∈ Πn ⇒ V ω \L ∈ Σn ⇒ V ω \L ∈ Σn+1 ⇒ L ∈ Πn+1

where we again apply the result just proven for Σn.
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We now can place all winning conditions considered so far in the first three levels of the Borel hierarchy.

Σ1 Π1 Σ2 ∩Π2 Σ2 Π2 Σ3 ∩Π3
reach(R) × × × × ×

safe(S) × × × × ×
wparity(Ω) × × × ×

wmuller(F) × × × ×
büchi(F ) × ×

cobüchi(C) × ×
parity(Ω) ×

muller(F) ×

Furthermore, for each type of winning condition appearing in the tabular above, there is a condition
which is in the marked class, but not in a smaller class or in the complement-class3. For example, there
is a parity condition parity(Ω), which is also a Muller condition, such that parity(Ω) /∈ Σ2 ∪ Π2.
Similarly, there is a Büchi condition büchi(F ) such that büchi(F ) /∈ Σ1 ∪Π1 and büchi(F ) /∈ Σ2.

Next, we study a generalized notion of reductions via continuous mappings between languages. We will
see later that game reductions defined in the previous subsection are a special case of them.

Definition 3.11. A function f : Uω → V ω is called continuous iff f−1(L) is open for every open set
L ⊆ V ω.

Definition 3.12. A set L ⊆ Uω is Wadge-reducible to a set L′ ⊆ V ω, denoted by L ≤ L′, iff there
exists a continuous function f : Uω → V ω such that f−1(L′) = L.

First, we consider a simple consequence of the definition of Wadge reductions.

Remark 3.1. Let V and U be finite sets and L ⊆ Uω, L′ ⊆ V ω. Then L ≤ L′ implies Uω \L ≤ V ω \L′.

The following lemma proves restrictions on the existence of reductions. Intuitively, there are no reductions
“down” the Borel hierarchy.

Lemma 3.5. Let L ⊆ Uω and L′ ⊆ V ω for two finite sets U and V such that L ≤ L′. Then for all
n ∈ N+ holds:

1. L′ ∈ Σn ⇒ L ∈ Σn

2. L′ ∈ Πn ⇒ L ∈ Πn

Proof. We prove both statements simultaneously by induction over n ∈ N+.

Induction Base: n = 1

Let L′ ∈ Σ1, i.e. L′ is open. By L′ ≤ L there exists a continuous function f with f−1(L′) = L.
Thus, by continuity of f we have that L is also open and correspondingly L ∈ Σ1.

Let L′ ∈ Π1. We have that V ω \L′ ∈ Σ1 and therefore also Uω \L ∈ Σ1 by the proof for Σ1 and
Remark 3.1. We finally get L ∈ Π1.

Induction Hypothesis:

∀n ∈ N+. (L′ ∈ Σn ⇒ L ∈ Σn) ∧ (L′ ∈ Πn ⇒ L ∈ Πn)

3the latter claim only applies to the winning conditions which are in Σn or Πn, but not in their intersection
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Induction Step: n > 1

Let L′ ∈ Σn. It follows that L′ =
⋃
j∈N L

′
j with Lj ∈ Πn−1 for all j ∈ N. We define Lj = f−1(Lj)

for all j ∈ N. Correspondingly, Lj ≤ L′j for every j ∈ N. It follows Lj ∈ Πn−1 for all j ∈ N by
induction hypothesis. To conclude, consider that

x ∈ L ⇔ f(x) ∈ L′ ⇔ ∃j ∈ N. f(x) ∈ L′j ⇔ ∃j ∈ N. x ∈ Lj

Hence, L =
⋃
j∈N Lj with Lj ∈ Πn−1 for all j ∈ N finally showing that L ∈ Σn.

Now, consider L′ ∈ Πn. Then, we have V ω \L′ ∈ Σn and Uω \L ≤ V ω \L′ due to Remark 3.1.
Thus, as already shown, we have that Uω \L ∈ Σn and therefore L ∈ Πn.

There is an alternative characterization of Wadge-reductions via games. A Wadge game W (L,L′) consists
of two languages L ⊆ Uω and L′ ⊆ V ω and is played in rounds by two players, called I and II. In each
round n, I picks a letter xn ∈ U and II picks a word yn ∈ V ∗. After ω many rounds, the pair (x, y) with
x = x0x1x2... and y = y0y1y2... determines the winner. Player II wins if and only if y is infinite and we
have x ∈ L iff y ∈ L′.

Here, a strategy for I is a mapping σ : V ∗ → U while a strategy for II is a mapping τ : U+ → V ∗. A
play ρ = x0y0x1x1... is consistent with σ iff xn = σ(y0...yn−1) for all n ∈ N and it is consistent with τ iff
yn = τ(x0...xn) for every n ∈ N. A strategy is winning, if every play that is consistent with the strategy
is winning.

As an example consider the game W (0∗1(0 + 1)ω, (0∗1)ω). The first language contains the words
having at least one occurrence of 1 while the second languages contains the word having infinitely many
occurrences of 1. The following strategy is winning for II. If I has already played a 1, then pick a 1 too,
and a 0 otherwise. Consider an outcome (x, y) that is consistent with this strategy. If x contains a 1,
then y ends with the suffix 1ω. Otherwise, if x contains no 1, then y is equal to 0ω. Hence, we have
x ∈ 0∗1(0 + 1)ω if and only if y ∈ (0∗1)ω. It follows that the strategy is indeed winning for II.

We now show that Wadge games characterize Wadge reductions:

Theorem 3.3. Let L ⊆ Uω and L′ ⊆ V ω for two finite sets U and V . Then L ≤ L′ if and only if
II has a winning strategy for the game W (L,L′).

Proof. We show both directions separately.

“⇒”:

Let L ≤ L′, i.e. there is a continuous function f such that f−1(L′) = L. We have to construct a
winning strategy for II in W (L,L′). Assume we are in round n. Then I has picked letters x0, ..., xn
and II has picked possibly empty words y0, ..., yn−1 and has to pick yn. By construction of our
strategy, the set {x0...xn}Uω is partitioned into { f−1({y0...yn−1v}V ω) | v ∈ V }. If there is a v
such that {x0...xn}Uω ⊆ f−1({y0...yn−1v}V ω), then II picks yn = v, otherwise II picks yn = ε.
Note, that this choice preserves the partition property required above.
We need to show that y0y1y2... is an infinite word. If this is the case, then we have y0y1y2... =
f(x0x1x2...) and therefore x0x1x2... ∈ L if and only if y0y1y2... = f(x0x1x2...) ∈ L′ due to L =
f−1(L′). Hence, the strategy is indeed winning.
Towards a contradiction, assume II picks yn′ = ε for every n′ ≥ n and some fixed n ∈ N as answer
to x = x0x1x2... . Then, {x0...xn...xn+k}Uω is not a subset of f−1({y0...yn−1v}V ω) for every
v ∈ V and every K ∈ N. As every f({y0...yn−1v}V ω) is open and correspondingly also every
f−1({y0...yn−1v}V ω) we have that

f−1({y0...yn−1v}V ω) = KvU
ω

for some Kv ⊆ U∗. Now recall the invariant of our strategy. The set {x0...xn}Uω is partitioned
into the sets KvU

ω. Hence, there exists some prefix x0...xm of x that is in Kv for some v. But then
we also have {x0...xm}Uω ⊆ KvU

ω. This yields the desired contradiction.

43



“⇐”:

Let τ be a winning strategy for II in W (L,L′). We define a function f : Uω → V ω as follows.
Let u0u1u2... ∈ Uω and the sequence y = y0y1y2... ∈ V ω of words defined by yn = τ(u0...un)
for all n ∈ N. Then as τ is a winning strategy we have that y is infinite. Hence, we can define
f(u0u1u2...) = y. We get that f−1(L′) = L by the fact that τ is a winning strategy for II in
W (L,L′). It remains to show that f is continuous. To do so, consider the set KV ω for some
K ⊆ V ω. We have to show that f−1(KV ω) is open. So, define

K ′ = {u0...un ∈ U∗ | τ(u0)τ(u0u1)...τ(u0...un) ∈ K }

We show that we have that f−1(KV ω) = K ′Uω. Let x ∈ f−1(KV ω), i.e. f(x) ∈ KV ω. Accordingly,
there exists a prefix u0...un of x satisfying τ(u0)τ(u0u1)...τ(u0...un) ∈ K. As a consequence,
u0...un ∈ K ′ and therefore x ∈ K ′Uω. Now, let x ∈ K ′Uω. Then there exits a prefix u0...un of x
with τ(u0)τ(u0u1)...τ(u0...un) ∈ K. We get f(x) ∈ KV ω.

Finally, we can apply the general results we obtained so far to study game reductions as introduced
above. We show that every game reduction is a Wadge-reduction. This especially implies that there are
no game reductions “down” the Borel hierarchy, e.g. parity games cannot be reduced to safety games.

Lemma 3.6. Let G = (A,Win) and G′ = (A ×M,Win′) be two games with G ≤M G′ for some
memory structure M = (M, init,upd). Then, it holds that Win ≤Win′.

Proof. We show that II has a winning strategy for the game W (Win,Win′) which we define by
τ(v0...vn) = (vn,upd∗(v0...vn)). Accordingly, II constructs ext(ρ) as response to I picking a play
ρ ∈ Plays(A). By definition of G ≤M G′, we have ρ ∈ Win if and only if ext(ρ) ∈ Win′. As a con-
sequence, τ is indeed a winning strategy for II, which concludes Win ≤Win′.

We conclude this subsection by Martin’s determinacy theorem, which subsumes all determinacy results
we proved so far. However note, that it does not yield any restriction on the type of winning strategies for
both players, for example it does not imply that parity games are positionally determined, but only that
they are determined. We say that a set L is Borel iff it is contained in some level of the Borel hierarchy4.

Theorem 3.4. Every infinite game G = (A,Win) where Win is Borel is determined.

4even if the level has an ordinal index
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4 Infinite Arenas
Until now, we only have considered games where the underlying arena was a finite object. In this chapter,
we will overcome this restriction and allow arenas to be countably infinite. Plays, strategies, winning
regions, etc. are still defined as usual.

We first like to give a short overview of some differences between games with finite arenas and games
with infinite arenas. First of all, we can observe new questions appearing if we view the problem from
an algorithmic standpoint.

• The input to the solution algorithms is now an infinite object.

• Even positional strategies are infinite objects.

• The infinity set Inf(ρ) might be empty.

• Paths of bounded, finite length might not be sufficient for an appropriate attractor construction.
For an example see Figure 17. Here, vertex v will never by added to any attractor after a fixed
number of n iterations. Accordingly, we also have that v /∈

⋃
n∈N Attrn0 (R) = Attr0(R). But

Player 0 can force every play from v to v′ as Player 1 has to choose one outgoing edge and then the
number of steps after we reach v′ is fixed.

v v′

v1
1

v1
2 v2

2

v1
3 v2

3 v3
3

v1
4 v2

4 v3
4 v4

4

v1
5 v2

5 v3
5 v4

5 v5
5

...

... ...

Figure 17: There is no n ∈ N such that v is in Attrn
0 ({v′}).

Accordingly, to solve this game by an attractor construction we need more than infinitely many
steps. We can define higher levels of the attractor construction as follows.

Attrω0 (R) =
⋃
n∈N

Attrn0 (R)

Attrω+1
0 (R) = Attrω0 (R) ∪ CPre0(Attrω0 (R))

Attrω+2
0 (R) = Attrω+1

0 (R) ∪ CPre0(Attrω+1
0 (R))

...

We then have that v ∈ Attrω+1
0 (R). However, if v has further predecessors, we even need more

iterations and possibly even infinitely many limit steps5. The good news are, that it can be shown
that there is always a level at which the attractor gets stationary, as long as the underlying arena
is countably infinite.

• Consider a parity game G = (A,parity(Ω: V → [k])) with k ∈ N. As we set an upper bound on
the number of colors, we can still ensure that there is a color appearing infinitely often, even if
every vertex would only appear once. For such games, one can still prove positional determinacy,
using an induction on the number of colors and the adapted attractor construction. Note, that it is
indeed crucial here that the codomain of Ω is finite, as otherwise the minimal color seen infinitely
often may be undefined.

5Attrω
0 (R) is a limit step, as it is the union of all smaller attractors
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v
1

v0
2

v1
4

v2
6

v3
8

v4
10

...

Figure 18: Max-parity game which cannot be translated into an equivalent
min-parity game and where Player 1 needs a winning strategy of infinite size.

There is also a difference between min-parity and max-parity when we allow Ω to range over N and
even infinite memory might be necessary. As an example consider the max-parity game depicted
in Figure 18. Here, Player 1 has a winning strategy by visiting each of the lower vertices only once,
which implies that only v is visited infinitely often. But with a finite-state strategy, he could only
visit finitely many of the lower states such that the maximal color occurring infinitely often is even.
Consider that we cannot represent this game as an equivalent min-parity game, as both players
have positional strategies in min-parity games6. For further insights on this topic, we suggest to
read the paper “Positional determinacy of games with infinitely many priorities” by Grädel and
Walukiewicz (LMCS 2006).

4.1 Parity Pushdown Games
In the following, we want to consider a class of infinite games on infinite arenas that have a better behavior
than the examples discussed so far. The idea is, that we want to have parity games, that are played on
the configuration graphs of pushdown machines. Such machines are similar to usual pushdown automata,
but with discarded language acceptance features.

Definition 4.1. A pushdown system P = (Q,Γ,∆, qin) is a tuple consisting of

• a non-empty, finite set of states Q,

• a finite stack alphabet Γ,

• a transition relation ∆ ⊆ Q× Γ⊥ ×Q× Γ≤2
⊥ and

• an initial state qin ∈ Q,

where Γ⊥ denotes the extended stack alphabet Γ⊥ = Γ∪· {⊥}. We call ⊥ the initial stack symbol.
Further we call

(q, A, q′, α) ∈ ∆


a pop transition if |α| = 0,
a skip transition if |α| = 1 and
a push transition if |α| = 2.

Every pushdown system P has to fulfill the following criteria:

• The system is deadlock free: ∀q ∈ Q. ∀A ∈ Γ⊥. ∃q′ ∈ Q. ∃α ∈ Γ≤2
⊥ . (q,A, q′, α) ∈ ∆

• ⊥ is never deleted nor written on the stack: (q,⊥, q′, ε) /∈ ∆ ∧ ((q, A, q′,⊥X) ∈ ∆⇒ AX = ⊥)

For a pushdown system P = (Q,Γ,∆, qin) we use the following terms to denote the below mentioned
elements of P.

• We call γ ∈ Γ∗{⊥} a stack content of P.

• We call (q, γ) ∈ Q× Γ∗{⊥} a configuration of P.

• For a configuration (q, γ) of P we denote its stack height by |(q, γ)| = |γ| − 1.

• A transition from one configuration to another is defined as:

(q, γ) _ (q′, γ′) ⇔ (q, γ0, q
′, α) ∈ ∆ ∧ γ′ = αγ1γ2...γ|(q,γ)|

6even with infinitely many colors
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We now can define the corresponding configuration graph of a pushdown system.

Definition 4.2. Let P = (Q,Γ,∆, qin) be a pushdown system. The induced configuration graph of P,
denoted by G (P), is then defined as G (P) = (V,E) where

• V = Q× Γ∗{⊥} is the set of configurations of P and

• E = { (v, v′) ∈ V × V | v _ v′ } is the set of transitions.

Consider that the induced configuration graph of some pushdown system P has no terminal vertices,
as P is deadlock free. It remains to define the players on a given configuration graph and to color the
vertices appropriately. We then get the desired parity game definition.

Definition 4.3. Let P = (Q,Γ,∆, qin) be a pushdown system, Q0 ∪· Q1 = Q be a partition of Q
and Ω′ : Q → [k] be a coloring function with k ∈ N. Then we define the induced parity game G by
G = (A,parity(Ω)) with A = (V, V0, V1, E) such that

• (V,E) = G (P)

• Vi = { (q, γ) ∈ V | q ∈ Qi } for all i ∈ {0, 1}

• Ω((q, γ)) = Ω′(q) for all (q, γ) ∈ V

An example for parity game induced by a pushdown system P is depicted in Figure 19. The corresponding
pushdown system is given by P = ({qin, q1, q2}, {A},∆, qin) with ∆ defined as the set

{ (qin, X, qin, AX), (qin, X, q1, AX), (q1, A, q1, ε), (q1,⊥, q2,⊥), (q2, A, q2, ε), (q2,⊥, q2,⊥) | X ∈ {A,⊥}},

the partition Q1 = {qin} and Q0 = {q1, q2} and the coloring function Ω: {qin, q1, q2} → [2] with
Ω(v) = 0 ⇔ v 6= q1. In this game, Player 1 can either increase the stack forever or move to some
vertex v′j where it is Player 0’s turn. If he increases the stack forever, the minimal color seen infinitely
often will be 0. This play is winning for Player 0. However, if Player 0 is allowed to move, she simply
can empty the stack again and move to q2. As removing all elements from the stack only needs finitely
many steps7 and q2 has an even color, odd colors occur only finitely often. Accordingly, Player 0 wins
this game from every vertex.

v0
0

v′0
1

v1
0

v′1
1

v2
0

v′2
1

v3
0

v′3
1

v4
0

v′4
1

v5
0

v′5
1

A⊥ AA⊥ AAA⊥ AAAA⊥ AAAAA⊥

v′′0
0

⊥

...

...

qin

q1

q2

Figure 19: An example for a pushdown game potentially visiting infinitely many vertices.

We now are interested in solving such games with infinite arenas. In general we want to tackle the
following problem.

Problem of solving pushdown games:

Input: Pushdown game G, represented by a pushdown system P, a partition Q0 ∪· Q1 and a coloring
function Ω and some i ∈ {0, 1}.

Output: Winning strategy for Player i from (qin,⊥), if there exists one.
7as this are exactly the number of steps Player 1 has increased it
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Pushdown Transducers
Recall that we claimed that parity games with finitely many colors are positionally determined, even if
the arena is countably infinite. This applies to pushdown parity games, as the set of configurations is
countable. However, even a positional winning strategy in a pushdown game is an infinite object, as there
are infinitely many vertices.

In the following we introduce a finitely-representable machine model that implements winning strate-
gies for pushdown games. Finite-state strategies do not suffice, but, not surprisingly, using pushdown
machines suffices.

Definition 4.4. A pushdown transducer T = (Q,Γ,∆, qin,ΣI ,ΣO, λ) is a tuple consisting of

• a non-empty, finite set of states Q,

• a finite stack alphabet Γ,

• a transition relation ∆ ⊆ Q× Γ⊥ × (ΣI ∪ {ε})×Q× Γ≤2
⊥ ,

• an initial state qin,

• a finite input alphabet ΣI ,

• a finite output alphabet ΣO and

• a partial output function λ : Q ⇀ ΣO.

where Γ⊥ is defined similar as for pushdown systems and ε /∈ ΣI .

Definition 4.5. Let T = (Q,Γ,∆, qin,ΣI ,ΣO, λ) be a pushdown transducer. We say that T is
deterministic iff

∀q ∈ Q. ∀A ∈ Γ⊥. ∀a ∈ ΣI . |{ (q′, α) | (q, A, a, q′, α) ∈ ∆ ∨ (q, ε, a, q′, α) ∈ ∆ }| ≤ 1

Definition 4.6. Let T = (Q,Γ,∆, qin,ΣI ,ΣO, λ) be a pushdown transducer. A run r of T on a
finite input word w ∈ Σ∗I is defined as

(q0, γ0)(q1, γ1)...(qm, γm) ∈ (Q× Γ∗{⊥})∗

with (q0, γ0) = (qin,⊥) and with (qj , γj)
aj

_ (qj+1, γj+1) for all j ∈ [m] and aj ∈ ΣI ∪ {ε} such
that a0a1...am−1 = w and { (q, α) | (qm, γ0, ε, q, α) ∈ ∆ } = ∅. We use (q, γ) a_ (q′, γ′) to denote
that (q, γ0, a, q

′, x) ∈ ∆ with γ′ = αγ(1)...γ(|γ| − 1). Consider that the last condition enforces that
after reading w no more ε-transitions are possible. If T is deterministic, the corresponding run of w
is unique and we denote it by run(w).

Definition 4.7. Let T = (Q,Γ,∆, qin,ΣI ,ΣO, λ) be a deterministic pushdown transducer. Then T
induces a partial function fT : (ΣI)∗ ⇀ ΣO such that fT (w) = λ(pr0(Lst(run(w)))) for all w ∈ Σ∗I ,
if such a run exists.

To implement pushdown strategies in a pushdown game we will use pushdown transducers. To have a
finite input alphabet, we represent play prefixes here by sequences of transitions and not by sequences of
configurations. Notice, that both representations can easily be converted into each other. Furthermore,
the output will be the next transition to be chosen by Player i instead of the next configuration. Hence,
we use the set of transitions of the pushdown system defining the pushdown game for both, the input
and the output alphabet of the pushdown transducer. Accordingly, we have that ΣI = ΣO = ∆, where ∆
is the transition relation of the pushdown system underlying the game arena. This way, the transducer
consumes a play prefix in the pushdown graph represented by a sequence of transitions and outputs the
transition which Player i should choose next8. Thus, we have to require the output transition to be
executable from the last configuration of the play prefix induced by the input sequence.

8in case the last configuration of the play prefix is a Player i configuration
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qin q1 q′1 q2

Z/AZ

(qin, X, qin, AX)

Z/AZ

(qin, X, q1, AX)
A/ε

(q1, A, q1, ε)

⊥/⊥
ε

⊥/⊥
(q1,⊥, q2,⊥)

⊥/⊥

(q2,⊥, q2,⊥)

λ(q1)
=

(q1, A, q1, ε)

λ(q′1)
=

(q1,⊥, q2,⊥)

λ(q2)
=

(q2,⊥, q2,⊥)

Figure 20: Pushdown transducer implementing a winning strategy for Player 0
from (qin,⊥) in the example pushdown system P.

4.2 Walukiewicz’s Reduction
In this section, we show how to simulate a pushdown parity game by a parity game in a finite arena. This
entails that we cannot store the whole information about the stack content of a configuration. Instead,
we only store the topmost stack symbol, which allows us to deal with push and skip transitions, but not
with pop transitions. Such transitions remove the topmost stack symbol, revealing the symbol below
it, which we discarded. Hence, we change the evolution of a play: the players are assigned different
tasks, one of them makes predictions and the other one verifies them. A prediction P = (P0, ..., Pk−1)
contains for every c ∈ [k] a subset Pc ⊆ Q of states. Whenever a push-transition is to be simulated the
predicting player has to make a prediction P about the future round t when the same stack height as
before performing the push-transition is reached again for the first time (if it is reached at all). With this
prediction, the predicting player claims that if the current push-transition is performed, then in round t
some state q ∈ Pc will be reached if c ∈ [k] is the minimal color seen in between. Once a prediction P is
proposed, the verifying player has two ways of reacting, either believing that P is correct or not. In the
first case, he is not interested in verifying P , so the push-transition is not performed and the verifying
player chooses a color c ∈ [k] and a state q ∈ Pc, for some Pc 6= ∅, and skips a part of the simulated play
by jumping to an appropriate position in the play. In the other case, he wants to verify the correctness
of P , so the push-transition is performed and when the top of the stack is eventually popped it will turn
out whether P is correct or not. The predicting player wins if P turns out to be correct and otherwise
the verifying player wins. So after a pop-transition the winner is certain. For the other case, where no
pop-transition is performed at all, the parity condition determines the winner.

In the following, let Player 0 take the role of the predicting player and Player 1 the role of the
verifying one. Let G = (A,parity(Ω)) be a pushdown game with arena A = (V, V0, V1, E) induced by
P = (Q,Γ,∆, qin) with partition Q0 ∪ Q1 of Q and coloring function Ω: Q → [k]. To simulate G by a
game on a finite arena the information stored on the stack is encoded by some finite memory structure.
The essential component of this structure is the set of predictions Pred = (2Q)n.

We define the game G′ = (A′,parity(Ω′)) with A′ = (V ′, V ′0 , V ′1 , E′) as follows: for all states q ∈ Q,
stack symbols A,B ∈ Γ⊥, colors c, d ∈ [k] and predictions P,R ∈ Pred, the set V ′ contains the vertices

• Check[q, A, P, c, d] (which correspond to the configurations of G),

• Push[P, c, q, AB] (to signalize the intention of performing a push-transition),

• Claim[P, c, q, AB,R] (to make a new prediction),

• Jump[q, A, P, c, d] (to skip a part of a simulated play), and

• Win0[q] and Win1[q] (sink vertices which are reached when a prediction is verified).

The set E′ consists of the following edges (for the sake of readability, we denote an edge (v1, v2) ∈ E′
here by v1 → v2). For every skip-transition δ = (q, A, p,B) ∈ ∆ there are edges

Check[q, A, P, c, d]→ Check[p,B, P,min{c,Ω(p)},Ω(p)] ,

for P ∈ Pred and c, d ∈ [k]. Thus, the first two components of the Check-vertices are updated according to
δ, the prediction P remains untouched, the last but one component is used to keep track of the minimal
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color for being able to check the prediction for correctness and the last component determines the color
of the current Check-vertex. For every push-transition δ = (q,A, p,BC) ∈ ∆ there are edges

Check[q, A, P, c, d]→ Push[P, c, p,BC] ,

for all P ∈ Pred and c, d ∈ [k]. Here, a player states that a push-transition is to be performed such that
the current state q has to be changed to p and the top of the stack A has to be replaced by BC. The
information containing the current prediction P and the minimal color c is carried over, as this is needed
in the case where the verifying player decides to skip. Moreover, to make a new prediction R, all edges

Push[P, c, p,BC]→ Claim[P, c, p,BC,R]

for every R ∈ Pred are needed. In case a new prediction is to be verified, a push-transition is finally
performed using edges of the form

Claim[P, c, p,BC,R]→ Check[p,B,R,Ω(p),Ω(p)]

where the prediction P , the color c and the lower stack symbol C are discarded, since they are no longer
needed. For the other case, where the verifying player intends to skip a part of a play, all edges

Claim[P, c, p,BC,R]→ Jump[q′, C, P, c, e]

with q′ ∈ Re are contained in E′. Here, the verifying player chooses a color e ∈ [k] for the minimal color
of the skipped part and a state q from the corresponding component Re of the prediction R. Now, the
lower stack symbol C, the prediction P and the color c additionally have to be carried over, whereas B
and R are discarded. Then, all edges

Jump[q, C, P, c, e]→ Check[q, C, P,min{c, e,Ω(q)},min{e,Ω(q)}]

are contained in E′ where the last component of the Check-vertex is set to be the minimum of the color
of the current state q and the minimal color of the part just skipped. For the last but one component, we
also have to account for the color c, which is necessary for eventually checking P for correctness. Finally,
we have for every pop-transition (q, A, p, ε) ∈ ∆, the edges

Check[q,A, P, c, d]→Win0[p] if p ∈ Pc , and
Check[q,A, P, c, d]→Win1[p] if p /∈ Pc ,

for P ∈ Pred and c, d ∈ [k], which lead to the sink vertex Win0[p] of the predicting Player 0 if the
prediction P turns out to be correct or to the sink vertex Win1[p] of the verifying Player 1 otherwise.
Moreover, we have (Wini[q],Wini[q]) ∈ E′, for i ∈ {0, 1} and q ∈ Q.

The set of vertices V0 of Player 0 (who in addition has to make the predictions) is defined to consist
of all Push-vertices, as there new predictions are made, and of those Check[p,A, P, c, d] vertices where
p ∈ Qi. Accordingly, all other vertices belong to Player 1., especially all Claim-vertices belong to Player 1,
as he accepts a prediction or challenges it at these vertices. Similarly, all Jump-vertices belong to Player 1,
since he can pick a configuration from the current prediction to continue the play at this configuration.

The coloring function Ω′ : V ′ → [k + 1] is defined by Ω′(Check[p,A, P, c, d]) = d and Ω′(Wini[q]) = i,
for i ∈ {0, 1}. All other vertices are colored by the maximal color k (which does not appear in G), since
they are auxiliary vertices and should have no influence on the minimal color seen infinitely often. Note
that there is no play in G′ with minimal color k, as every play visits infinitely many Check-vertices or
ends up in one of the sinks, which all have a smaller color.

The following lemma claims that solving G′ suffices to determine the winner of G. Furthermore, in
the proof we will construct a pushdown transducer implementing a winning strategy for Player 0, if she
is the winner. The proof shows that G′ simulates G. To this end, we need to specify the vertex of G′
where the simulation starts. To this end, we define the initial prediction P in = ∅k, coinciding with the
fact that the stack bottom symbol cannot be deleted from the stack.

Lemma 4.1. Let G be a pushdown parity game and G′ the parity game constructed as above. We
have (qin,⊥) ∈Wi(G) if and only if Check[qin,⊥, P in,Ω(qin),Ω(qin)] ∈Wi(G) for i ∈ {0, 1}.
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Proof. We show that (qin,⊥) ∈ W0(G) implies Check[qin,⊥, P in,Ω(qin),Ω(qin)] ∈ W0(G) and vice versa.
This proves the claim for i = 1, too, as both games are determined.

In the following, we only consider plays and play prefixes beginning in (qin,⊥) in A respectively in
Check[qin,⊥, P in,Ω(qin),Ω(qin)] in A′. For the sake of readability, when we refer to plays, we will always
mean plays starting in one of these vertices.

First, let σ be a positional winning strategy for Player 0 from (qin,⊥) in G. We need to construct a
winning strategy σ′ for Player 0 from Check[qin,⊥, P in,Ω(qin),Ω(qin)] in G′. We define σ′ and a function f
mapping finite play prefixes of G′ ending in a Check vertex to play prefixes in A simultaneously by
induction over the length of the play prefixes. This is necessary, as f depends on choices made by σ′

while σ is defined using f , which simulates play prefixes in G′ by play prefixes in G. Then, σ′ mimics
σ when applied to the simulated play prefix. Both functions are subjects to some invariants. First, f
maps a play prefix w in G′ ending in Check[q, A, P, c, d] to f(w) ending in (q, Aγ) for some γ. Secondly,
we define f(w) and σ′ only for those w that are consistent with σ′ as defined thus far. This is sufficient
as all other values of σ can be defined arbitrarily, since we only want to define a winning strategy from
Check[qin,⊥, P in,Ω(qin),Ω(qin)].

We begin by defining σ′(w) for those w ending in a Check vertex, say w ends in Check[q,A, P, c, d], as
the definition is the same for the induction start and the induction step. Here, we apply the invariant:
f(w) ends in a configuration of the form (q, Aγ). If it is Player 0’s turn at the last vertex of w, then also
at the last vertex of f(w). Hence, let σ(f(w)) = (p,Bγ′) and let δ be the transition inducing the edge
from (q, Aγ) to (p,Bγ′). If δ is a skip-transition, then δ = (q, A, p,B). Then, we define σ′ to mimic σ by
defining

σ′(w) = Check[p,B, P,min{c,Ω(p)},Ω(p)] .

If δ is a push-transition, then we again want to mimic σ. However, Player 0 cannot execute the push-
transition, she can only signal her intent and make a prediction, and then let Player 1 decide whether he
actually simulates the push-transition or whether he wants to skip a portion of the play. So, we define

σ′(w) = Push[P, c, p,BC] .

Finally, if δ is a pop-transition, we move to the unique successor of the form Wini[p] for some i ∈ {0, 1}.
Note that this might be a losing sink for Player 0 (i.e., the vertex Win1[p]), if p /∈ Pc. We will see later
that this is never the case.

Now, consider a play prefix w′ of the form wPush[P, c, p,BC] so that f(w) is already defined. If
Check[q, A, P, c, d] is the last vertex of w, then the last vertex of f(w) is of the form (q, Aγ) (here,
we again apply the invariant). As there is an edge from Check[q, A, P, c, d] to wPush[P, c, p,BC], δ =
(q, A, p,BC) is a transition of P, which is executable at the last vertex of f(w) leading to the config-
uration (p,BCγ). Consider the set Rc all those (q∗, C) ∈ Q × Γ⊥ such that there is a finite prolonga-
tion f(w)(p,BCγ)(q1, γ1)...(qn, γn) of f(w)(p,BCγ) that are consistent with σ and satisfy the following
requirements: q∗ = qn and C is the topmost symbol of γn), |qn, γn| = |q, Aγ|, |qn′ , γn′ | > |q, Aγ|, and
c = min({Ω(p) ∪ {Ω(qn′) | 1 ≤ n′ < n }}). Hence, Rc contains all those states of configurations that are
reachable from (q,Aγ) via a play prefix that is consistent with σ after first taking the push-transition δ
(replacing the topmost A by BC) and then reaching the same stack height as (q, Aγ) for the first time,
while the minimal color seen after (q, Aγ) is c. Note that this implies that the topmost stack sym-
bol of such a configuration is C. We collect these set in the prediction R = (R0, ..., Rk−1) and define
σ′(w′) = Claim[P, c, p,BC,R]. This completes the definition of σ′.

It remains to define f . For the induction start, consider a play prefix of length one. As all our
plays start in the initial Check vertex Check[qin, P

in,Ω(qin),Ω(qin)], we only have to consider the play
prefix Check[qin, P

in,Ω(qin),Ω(qin)] and define

f(Check[qin, P
in,Ω(qin),Ω(qin)]) = (qin,⊥) .

Now consider a play prefix w in G′ ending in a Check vertex Check[q, A, P, c, d] that is consistent with σ
as defined so far. By the invariant, we have that the last vertex of f(w) is of the form (q, Aγ) for some
γ. We consider the different cases how w can be prolonged so that the next Check-vertex is reached.

First, consider w′ = wCheck[p,B, P,min{c,Ω(p)},Ω(p)], i.e., the skip-transition (q, A, p,B) is simu-
lated. This transition is executable at (q, Aγ), the last vertex of f(w), leading to the configuration (p,Bγ).
Hence, we can define f(w′) = f(w)(p,Bγ).

Secondly, consider the simulation of a push-transition (q,A, p,BC). To simulate such a transition
in G′, one of the players moves to a Push-vertex. From there, Player 0 moves to a Claim-vertex, while
making a prediction R during this move. Note that we can assume that R is the prediction as in the
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definition of σ′ above, as we only have to consider play prefixes that are consistent with σ′. After Player 0
has made the prediction, there are two possible types of moves for Player 1: either, he accepts prediction
and executes the push-transition and moves from the Claim-vertex to the corresponding Check-vertex, or
he skips a portion of the play using the Jump-vertex. we consider both cases independently. First, let

w′ = wPush[P, c, p,BC]Claim[P, c, p,BC,R]Check[p,B,R,Ω(p),Ω(p)] ,

i.e., Player 0 makes the prediction R and Player 1 chooses to execute the push-transition. The push-
transition is also executable at (q, Aγ), the last vertex of f(w), leading to the configuration (p,BCγ).
Hence, we can define f(w′) = f(w)(p,BCγ). On the other hand, assume Player 1 skips a portion of the
play using a Jump-vertex, i.e., we have

w′ = wPush[P, c, p,BC]Claim[P, c, p,BC,R]Jump[qC, P, c, e]Check[q, C, P,min{c, e,Ω(q)},min{e,Ω(q)}] ,

where q ∈ Re for some color e. By the choice of the prediction Re by σ′, there exists a prolonga-
tion f(w)(p,BCγ)(q1, γ1)...(qn, γn) of f(w)(p,BCγ) that is consistent with σ and satisfies q∗ = qn and
that C is the topmost symbol of γn). Thus, we can define f(w′) = f(w)(p,BCγ)(q1, γ1)...(qn, γn). Notice
that in all cases the invariant is satisfied. This completes the definition of f .

It remains to show that σ′ is a winning strategy for Player 0 from Check[qin,⊥, P in,Ω(qin),Ω(qin)].
To this end, pick some arbitrary play ρ starting in this vertex that is consistent with σ′. First, we show
that ρ does not contain a sink-vertex Win1[p], as they are losing for Player 0. To the contrary, assume
ρ visits Win1[q]. Then, the last vertex before the first visit to the sink is of the form Check[q, A, P, c, d]
(and is the last Check-vertex in ρ) such that there is a pop-transition δ = (q, A, p, ε) with p /∈ Pc. Note
that A 6= ⊥, since there is no pop-transitions deleting ⊥. This implies that there was a last simulated
push-transition during ρ, at which point Player 0 picked the prediction P according to σ′. Afterwards,
only skip-transitions are simulated or push-transitions where Player 0 decides to skip a portion of the
play are executed, since the prediction P would be replaced in any other case.

Let w denote the prefix of ρ up to and including the last Check-vertex of ρ (immediately before the
sink is reached), and let w′ the prefix of w ending in the Check-vertex reached before Player 0 picked the
prediction P . Then, f(w′) is a prefix of f(w) and there is some non-empty x such that f(w′)x = f(w).
By the choice of x as a suffix of f(w) we know that is of the form (q, Aγ). Thus, the pop-transition δ is
applicable, leading to the configuration (p, γ). Furthermore, x(p, γ) is a path that witnesses p ∈ Pe, where
e is the minimal color seen during x. This color is equal to c as encoded in the vertex Check[q, A, P, c, d],
as c is equal to the minimal color visited, if only skip-transitions or push-transitions via Jump-vertices are
simulated in ρ. Hence, we have p ∈ Pe = Pc. This contradicts p /∈ Pc. Thus, no losing sink for Player 0
is ever reached by ρ.

If a sink of the form Win0[q] is reached, then Player 0 wins ρ. Hence, it remains to consider the case
where ρ visits no sink at all. As f(ρ0...ρn′) is a prefix of f(ρ0...ρn) for every n′ < n, there is a unique play
f(ρ) such that f(ρ0...ρn) is a prefix of f(ρ) for every n. By construction, the play f(ρ) is consistent with
σ. Let x0 = f(ρ0) and xn be such that f(ρ0...ρn) = f(ρ0...ρn−1)xn for every n > 0, which is non-empty
as f(ρ0...ρn) is a proper prolongation of f(ρ0...ρn−1). Note that this implies f(ρ) = x0x1x2....

Let n0 < n1 < n2 < ... be the enumeration of the positions of the Check-vertices in ρ. There are
infinitely many, since ρ never visits a sink vertex. Inspecting all three cases of the definition of f , we obtain
that the color of the j-th Check-vertex is equal to the minimal color occurring in xnj

. As f(ρ) = x0x1x2...
we conclude that the minimal color occurring infinitely often in f(ρ) (which is even, as f(ρ) is winning
for Player 0) is equal to the minimal color labeling infinitely many Check-vertices in ρ. Finally, all other
vertices in ρ have a larger color, hence the minimal color seen infinitely often ρ is even, i.e., ρ is winning
for Player 0. This concludes the first part of the proof.

Now, let us describe how a winning strategy σ for Player i in G can be constructed from a positional
winning strategy σ′ for Player 0 in G′. The idea is to simulate σ′ in G. This works out fine as long as
only skip- and push-transitions are involved. As soon as the first pop-transition is used, σ′ leads to a
sink Win0-vertex at which the future moves of σ′ are no longer useful for playing in the original game G.
Note that no Win1-vertex is reached, since they are losing for Player 0, and therefore not reachable via a
winning strategy. To overcome this, the strategy σ uses a stack to store Claim-vertices visited during the
simulated play. This allows us to reset the simulated play and to continue from the appropriate successor
Jump-vertex of the Claim-vertex stored on the stack.

Formally, let A′|σ′ = (V ′|σ′ , V ′0 |σ′ , V ′1 |σ′ , E′|σ′) be A′ restricted to the vertices and edges visited by σ′
when starting in to play in Check[qin,⊥, P in,Ω(qin),Ω(qin)]. This implies that every vertex from V ′0 |σ′ has

52



a unique successor in A′|σ′ and that Win1-vertices are not contained in V |σ′ . The pushdown transducer
Tσ implementing σ is obtained from σ′ by employing A′|σ′ for its finite control and the Claim-vertices as
its stack symbols. The PDT implementing σ is defined by Tσ = (Qσ,Γσ,∆σ, qσin,ΣσI ,ΣσO, λσ), where

• Qσ = V ′|σ′ ,

• Γσ = {v ∈ V ′|σ′ | v is a Claim-vertex in A′|σ},

• qσin = Check[qin,⊥, P in,Ω(qin),Ω(qin)], and

• ΣσI = ΣσO = ∆.

Recall that ∆ is the transition relation of the pushdown system P inducing the arena. To define ∆σ,
we first define the labeling ` : E′|σ′ → ∆ ∪ {ε} which assigns to every edge in E′|σ′ its corresponding
transition δ ∈ ∆ by

`(v, v′) =


(q, A, p,B) if (v, v′) = (Check[q, A, P, c, d],Check[p,B, P, c′, d′]) ,
(q, A, p,BC) if (v, v′) = (Check[q, A, P, c, d],Push[P, c, p,BC]) ,
(q, A, p, ε) if (v, v′) = (Check[q, A, P, c, d],Win0[p]) ,
ε otherwise.

Now, the transition relation ∆σ is defined by considering several cases for every edge (v, v′) ∈ E′|σ′ .

• If v is not a Claim-vertex and v′ is not a Win0-vertex, then (v, Z, `(v, v′), v′, Z) ∈ ∆σ, for every
Z ∈ Γσ⊥.

• If v is a Claim-vertex and v′ is a Check-vertex, then (v, Z, `(v, v′), v′, vZ) ∈ ∆σ for Z ∈ Γσ⊥, i.e., the
Claim-vertex v is pushed onto the stack.

• If (v, v′) = (Check[q, A, P, c, d],Win0[p]), then (v, Z, `(v, v′), Jump[p, C,R, e, c], ε) ∈ ∆σ for every
Z ∈ Γσ of the form Z = Claim[R, e, q′, BC,R′], i.e., the topmost symbol Claim[R, e, q′, BC,R′] is
popped from the stack and the pushdown transducer proceeds to the state Jump[p, C,R, e, c] which
would be reached in A′|σ′ if Player 1 would have chosen color c and state p ∈ Rc to determine the
successor of Claim[R, e, q′, BC,R′].

To complete the definition of Tσ, we define the output function λσ by λσ(v) = `(v, v′) if v ∈ V ′0 |σ′ is a
Check-vertex and (v, v′) ∈ E′|σ′ , i.e., the labeling of the edge chosen by σ′ determines the output of Tσ.

It remains to show that Tσ implements a winning strategy from (qin,⊥). To show this, let ρ =
(q0, γ0)(q1, γ1)(q2, γ2)... be a play that is consistent with the strategy σ implemented by T , starting in
(qin,⊥). To prove that ρ is winning, we need some additional notation. The position n is a stair of
ρ, if |qn, γn| ≥ |qn′ , γn′ | for every n′ ≥ n, i.e., no smaller stack height is reached after n. Every play
has infinitely many stairs and if n is a stair and n′ the next one, then either |qn, γn| = |qn′ , γn′ | or
|qn, γn| = |qn′ , γn′ | − 1.

Let n0 < n1 < n2 < ... be the ascending enumeration of ρ’s stairs. We chop ρ into infinitely many
pieces, leading from one stair to the next by defining x0 = (q0, γ0)...(qn0 , γn0) and

xj = (qnj−1+1, γnj−1+1)...(qnj
, γnj

) .

Then, we have ρ = x0x1x2... and furthermore, the minimal color seen infinitely often during ρ is the same
as the minimal color seen infinitely often in the sequence c0c1c2..., where cj is the minimal color in xj .

Towards a contradiction, assume ρ is not winning for Player 0, i.e., the minimal color seen infinitely
often in c0c1c2... is odd. We construct a play ρ in G′ that is consistent with σ′, but losing for Player 0,
which will yield the desired contradiction. Intuitively, Player 1 uses Jump-vertices to skip the portions
between stairs, thus the simulated play uses only push- and skip-transitions and never leads to a sink-
vertex.

More formally, we define ρ′ by induction over the stairs, satisfying the following invariants: after
simulating a stair, the simulated play is in a Check-vertex whose first two components encode the state
and the topmost stack symbol of the stair configuration. Secondly, the simulation in G′ will be consistent
with σ.
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We have that n0 = 0 as the stack bottom symbol is never deleted. Accordingly, we can define ρ′0 as
ρ′0 = Check[qin,⊥, P in,Ω(qin),Ω(qin)]. Now, assume we have simulated ρ up to stair j, defining the play
prefix ρ′0...ρ

′
m, which is consistent with σ′. We need to prolong ρ′0...ρ′m to simulate the (j + 1)-st stair,

while staying consistent with σ′. To this end, we have to consider several cases.
If nj+1 = nj + 1 and |qnj+1 , γnj+1 | = |qnj , γnj |, then the nj+1-st configuration of ρ is reached via a

skip-transition. This skip-transition can be simulated in G′ to extend ρ′0...ρ
′
m by the Check-vertex which

is reached by this simulation step. This satisfies the first invariant. Furthermore, if it is Player 1’ turn
at the nj+1-st configuration of ρ, then also at ρ′m, hence the prolongation is consistent with σ′. If it is
Player 0’s turn, then the skip-transition is the one specified by T , which is exactly the one specified by
σ′ in G′, too. Thus, the prolongation is again consistent with σ′.

If nj+1 = nj + 1 and |qnj+1 , γnj+1 | = |qnj , γnj |+ 1, then the nj+1-st configuration of ρ is reached via
a push-transition. This transition is simulated similarly as the skip-transition before, the only difference
being that Player 1 decides to simulate the transition by moving from the Claim-vertex to the Check-
successor. Thus, we can prolong ρ′0...ρ′m by the corresponding Push-vertex, the Claim-vertex picked by σ′
and the unique Check-successor of it. This choice again satisfies our invariant.

Finally, we consider the most involved case, where nj+1 > nj + 1, which implies |qnj+1 , γnj+1 | =
|qnj

, γnj
| and |qnj+1, γnj+1| = |qnj

, γnj
| + 1, i.e., a push-transition is executed first. In this case, the

state q of the (j+1)-th stair configuration is contained in Pc, where P is the prediction made by Player 0
when simulating the push-transition and c is the minimal color seen between the stairs j and j + 1.
Hence, Player 1 can use the Jump-vertex to reach a Check-vertex that encodes the state q and the second
(lower) stack symbol pushed onto the stack during the push-transition. Thus, we can prolong ρ′0...ρ′m by
the corresponding Push-vertex, the Claim-vertex picked by σ′, the Jump-successor and the Check-vertex
encoding the jump to q. This is again consistent with σ′.

To conclude we note that the sequence of colors seen at the Check-vertices during ρ′ is exactly the
sequence c0c1c2... . This is true for the first two cases of the simulation, since the Check-vertex that is
reached has exactly the same color as the (j+1)-st stair configuration. In the third case, the Check-vertex
reached has color c, which is exactly the smallest one seen between the stairs, i.e., the minimal color of
xj+1, which is cj+1 by definition.

All other colors appearing in ρ′ are larger than the colors of the (infinitely many) check-vertices,
hence they are irrelevant. We have constructed an infinite play that is consistent with σ′, starts in
Check[qin,⊥, P in,Ω(qin),Ω(qin)], and is winning for Player 1. This contradicts the fact that σ′ is winning
from Check[qin,⊥, P in,Ω(qin),Ω(qin)].

Since the parity game G′ is of exponential size and has just one more color than G, hence can be solved
in exponential time, we obtain the following complexity result.

Theorem 4.1. Solving pushdown parity games is in Exptime.

Furthermore, one can show that solving pushdown parity games is also Exptime-hard, and therefore
Exptime-complete. See Walukiewicz’s paper “Pushdown processes: games and model checking, Infor-
mation and Computation 164, 2001” for details.
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5 Rabin’s Theorem
In this chapter we consider an application of infinite games to automata theory by proving Rabin’s
theorem, which states that satisfiability of monadic second order logic over labeled binary trees (S2S for
short) is decidable. Rabin’s original proof was a purely combinatorial one, which has been characterized
as cumbersome and complicated. Later, a simpler proof was published, which relies on determinacy of
parity games.

The overall proof technique of Rabin is to show that S2S is equivalent to parity tree automata, a type
of non-deterministic tree automaton running on infinite trees. Thus, a formula ϕ can be translated into
an automaton Aϕ such that ϕ is satisfiable if and only if the language of Aϕ is non-empty. As the latter
problem is decidable9, satisfiability is decidable, too. The translation is by induction over the structure
of ϕ, which amounts to showing that these automata are closed under intersection (conjunction in S2S),
union (disjunction in S2S), complement (negation in S2S), and projection (quantification in S2S).

The most involved step in this translation is showing that parity tree automata are closed under
complement, i.e., to construct an automaton A ′ that accepts a tree t, if it is not accepted by a given
automaton A . Hence, there exists an accepting run of A ′ on t if and only if all runs of A on t are
rejecting. This universal statement is not well-suited to be checked by a non-deterministic automaton A ′,
since such automata are better suited to test existential statements using their non-determinism. Thus,
one needs to turn the universal statement “every run is rejecting” into an existential one, i.e., one needs
a quantifier switch.

Here, determinacy of games come into play, which can be seen as a quantifier switch. In a determined
game, Player 0 does not have a winning strategy, i.e., every strategy is losing (an universal statement),
if and only if Player 1 has a winning strategy (an existential statement). Thus, in a determined infinite
game we can turn an universal statement into an existential one.

This property is applied as follows: we define a parity game G(A , t) in which Player 0 has a winning
strategy from some fixed initial vertex if and only if A accepts t. Thus, if t is not accepted by A , then
Player 1 has a winning strategy for G(A , t) from the initial vertex. Thus, we construct an automaton A ′

which checks whether Player 1 has a winning strategy for the game G(A , t) while running on t, essentially
guessing the strategy and verifying that it is winning. This automaton recognizes the complement of the
language of A .

In the following, we introduce the logic S2S, parity tree automata, prove their equivalence, and then
show how to check the automata for emptiness, which solves the satisfiability problem for S2S.

5.1 Binary Trees
We start with an appropriate definition of trees. Therefore, consider the set B∗. Technically, this set is
only an infinite set of sequences, but by viewing each occurrence of a 0 or a 1 in a sequence w ∈ B∗ as a
decision of choosing one of two successors, we get an object describing positions, also called addresses, in
a binary tree. Accordingly, the whole set B∗ describes the set of every such address or correspondingly
the complete binary tree.

ε

0 1

00 01 10 11

Figure 21: The complete binary tree

However, B∗ alone is some quite boring object. Therefore, we want to extend every address by some
individual labeling where we choose the corresponding labels from some predefined alphabet Σ. Corre-
spondingly, we get a function t : B∗ → Σ that describes which address gets which label. This function
already describes a Σ-labeled binary tree, which we refer to as a tree from now on. Summarizing, a tree
is a function t with domain B∗ and range Σ. As an example consider the tree te defined for all w ∈ B∗ by

te(w) =
{

a if w = 1∗0
b otherwise

9Most easily seen by defining an emptiness game with parity winning condition, another application of infinite games to
automata theory.
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A graphical representation of te is given in Figure 22.

b

a b

b b a b

b b b b b b a b

Figure 22: Graphical representation of te.

An alternative representation for a binary labeled tree is given as a so called relational structure. In the
sequel, we will switch between both representations as necessary, but it should always be clear of the
context which one we are talking about.

Definition 5.1. Given a tree t : B∗ → Σ, we define the structure t = (B∗, S0, S1,�, (Pa)a∈Σ, ε)
consisting of

• the universe B∗ of binary strings,

• the left successor relation S0 = { (w,w0) | w ∈ B∗ },

• the right successor relation S1 = { (w,w1) | w ∈ B∗ },

• the ancestor (or prefix) relation �= { (w,ww′) | w,w′ ∈ B∗ },

• a family of label assigning sets (Pa)a∈Σ with Pa = {w ∈ B∗ | t(w) = a } and

• the root ε.

We close this section with some useful definitions.

Definition 5.2. Let t : B∗ → Σ be a tree. The sub-tree of t rooted in w ∈ B∗ is denoted by tw and
defined by

∀w′ ∈ B∗. tw(w′) = t(ww′)

For an example, consider the sub-tree te0 of te rooted in 0 in Figure 23. Other sub-trees are te1 = te2 = ... = t.
a

b b

b b b b

Figure 23: The tree te0.

Definition 5.3. Let t : B∗ → Σ be a tree. An unlabeled path trough t is an infinite sequence
π = b0b1b2... ∈ Bω of binary directions, inducing a sequence of nodes

(ε)(b0)(b0b1)(b0b1b2)... ∈ (B∗)ω

The corresponding (labeled) path through t we then denote by

t|π = t(ε)t(b0)t(b0b1)t(b0b1b2)... ∈ Σω

Some paths trough te are for example:

te|0ω = babω te|(10)ω = bbabω

te|1ω = bω te|(01)ω = babω
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5.2 Monadic Second-Order Logic of Two Successors
We now want to introduce a logic over such binary trees. This logic is called Monadic Second-Order
Logic of two Successors, or short S2S. Some terms in this name may need some further explanation.

Second-Order:

The term “second-order” here means that there are two types of quantification. One way is given
by quantifying over objects (first-order quantification), the other way is to quantify over relations
or functions (second-order quantification).

Monadic:

The term “monadic” here refers to a restriction allowing second-order quantification only over unary
relations, which are sets of objects.

Correspondingly, there are two different types of variables in S2S. First-order variables are denoted by
small letter from the end of the english alphabet, e.g., x, y, z, .... Second-order variables are denoted
by capital letter from the end of the english alphabet, e.g., X,Y, Z, .... We assume the existence of
two universal sets V1 and V2 of variables containing every first-order and every second-order variable,
respectively. Further, we demand that ε 6∈ V1∪V2 and that their intersection is empty, i.e. there cannot be
a variable that is a first-order variable and a second-order variable at the same time. First-order variables
are then used to describes addresses in our binary tree, second-order variables are used to describe sets
of addresses. We now can define the syntax of S2S.

Definition 5.4. An expression of S2S is either a term, an atomic formula or a formula, which are
defined recursively as follows.

• every x ∈ V1 is a term

• ε is a term

Let s, s′ be terms and X ∈ V2, then

• s = s′ is an atomic formula

• s � s′ is an atomic formula

• Pa(s) is an atomic formula for every a ∈ Σ

• Si(s, s′) is an atomic formula for every i ∈ {0, 1}

• s ∈ X is an atomic formula

Every atomic formula is a formula. If ϕ and ϕ′ are formulas, x ∈ V1 and X ∈ V2, then

• ¬ϕ is a formula

• ϕ ∧ ϕ′ is a formula

• ϕ ∨ ϕ′ is a formula

• ∃x. ϕ is a formula

• ∀x. ϕ is a formula

• ∃X. ϕ is a formula

• ∃X. ϕ is a formula

Note, that as we have all the boolean operators, we also have the derivable operators like →,↔, ... as
usual. Next, we want to define the semantics of S2S. To do so, we first need to give the first-order and
second-order variables our desired semantical meaning. We do this using a so-called valuation function µ.
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Definition 5.5. A variable valuation µ : V1 → B∗ ∪ V2 → 2B∗ ∪ {ε} → {ε} is a function mapping
every first-order variable x to µ(x) ∈ B∗ and every second-order variable X to µ(X) ⊆ B∗. Finally,
µ maps ε to ε such that the domain of µ contains all terms.

Definition 5.6. Given a variable valuation µ, a first-order variable x ∈ V1 and w ∈ B∗, we define
the update of µ in x by w, denoted by µ[x 7→ w], as

µ[x 7→ w](y) =
{

µ(y) if y 6= x

w if y = x

Definition 5.7. Given a variable valuation µ, a second-order variable X ∈ V2 and B ⊆ B∗, we
define the update of µ in X by B, denoted by µ[X 7→ B], as

µ[X 7→ B](Y ) =
{

µ(Y ) if Y 6= X

B if Y = X

Definition 5.8. The semantics of S2S are defined recursively using a satisfaction relation �. Given
a tree t and a variable valuation µ, we have

t, µ � s = s′ :⇔ µ(s) = µ(s′)
t, µ � s � s′ :⇔ µ(s) ∈ Pref(µ(s′))
t, µ � Pa(s) :⇔ t(µ(s)) = a

t, µ � Si(s, s′) :⇔ µ(s′) = µ(s)i
t, µ � x ∈ X :⇔ µ(s) ∈ µ(X)
t, µ � ¬ϕ :⇔ it is not the case that t, µ � ϕ
t, µ � ϕ ∧ ψ :⇔ t, µ � ϕ and t, µ � ψ

t, µ � ϕ ∨ ψ :⇔ t, µ � ϕ or t, µ � ψ
t, µ � ∃x. ϕ :⇔ t, µ[x 7→ w] � ϕ for some w ∈ B∗

t, µ � ∀x. ϕ :⇔ t, µ[x 7→ w] � ϕ for all w ∈ B∗

t, µ � ∃X. ϕ :⇔ t, µ[X 7→ B] � ϕ for some B ⊆ B∗

t, µ � ∀X. ϕ :⇔ t, µ[X 7→ B] � ϕ for all B ⊆ B∗

Consider, that it makes a difference whether a variable occurs under the scope of a quantifier or not re-
garding the valuation according to µ. The following definition characterizes this difference more formally.

Definition 5.9. Let ϕ be an S2S formula. Then an occurrence of a variable in ϕ is called free, if it
is not under the scope of a quantifier, otherwise it is called bound. If ϕ has no free occurrences of
variables it is called a sentence.

ϕ = ∀X. ∃x. S0(x, y) ∧ (Pa(z) ∨ ∃y. y ∈ Z)
bound bound

free free free

Figure 24: Example formula ϕ with free and bound variables.

Consider, that the satisfaction of sentences does not depend on the variable valuations. Accordingly,
it suffices two write t � ϕ instead of t, µ � ϕ and we just say t satisfies ϕ. We are interested in the
satisfiability problem:
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“Given a sentence ϕ, is there some t such that t � ϕ?”

Using a language definition for ϕ, given by L(ϕ) = { t : B∗ → Σ | t � ϕ }, we can also reformulate the
problem as:

“Given a sentence ϕ, is L(ϕ) nonempty?”

In the upcoming sections, we will see how to solve this problem. We close this section by some examples
for S2S formulas.

• te � Pb(ε)

• te 2 Pa(ε)

• te � ∃x. S1(ε, x) ∧ Pb(x)

• te � ∃X. path(X) ∧ ∀x. (x ∈ X ⇒ Pb(x))

where path(X) is defined as

path(X) = ε ∈ X ∧ ∀x.
(
x ∈ X ∧ ¬∃y. S0(y, x) ∨ S1(y, x)

)
⇒ x = ε ∧

∀x.
(
x ∈ X ⇒ ∃y. y ∈ X ∧ (S0(x, y) ∨ S1(x, y)) ∧

∀y′. (y′ ∈ X ∧ (S0(x, y′) ∨ S1(x, y′)))⇒ y = y′
)

Saying the root is in X and the only node in X without predecessor and each node in X has a
successor in X but not two.

5.3 Parity Tree Automata
We want to show how do decide the satisfiability problem for S2S. However, as working in a logic is
typically cumbersome, one first translates ϕ into an automaton Aϕ recognizing exactly the trees satisfying
ϕ. Then, one has to solve the emptiness problem for this automaton model. The model we consider here
are parity tree automata. These automata work top-down, meaning that the initial state is assumed
to be in the root and every transition of the automaton takes the current state and input letter at the
current node of the tree and yields two successor states, one for the left child and one for the right child.
Finally, acceptance is defined by a parity condition which has to hold on every path of the run. Such
an automaton is necessarily non-deterministic, as a deterministic automaton cannot even check whether
there is an a-labeled node in the tree.

In this section, we introduce parity tree automata, show how to solve their emptiness problem, and
prove their equivalence to S2S.

Definition 5.10. A parity tree automaton A = (Q,Σ, qI ,∆,Ω) is a tuple consisting of

• a finite set Q of states,

• an alphabet Σ,

• an initial state qI ∈ Q,

• a transition relation ∆ ⊆ Q× Σ×Q×Q and

• a coloring function Ω: Q→ N.

We often depict a transition τ = (q, a, q0, q1) by

q, a

q0 q1

Thus, a transition can be seen as a binary tree of height one, whose vertices are labeled by states of
the automaton and whose root is additionally labeled by a letter from the input alphabet. Then, a run
of the automaton can be understood as a tiling of a given input tree by such transitions that is locally
consistent and has the initial state in the root.
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Definition 5.11. A run of a parity tree automaton A = (Q,Σ, qI ,∆,Ω) on a tree t : B∗ → Σ is a
mapping r : B∗ → Q such that

• r(ε) = qI

• ∀w ∈ B∗. (r(w), t(w), r(w0), r(w1)) ∈ ∆

Note, that a run is a Q-labeled binary tree, i.e., all our notations developed for trees are applicable.

Definition 5.12. A run r of a parity tree automaton A = (Q,Σ, qI ,∆,Ω) on a tree t : B∗ → Σ is
accepting iff for every path π ∈ B∗ the labeled path r|π = q0q1q2... ∈ Qω satisfies

Par(min(Inf(Ω(q0)Ω(q1)Ω(q2)...))) = 0

We then can define the language of a parity tree automaton A as

L(A ) = { t : B∗ → Σ | A has an accepting run on t }

A parity tree automaton A = (Q,Σ, qI ,∆,Ω) is complete iff for every q ∈ Q and every q ∈ Σ there are
q0, q1 ∈ Q such that (q, a, q0, q1) ∈ ∆. A complete automaton has a run on every input tree. By adding
a new sink state which is colored by an odd color one can complete each parity tree automaton without
changing the language it accepts. Thus, from now on we assume all our automata to be complete, except
for examples where we keep them incomplete to improve readability. To get some intuition for these new
definitions, we want to construct parity tree automata recognizing the following languages of trees.

L0 = { t : B∗ → {a, b} | ∃π. t|π = bω } L1 = { t : B∗ → {a, b} | ∃π. b ∈ Inf(t|π) } L2 = {te}

• We want to construct a parity tree automaton A0 that accepts every tree containing a path
completely labeled with b’s, i.e., such that L(A0) = L0. As parity tree automata are non-
deterministic, A0 can guess such a path and verify that it only contains b’s. For all other nodes
in the tree we just need a dummy state allowing an arbitrary label. Accordingly, we can define
A0 = (Q0, {a, b}, qI ,∆0,Ω0) by

◦ Q0 = {qI , q∗}
◦ Ω0(qI) = Ω0(q∗) = 0

◦ ∆0 =


qI , b

qI q∗

,

qI , b

q∗ qI

,

q∗, a

q∗ q∗

,

q∗, b

q∗ q∗


Note that the automaton gets stuck if it encounters an a in state qI . Therefore, the coloring is not
needed and just having a run is enough. Further, every state has color 0.

• Now we want to construct a parity tree automaton A1 that accepts every tree containing a path
with infinitely many b’s. Similar to A0 we can guess the corresponding path. We only need to
adjust the coloring function to control the infinite behavior. Further, we should not get stuck any
more if we see an a. Our corresponding automaton A1 = (Q1, {a, b}, qa,∆1,Ω1) is then given by

◦ Q1 = {q∗, qa, qb}
◦ Ω1(qb) = Ω1(q∗) = 0 and Ω1(qa) = 1

◦ ∆1 =


qa, a

qa q∗

,

qa, a

q∗ qa

,

qa, b

qb q∗

,

qa, b

q∗ qb

,

q∗, a

q∗ q∗

,

qb, a

qa q∗

,

qb, a

q∗ qa

,

qb, b

qb q∗

,

qb, b

q∗ qb

,

q∗, b

q∗ q∗


Accordingly, we have that on the guessed path if an a or a b is read, the next state is qa or qb,
respectively. It follows that L(A1) = L1. Note, that using qb as initial state does not change the
language accepted by the automaton.
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• Finally we want to construct a parity tree automaton A2 that only accepts our example tree te
form the previous section. We construct A2 = (Q2, {a, b}, qr,∆2,Ω2) to get L(A2) = L2 as follows.

◦ Q2 = {q∗, qr, ql}
◦ Ω2(qr) = Ω2(ql) = Ω2(qr) = 0

◦ ∆2 =


qr, b

ql qr

,

ql, a

q∗ q∗

,

q∗, b

q∗ q∗


We continue by showing one direction of the equivalence between S2S and parity tree automata stating
that every language recognized by a parity tree automaton is also definable by some S2S sentence.

Theorem 5.1. For every parity tree automaton A over some alphabet Σ there exists an S2S-sentence
ϕA such that ∀t : B∗ → Σ. t ∈ L(A )⇔ t � ϕA

Proof. Let A = (Q,Σ, qI ,∆,Ω) be some given parity tree automaton. We show how to construct a
sentence ϕA that expresses that there exists an accepting run of A on t. Without loss of generality, let
Q = {q0, ..., qn−1} and qI = q0. We construct ϕA as follows:

ϕA = ∃X0. ∃X1. ...∃Xn−1.

ε ∈ X0

∧ ∀x.
n−1∨
j=0

(
x ∈ Xj ∧

∧
j′ 6=j
¬(x ∈ Xj′)

)
∧ ∀x. ∃xl. ∃xr. S0(x, xl) ∧ S1(x, xr) ∧∨

(qt,a,qi,qj)∈∆

(
x ∈ Xt ∧ Pa(x) ∧ xl ∈ Xi ∧ xr ∈ Xj

)
∧ ∀X. path(X)⇒

∨
c∈Ω(Q),
Par(c)=0

(∀x. x ∈ X ⇒ ∃y. y ∈ X ∧ x � y ∧
∨

j∈[n],
Ω(qj)=c

y ∈ Xj) ∧

(∃x. x ∈ X ∧ ∀y. y ∈ X ∧ x � y ⇒
∨

j∈[n],
Ω(qj)≥c

y ∈ Xj)

initial state at the root

the Xj partition the universe

the transition relation is satisfied

minimal color on path X is even

The backward direction turns out to be more complicated. We translate S2S sentences into parity tree
automata inductively over the structure of the formulas, i.e., we have to show that we can build automata
for the atomic formulas and show that they are closed under union, projection, and complement, which
yields the inductive step for disjunction, existential quantification, and negation. The only non-trivial
step is closure of parity tree automata under complement. As already alluded to in the introduction we
rely on infinite games to show this result. As a first step, we characterize the acceptance of a tree t by a
parity tree automaton A using a parity game G(A , t) such that t ∈ L(A ) if and only if Player 0 wins
G(A , t) from a fixed initial vertex. By determinacy, this means that Player 1 wins G(A , t) from this
vertex if and only if t is not accepted by A , i.e., t is in the complement language.

Definition 5.13. Let A = (Q,Σ, qI ,∆,Ω) be a complete parity tree automaton and t : B∗ → Σ be
some tree. Then the parity game G(A , t) = (A,parity(Ω′)) with A = (V, V0, V1, E) is defined by

• V = V0 ∪ V1

• V0 = B∗ ×Q

• V1 = { (w, τ) ∈ B∗ ×∆ | ∃q, q0, q1. τ = (q, t(w), q0, q1) }

• E = { ((w, q), (w, τ) ∈ V0 × V1 | ∃q0, q1 ∈ Q. τ = (q, t(w), q0, q1) } ∪
{ ((w, (q, t(w), q0, q1)), (wj, qj)) ∈ V1 × V0 | j ∈ {0, 1} }

• Ω′((w, q)) = Ω(q) for all (w, q) ∈ V0

• Ω′((w, (q, a, q0, q1))) = Ω(q) for all (w, (q, a, q0, q1)) ∈ V1.
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The idea behind this construction is that Player 1 picks directions and thereby builds a path π. During
this, Player 0 has to pick transitions along this path in a way that is compatible with t and such that
the parity condition of A is satisfied by the sequence of states labeling the roots of the transitions. Since
Player 1 might pick any path π, Player 0 has to be prepared to construct a labeling of the whole binary
tree B∗ using the states in a way such that every path is accepting. As a consequence, Player 0 has a
winning strategy if and only if there is an accepting run of A on t. Due to their roles described above,
the players in the acceptance game are often also called “Automaton” and “Pathfinder”. Since we require
the automaton A to be complete, the arena is well-defined, i.e., every Player 0 vertex has at least one
successor since at least one transition is applicable.

Lemma 5.1. Let A be a parity tree automaton over Σ and t be a tree over Σ. Then it holds that
t ∈ L(A )⇔ (ε, qI) ∈W0(G(A , t))

Proof. Let A = (Q,Σ, qI ,∆,Ω) and G(A , t) = (A,parity(Ω′)) with A = (V, V0, V1, E).

“⇒”: See Exercise 12.3.

“⇐”: Let σ be a positional winning strategy for Player 0 from (ε, qI) in G(A , t). We have to construct
an accepting run r of A on t.
By construction, for every w ∈ B∗ there is a unique play prefix pw starting in (ε, qI), being consistent
with σ and ending in a vertex of the form (w, q) for some q ∈ Q. Accordingly, we define the run r
by r(w) = q, where q is given by Lst(pw) = (w, q)
We will show that r is an accepting run of A . First, we have that r(ε) = qI since pε = (ε, qI). Now
let w ∈ B+ be arbitrary and let the corresponding play prefix pw end in (w, q). Consider the vertex

σ((w, q)) = (w, (q, t(w), q0, q1)) ∈ B∗ ×∆

picked by the strategy σ. Then, we have

pwj = pw (w, (q, t(w), q0, q1)) (wj, qj)

for both j ∈ {0, 1}. Hence, qj = r(wj) and we have (r(w), t(w), r(w0), r(w1)) = (q, t(w), q0, q1)
which is a transition from ∆. Hence, r satisfies both requirements on the run.
Now let π be a path of r and let ρ ∈ Plays(A, σ, (ε, qI)) be the play where Player 1 picks the
directions according to π and where Player 0 plays according to σ. This play has the same sequence
of colors as r|π with every occurrence of a color doubled. Accordingly, r|π fulfills the parity condition
given by the fact that ρ is winning. As this holds for every path π it finally follows that also r is
an accepting run.

Before we continue proving closure under complement, we show that the acceptance game can be modified
to solve the emptiness problem for parity tree automata. Note that G(A , t) is played in an infinite arena,
since it encodes the nodes of t. The main idea behind the emptiness game is that we take the acceptance
game G(A , t) and project t away which yields a finite game where Player 0 has to guess a tree t and an
accepting run of A on t. We can define the emptiness game G(A ) as follows.

Definition 5.14. Let A = (Q,Σ, qI ,∆,Ω) be a complete parity tree automaton over Σ. Then the
parity game G(A ) = (A,parity(Ω′)) with A = (V, V0, V1, E) is defined by

• V = V0 ∪ V1

• V0 = Q

• V1 = ∆

• E = { (q, τ) ∈ V0 × V1 | ∃q0, q1 ∈ Q. ∃a ∈ Σ. τ = (q, a, q0, q1) } ∪
{ ((q, a, q0, q1), qj) ∈ V1 × V0 | j ∈ {0, 1} }

• Ω′(q) = Ω(q) for all q ∈ V0

• Ω′((q, a, q0, q1)) = Ω(q) for all (q, a, q0, q1) ∈ V1
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It remains to show that G(A ) characterizes emptiness of A .

Theorem 5.2. Let A be a parity tree automaton over Σ. Then it holds that
qI ∈W0(G(A ))⇔ L(A ) 6= ∅

Proof. Let A = (Q,Σ, qI ,∆,Ω) and G(A ) = (A,parity(Ω′)) with A = (V,Q,∆, E).

“⇒”:

See Exercise 13.1.

“⇐”:

Let t ∈ L(A ) be arbitrary and r be the corresponding run of A on t. We define a strategy σ for
Player 0 from qI inductively by

• σ(qI) = (r(ε), t(ε), r(0), r(1))

• σ(qIτIq1τ1...τn−1qn) = (r(w), t(w), r(w0), r(w1))

for every prefix qIτIq1τ1...τn−1qn consistent with σ and w = b0...bn−1 such that for all j ∈ [n]
there are some aj ∈ Σ and qj , q

′
j ∈ Q giving

bj =
{

0 if τj = (qj , aj , qj+1, q
′
j)

1 if τj = (qj , aj , q′j , qj+1)

Now let ρ ∈ Plays(A, σ, qI) be arbitrary and b0b1b2... be the infinite sequence of associated directions.
Consider that such a sequence always exists as σ is applicable to every v ∈ Occ(ρ)∩V0 by definition.
Further, let c0c1c2... be the sequence of colors seen during ρ, where we have that c2n+1 = c2n for
all n ∈ N. Then the sequence c0c2c4... is equal to Ω(r(ε))Ω(r(b1))Ω(r(b1b2)), i.e., the colors on the
path r|b0b1b2... of r. As this sequence satisfies the parity condition by acceptance of t it follows that
also ρ satisfies the parity condition. Hence, σ is winning from qI .-

Thus, we have shown that the emptiness problem for parity tree automata can be reduced to solving a
parity game that is polynomially-sized in the size of the automaton.

After the detour of introducing the emptiness game, we continue with showing closure of parity tree
automata under complement. Recall that we defined the acceptance game (G(A , t)) which characterizes
acceptance of t by A , i.e., we have t ∈ L(A ) if and only if (ε, qI) ∈ W0(G(A , t)). Thus, t is in the
complement language, if (ε, qI) ∈W1(G(A , t)). Thus, a winning strategy for Player 1 witnesses that t is
in the complement language. We will construct a parity tree automaton that recognizes a tree t and an
encoding s of a strategy if and only if the strategy encoded by s is winning for G(A , t).

First, we encode a strategy for Player 0 as a tree labeled by a finite alphabet, which can then be
processed by an automaton. Due to positional determinacy of parity games in countable arenas, we only
have to consider positional strategies. For Player 1, such a strategy has the form

τ : B∗ ×∆→ B ,

since Player 1’s positions in G(A , t) are of them form (w, (q, a, q0, q1)) and have two successors, (w0, q0)
and (w1, q1). Equivalently, applying currying, one can denote such a strategy τ as

τ : B→ (∆→ B) .

Since the set B∆ of functions from ∆ to B is finite, τ is a B∆-labeled tree. We call an element from B∆ a
local strategy, since it encodes Player 1’s reaction to Player 0 picking a certain transition from ∆. This
strategy is local since it does not take the position w, which is also encoded in the vertices, into account.

A tree τ : B → B∆ is referred to as a strategy tree. Furthermore, we call a strategy tree winning for
t, if it encodes a winning strategy for the game G(A , t). By using the characterization of acceptance via
G(A , t) and positional determinacy, we can express non-acceptance of t by the existence of a strategy
tree.

Remark 5.1. t /∈ L(A ) if and only if there is a winning strategy tree for t.
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Thus, we need to construct a parity tree automaton recognizing pairs of trees t and s such that s is
winning for t. To this end, we first construct a word automaton M that checks for every path π and
every strategy for Player 0, whether the parity condition of A is satisfied if Player 1 picks the path π.
If this is the case, s is not winning. Thus, we are ultimately interested in the complement language, but
the language described above is simpler to encode by an automaton.

Recall that A = (Q,Σ, qI ,∆,Ω) is the parity tree automaton we want to complement. We define
the parity word automaton M = (Q,Σ′, qI ,∆′,Ω) where the set of states, the initial state, and the
coloring function are as in A and with Σ′ = B∆ × Σ × B and the transition (q, (f, a, b), q′) is contained
in the transition relation ∆′ of the automaton M , if there is a transition τ = (q, a, q0, q1) ∈ ∆ of the tree
automaton such that f(τ) = b and q′ = qb. Note that the state q and the letter a appear in both transitions
and the direction b appearing in M ’s transition is equal to f(τ). Intuitively, the non-determinism of M
simulates Player 0 picking a transition τ that is applicable at state q and letter a (as she does in G(A , t))
and Player 1’s reaction to τ , as encoded by the local strategy f , is the direction b = f(τ), which leads
the automaton M from state q to state qb.

Fix some tree t : B∗ → Σ and a strategy tree s : B∗ → B∆, let π = b1b2b3 · · · ∈ Bω be a path. We
define the word w(s, t, π) by

w(s, t, π) = (s(ε), t(ε), b1) (s(b1), t(b1), b2) (s(b1b2), t(b1b2), b3) (s(b1b2b3), t(b1b2b3), b4) · · · ∈ (Σ′)ω

and the define the word language L(s, t) ⊆ (Σ′)ω by

L(s, t) = {w(s, t, π) | π ∈ Bω } .

Thus, L(s, t) contains the labels of s and t along the path π, together with the path itself.
Using these definitions, we can characterize s being a winning strategy tree for t in terms of the

automaton M .

Lemma 5.2. The strategy tree s is winning for t if and only if L(s, t) ∩ L(M ) = ∅.

Proof. First, let s be winning and assume there is a path π = b0b1b2 · · · such that w(s, t, π) is accepted
by M , say with run r = q0q1q2 · · · . Then, for every j ≥ 0,

(qj , (s(b0 · · · bj−1), t(b0 · · · bj−1), bj), qj+1)

is a transition of M . By definition of M , s(b0 · · · bj−1) = f satisfies f(τj) = bj for some transition

τj = (qj , t(b0 · · · bj−1), q0, q1)

such that qj+1 = qbj
.

The transitions τj define a strategy for Player 0 against the strategy for Player 1 encoded by s.
Consider the resulting play ρ in G(A , t). The sequence of colors visited by ρ is the same one as the
sequence of colors of the run r of M on w(s, t, π), except that each occurrence of a color is doubled. As
r is accepting, ρ is winning for Player 0, which yields the desired contradiction to s being winning.

For the other direction, let L(s, t) ∩ L(M ) = ∅. We show that an arbitrary play ρ that is consistent
with the strategy encoded by s is winning for Player 1, which proves that s is winning for t.

For every j ∈ N, let (wj , (qj , t(wj), q′0, q′1)) be the unique Player 1 vertex visited by ρ where the first
component contains a position of length j. Since wj+1 is obtained from wj by appending a bit, the wj
induce an infinite path π = b0b1b2 · · · such that wj = b0 · · · bj−1.

Consider the sequence r = q0q1q2 · · · of states appearing in the first components of the transitions.
A straightforward induction proves that r is a run of M on w(s, t, π). This run is rejecting, since
w(s, t, π) ∈ L(s, t) and therefore w(s, t, π) /∈ L(M ).

Furthermore, the play ρ has the same sequence of colors as r, except that every occurrence of a color
is doubled. Hence, the play does not satisfy the parity condition and is therefore winning for Player 1.
This completes the proof.

Note that sequences in L(M ) are good for Player 0, since they satisfy the acceptance condition of A .
Hence, we are actually interested in the complement language (Σ′)ω \L(M ). We use the following result
about parity word automata without proof.
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Theorem 5.3. Parity word automata can be determinized and are closed under complement.

Thus, there is a deterministic parity word automaton S = (Q′,Σ′, q′I , δ′,Ω′) with deterministic transition
function δ′ : Q′ × Σ′ → Q′ such that L(S ) = (Σ′)ω \ L(M ). By simulating this automaton along all the
branches of s and t we can check whether L(s, t) ∩ L(M ) = ∅. To this end, we define the combined tree
tas : B∗ → Σ× B∆ by tas(w) = (t(w), s(w)).

Now, we define the parity tree automaton B = (Q′,Σ × B∆, q′I ,∆′,Ω′) where the set of states,
the initial state, and the coloring function are as in S and where (q, (a, f), q0, q1) ∈ ∆′ if and only if
δ′(q, (f, a, b)) = qb for all b ∈ B. Thus, B indeed simulates S along every path of tas. Next, we show
that B recognizes winning strategies for Player 1 in G(A , t). Note that this simulation is only possible
because S is deterministic.

Lemma 5.3. The strategy tree s is winning for t if and only if tas ∈ L(B).

Proof. Let s be winning for t. Thus, by Lemma 5.2, we have L(s, t) ∩ L(M ) = ∅ and therefore L(s, t) ⊆
L(S ). Hence, for every path π, we have w(s, t, π) ∈ L(S ).

For a sequence w = b0 · · · bj ∈ B∗, let r(w) be the unique state that S reaches while processing

(s(ε), t(ε), b0) (s(b0), t(b0), b1) (s(b0b1), t(b0b1), b2) · · · (s(b0b1 · · · bj−1), t(b0b1 · · · bj−1), bj) .

As S is deterministic, r is a run of B on tas. Furthermore, r|π is equal to the unique run r′ of S on
w(s, t, π). As w(s, t, π) is accepted by S , r′ and therefore also r|π satisfy the parity condition. As π is
an arbitrary path, this implies that r is accepting, i.e., tas ∈ L(B).

For the other direction, let r be an accepting run of B on tas. Let π be an arbitrary path. As before,
we have that r|π is equal to the unique run r′ of S on w(s, t, π). As r|π satisfies the parity condition, so
does r′. Hence, w(s, t, π) is accepted by S and therefore not in L(M ). As we picked π arbitrarily, we
obtain L(s, t) ∩ L(M ) = ∅, which implies that s is winning for t by Lemma 5.2.

Now, we can finish our argument by applying closure of parity tree automata under projection, i.e., our
final automaton B′ runs on t and guesses a strategy tree s and uses B to verify that s is winning for t.

Theorem 5.4. Parity tree automata are closed under complement.

Proof. Let B′ recognize the projection of L(B) to the first component (see Exercise 12.2). Then, t ∈
L(B′) if and only if there exists a strategy tree s such that tas ∈ L(B). The latter statement is equivalent
to s being winning for t. Thus, t ∈ L(A ) if and only if there is a winning strategy tree for t. Thus, due
to Lemma 5.1, B′ recognizes the complement of L(A ).

After having proved closure of parity tree automata under complement, we are now in a position to
translate S2S into automata. To this end, we first simplify S2S by eliminating first-order quantification
and syntactic sugar, obtaining the logic S2S0. First-order quantification is simulated by second-order
quantification of singletons. Thus, we need new atomic formulas that replace the atomic formulas of S2S.

Definition 5.15. Let X,X ′ ∈ V2 be second-order variables. The atomic formulas of S2S0 are

• Sing(X),

• X ⊆ Pa for a ∈ Σ,

• X ⊆ X ′, and

• Si(X,X ′) for i ∈ B.

Furthermore, every atomic formula is a formula of S2S0. If ϕ and ψ are formulas and X ∈ V2, then
¬ϕ, ϕ ∨ ψ, and ∃Xϕ are formulas as well.
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Intuitively, Sing(X) expresses that X is a singleton, X ⊆ Pa expresses that X is a singleton and letter a
is at the unique position contained in X, while Si(X,X ′) holds if X = {x} and X ′ = {x′} are singletons
and x′ is the i-successor of x. Formally, we define the semantics as follows.

Definition 5.16. The semantics of S2S0 are defined recursively using a satisfaction relation �.
Given a tree t and a variable valuation µ, we have

t, µ � Sing(X) :⇔ |µ(X)| = 1
t, µ � X ⊆ Pa :⇔ µ(X) = {w} and t(w) = a for some w ∈ B∗

t, µ � X ⊆ X ′ :⇔ µ(X) ⊆ µ(X ′)
t, µ � Si(X,X ′) :⇔ µ(X) = {w} and µ(X ′) = {wi} for some w ∈ B∗

t, µ � ¬ϕ :⇔ it is not the case that t, µ � ϕ
t, µ � ϕ ∨ ψ :⇔ t, µ � ϕ or t, µ � ψ
t, µ � ∃X. ϕ :⇔ t, µ[X 7→ B] � ϕ for some B ⊆ B∗

Now, we can show that we can turn every S2S-sentence into an equivalent S2S0-sentence.

Lemma 5.4. For every S2S-sentence ϕ there is an S2S0 sentence ϕ′ such that t |= ϕ⇔ t |= ϕ′ for
every tree t.

Proof. First, we showed in Exercise 11.2 that ε and � are syntactic sugar and can be replaced. Hence,
we assume that these symbols do not appear in ϕ, which implies that every term in ϕ is a first-order
variable. Now, we replace every occurrence of an universally quantified subformula ∀xψ by the equivalent
formula ¬∃x¬ψ respectively ∀Xψ by ¬∃X¬ψ. Also, we replace conjunctions by disjunctions using De
Morgans’s law. We define ϕ′ by induction over the construction of S2S-formulas using the remaining
atomic formulas, boolean connectives, and existential quantification.

• (x = y)′ = Sing(X) ∧ Sing(Y ) ∧X ⊆ Y ∧ Y ⊆ X

• (Pa(x))′ = X ⊆ Pa
• (Si(x, y))′ = Si(X,Y )

• (x ∈ Y )′ = Sing(X) ∧X ⊆ Y

• (¬ϕ)′ = ¬(ϕ′)

• (ϕ ∨ ψ)′ = ϕ′ ∨ ψ′

• (∃xϕ)′ = ∃XSing(X) ∧ (ϕ′)

• (∃Xϕ)′ = ∃X(ϕ′)

Note that this rewriting introduces new conjunctions, which can again be replaced by disjunctions using
De Morgan’s law. The resulting formula is then in S2S0.

Thus, it suffices to show how to translate S2S0 into parity tree automata. To this end, we have to deal
with free variables, which were assigned meaning by a variable valuation. We encode this valuation by a
tree. Formally, fix an S2S0 formula ϕ with free variables X0, . . . , Xn−1 and a variable valuation µ. We
define the tree tµ : B∗ → Bn via tµ(w) = (b0, . . . , bn−1) where

bj =
{

0 if w /∈ µ(Xj),
1 if w ∈ µ(Xj).

Theorem 5.5. For every S2S0-formula ϕ there is a parity tree automaton Aϕ such that t, µ |= ϕ⇔
tatµ ∈ L(Aϕ) for every tree t and every variable valuation µ. Especially, if ϕ is a sentence, we have
t |= ϕ⇔ t ∈ L(Aϕ).
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Proof. We construct the automata Aϕ by induction over the structure of ϕ. The automata for the atomic
formulas are straightforward.

• The automaton ASing(Xj) has to verify that there is a single position in the input tree whose label
has a 1 in the component encoding Xj . This can be done by guessing a finite path to such a position
and requiring that every other position has a 0 in this component. The parity condition is used to
ensure that the guessed path eventually finds a 1.

• The automaton AXj⊆Pa
works similarly as ASing(Xj), but additionally checks that the position with

a 1 is labeled by a in t.

• The automaton AXj⊆Xj′ has a single state that allows every label but those where the component
encoding Xj has a 1, but the component encoding Xj′ has a 0.

• Finally, the automaton ASi(Xj ,Xj′ ) also guesses a path to a position where the component encoding
Xj has a 1 in the component encoding Xj′ , checks that the i-successor has a 1 as well, and checks
that there is exactly one 1 in each of these two components in the input tree.

It remains to consider the boolean connectives and existential quantification.

• A ¬ϕ is the automaton recognizing the complement of L(Aϕ).

• A ϕ ∨ ψ is the automaton recognizing L(Aϕ) ∪ L(Aψ).

• A∃Xjϕ is the automaton recognizing the projection of L(Aϕ) to all components but the one encoding
Xj .
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