Dr. Martin Zimmermann Alexander Weinert, M.Sc.

(4 Points)

Deadline: May 9th, 2016

Exercise 3.1 - A Büchi Game

Exercise 3.2 - Duality

Recall that $\overline{\mathcal{A}}$ is the dual arean of \mathcal{A} . Two games $\mathcal{G} = (\mathcal{A}, \text{Win})$ and $\mathcal{G}' = (\overline{\mathcal{A}}, \text{Win}')$ are dual if Win' is the complement of Win (w.r.t. the set of vertices of \mathcal{A} and $\overline{\mathcal{A}}$).

Show for $i \in \{0, 1\}$: every winning strategy σ for Player *i* from a vertex $v \in V$ in the game \mathcal{G} is also a winning strategy for Player 1 - i from v in the game \mathcal{G}' .

Note: This is a generalization of Lemma 3.3 in the lecture.

Exercise 3.3 - Tournament, Round 1 (Individual Task) (2 Points)

At http://react-teach.cs.uni-saarland.de in the course "Infinite Games 16" you will find a new problem set that contains a single problem. This problem asks you to solve a reachability game constructed by another student. Solve that game, i.e., denote the winning regions for both players.

Exercise 3.4 - Traps

A winning condition Win $\subseteq V^{\omega}$ is prefix-independent, if we have for every $\rho \in V^{\omega}$ and every $w \in V^*$:

 $\rho\in {\rm Win}$ if and only if $w\rho\in {\rm Win}.$

A set $T \subseteq V$ of vertices is a trap for Player *i* if every successor of every vertex in $V_i \cap T$ is in *T* and at least one successor of every vertex in $V_{1-i} \cap T$ is in *T*.

- a) Show: $V \setminus \text{Attr}_i(R)$ is a trap for Player *i* for every set *R*
- b) Prove or disprove: REACH(R) is prefix-independent
- c) Prove or disprove: BÜCHI(F) is prefix-independent
- d) Let $\mathcal{G} = (\mathcal{A}, \text{Win})$. Show: if Win is prefix-independent, then $W_0(\mathcal{G})$ and $W_1(\mathcal{G})$ are traps for Player 1 and Player 0, respectively

(3 Points)

(2 + 1 + 1 + 3 Points)