### Infinite Games

Deadline: June, 6th 2016

## Exercise 7.1 - Generalized Reachability Revisited

(3 Points)

Recall that, for some arena  $\mathcal{A} = (V, V_0, V_1, E)$  and a family of sets  $\mathcal{R} \subseteq 2^V$  we defined the generalized reachability condition GenReach( $\mathcal{R}$ ) as follows:

$$GenReach(\mathcal{R}) := \{ \rho \in V^{\omega} \mid \forall R \in \mathcal{R}. \ R \cap Occ(V) \neq \emptyset \}$$

Moreover, we considered the generalized reachability game in the following arena A:



We define  $\mathcal{R} := \{\{1, 1'\}, \{2, 2'\}, \{3, 3'\}, \{4, 4'\}\} \text{ and } \mathcal{G} = (\mathcal{A}, \text{GenReach}(\mathcal{R})).$ 

Give a formal definition of a finite-state winning strategy of size at most 5 for Player 1 in  $\mathcal{G}$  from vertex 0. Use the graphical automaton-notation from the lecture notes for this.

#### Exercise 7.2 - Reductions

(3 Points)

Show that generalized reachability games (see Exercise 7.1) are reducible to reachability games.

## Exercise 7.3 - Request-Response Games

(4 + 4 Points)

Let  $\mathcal{A} = (V, V_0, V_1, E)$  be an arena. Given a finite family  $(Q_j, P_j)_{j=1,\dots,k}$  of subsets  $Q_j, P_j \subseteq V$ , we define the request-response condition by

REQRES
$$((Q_j, P_j)_{j=1,...,k}) = \{ \rho \in \text{Plays}(\mathcal{A}) \mid \text{for all } j=1,...,k \text{ and all } n \in \mathbb{N}: \\ \rho_n \in Q_j \text{ implies } \rho_{n'} \in P_j \text{ for some } n' \geq n \}.$$

Intuitively, a visit to  $Q_j$  is a request that has to be answered by a later response, i.e., a visit to  $P_j$ . Note that the condition demands that *every* request is answered, not only those after some finite prefix. A game  $\mathcal{G} = (\mathcal{A}, \text{ReqRes}((Q_j, P_j)_{j=1,...,k}))$  is a request-response game.

1. Show that request-response games are reducible to Büchi games.

2. Show that Player 0 needs exponential memory to win request-response games. To this end, construct a family  $\mathcal{G}_n$  of request-response games of polynomial size in n, each with a designated vertex v, such that Player 0 wins  $\mathcal{G}_n$  from v, but only with finite-state strategies of size  $2^n$ . Here, the size of a request-response game is measured in the number of vertices of the arena and in the number of request-response pairs  $(Q_j, P_j)$ .

Hint: You may argue along the lines of the proof of Theorem 4.1 from the lecture notes

# Exercise 7.4 - Uniform Finite State Strategies

(2 Points)

Prove or disprove: If Player i has a finite-state winning strategy from each vertex  $v \in W_i(\mathcal{G})$ , in an arbitrary game  $\mathcal{G}$ , then Player i has a uniform finite-state winning strategy for  $\mathcal{G}$ .