Infinite Games

Exercise 13.1 - Emptiness Game

Complete the proof of Theorem 5.2 in the lecture notes. To this end, show that if $q_{I} \in W_{0}(\mathcal{G}(\mathscr{A}))$, then $\mathcal{L}(\mathscr{A}) \neq \emptyset$.

Exercise 13.2 - Emptiness Game, Example

($2+1+1$ Points)
Consider the parity tree automaton $\mathscr{A}=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\},\{a, b\}, q_{0}, \Delta, \Omega\right)$ where Δ and Ω are defined by $\Omega\left(q_{3}\right)=1, \Omega\left(q_{0}\right)=\Omega\left(q_{4}\right)=2, \Omega\left(q_{1}\right)=\Omega\left(q_{2}\right)=3$, and

a) Construct the emptiness game $\mathcal{G}(\mathscr{A})$ and determine the winner from $\left(\varepsilon, q_{0}\right)$.
b) Give a tree $t \in \mathcal{L}(\mathscr{A})$ as function $t: \mathbb{B}^{*} \rightarrow\{a, b\}$.
c) Give a precise description of $\mathcal{L}(\mathscr{A})$ using natural language.

Exercise 13.3-Regular Trees

A tree $t: \mathbb{B}^{*} \rightarrow \Sigma$ is regular if it has finitely many different sub-trees, i.e., if the set $\left\{t_{w} \mid w \in \mathbb{B}^{*}\right\}$ is finite.
Let $\mathscr{W}=\left(Q, \mathbb{B}, q_{I}, \delta, \lambda\right)$ be a deterministic finite word automaton (DFA) where we have replaced the set of accepting states by a labeling $\lambda: Q \rightarrow \Sigma$. We denote the unique state in which the run of \mathscr{W} on $w \in \mathbb{B}^{*}$ is ending by $\delta^{*}(w)$. The automaton generates the tree $t_{\mathscr{W}}: \mathbb{B}^{*} \rightarrow \Sigma$ defined by $t_{\mathscr{W}}(w)=\lambda\left(\delta^{*}(w)\right)$ for all $w \in \mathbb{B}^{*}$.
a) Show that a tree is regular if and only if it is generated by some DFA.
b) Show that every non-empty tree language recognized by a parity tree automaton contains a regular tree.

Exercise 13.4-Deterministic Parity Tree Automata

A parity tree automaton $\left(Q, \Sigma, q_{I}, \Delta, \Omega\right)$ is deterministic, if for every state q and every letter a there is exactly one pair $\left(q_{0}, q_{1}\right)$ of states such that $\left(q, a, q_{0}, a_{1}\right) \in \Delta$. Thus, a deterministic automaton has a unique run on every tree.

Let L be the language of trees over that alphabet $\{a, b\}$ that contain at least one a.

1. Show that there is a parity tree automaton that recognizes L.
2. Show that there is no deterministic parity tree automaton that recognizes L.
