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Reachability

Name: Reachability Game
Format: (A,Reach(R)) with R ⊆ V

v4

v1

v3 v5

v7

v0 v2

v6 v8

Winning condition: Occ(ρ) ∩ R 6= ∅
Solution complexity: linear time in |E |
Algorithm: attractor
Memory requirements for Player 0: uniform positional
Memory requirements for Player 1: uniform positional
Dual game: safety
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Safety

Name: Safety Game
Format: (A,Safety(S)) with S ⊆ V

v4

v1

v3 v5

v7

v0 v2

v6 v8

Winning condition: Occ(ρ) ⊆ S
Solution complexity: linear time in |E |
Algorithm: dualize + attractor
Memory requirements for Player 0: uniform positional
Memory requirements for Player 1: uniform positional
Dual game: reachability
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Büchi

Name: Büchi Game
Format: (A,Büchi(F )) with F ⊆ V

v4

v1

v3 v5

v7

v0 v2

v6 v8

Winning condition: Inf(ρ) ∩ F 6= ∅
Solution complexity: P
Algorithm: iterated attractor
Memory requirements for Player 0: uniform positional
Memory requirements for Player 1: uniform positional
Dual game: co-Büchi
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Co-Büchi

Name: Co-Büchi Game
Format: (A,coBüchi(C )) with C ⊆ V

v4

v1

v3 v5

v7

v0 v2

v6 v8

Winning condition: Inf(ρ) ⊆ C
Solution complexity: P
Algorithm: dualize + iterated attractor
Memory requirements for Player 0: uniform positional
Memory requirements for Player 1: uniform positional
Dual game: Büchi
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Parity

Name: Parity Game
Format: (A,Parity(Ω)) with Ω: V → N

v4/0

v1/3

v3/1 v5/1

v7/3

v0/4 v2/2

v6/2 v8/0

Winning condition: min(Inf(Ω(ρ))) even
Solution complexity: NP∩ co-NP
Algorithm: progress measures and many others
Memory requirements for Player 0: uniform positional
Memory requirements for Player 1: uniform positional
Dual game: parity
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Muller

Name: Muller Game
Format: (A,Muller(F)) with F ⊆ 2V

v1

v2

v ′1

v ′2

{v1, v2, v
′
1, v
′
2}

{v1, v2, v
′
1} {v1, v2, v

′
2}

{v1, v
′
1} {v1, v

′
2}

{v1} {v1}

Winning condition: Inf(ρ) ∈ F
Solution complexity: P, NP∩ co-NP, PSPACE-complete
Algorithm: reduction to parity and many others
Memory requirements for Player 0: |V |!
Memory requirements for Player 1: |V |!
Dual game: Muller
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Generalized Reachability

Name: Generalized Reachability Game
Format: (A,GenReach(R)) with R ⊆ 2V

Winning condition: ∀R ∈ R.Occ(ρ) ∩ R 6= ∅
Solution complexity: PSPACE-complete
Algorithm: Simulate for |V | · |R| steps
Memory requirements for Player 0: 2|R|

Memory requirements for Player 1:
( |R|
b|R|/2c

)
Dual game: disjunctive safety
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Weak Parity

Name: Weak Parity Game
Format: (A,wParity(Ω)) with Ω: V → N

v4/0

v1/3

v3/1 v5/1

v7/3

v0/4 v2/2

v6/2 v8/0

Winning condition: min(Occ(Ω(ρ))) even
Solution complexity: P
Algorithm: iterated attractor
Memory requirements for Player 0: uniform positional
Memory requirements for Player 1: uniform positional
Dual game: weak parity
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Weak Muller

Name: Weak Muller Game
Format: (A,wMuller(F)) with F ⊆ 2V

s1 h1

u1

d1

s2 h2

u2

d2

s3 ... sn hn

un

dn

c0

d

c1

vA

vB

Winning condition: Occ(ρ) ∈ F
Solution complexity: PSPACE-complete
Algorithm: reduction to weak parity or direct one
Memory requirements for Player 0: 2|V |

Memory requirements for Player 1: 2|V |

Dual game: weak Muller
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Request-Response

Name: Request-Response Game
Format: (A,ReqRes((Qj ,Pj)j∈[k])) with Qj ,Pj ⊆ V

vh

vi

c1

s1

q1

c2

s2

q2

c3

s3

q3

c4

s4

q4

Q1,Q2,Q3,Q4

P1

P2,P3,P4

P2

P3,P4

Q1

P3

P4

Q1,Q2

P4

Q1,Q2,Q3

Winning condition: ∀j ∀n(ρn ∈ Qj → ∃m ≥ n. ρm ∈ Pj)
Solution complexity: EXPTIME-complete
Algorithm: reduction to Büchi
Memory requirements for Player 0: k · 2k
Memory requirements for Player 1: 2k

Dual game: n/a
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Rabin

Name: Rabin Game
Format: (A,Rabin((Qj ,Pj)j∈[k])) with Qj ,Pj ⊆ V

vh

vi

c1

s1

q1

c2

s2

q2

c3

s3

q3

c4

s4

q4

Q1,Q2,Q3,Q4

P1

P2,P3,P4

P2

P3,P4

Q1

P3

P4

Q1,Q2

P4

Q1,Q2,Q3

Winning condition: ∃j(Inf(ρ) ∩ Qj 6= ∅ and Inf(ρ) ∩ Pj = ∅)
Solution complexity: NP-complete
Algorithm: reduction to parity or direct one
Memory requirements for Player 0: uniform positional
Memory requirements for Player 1: k!
Dual game: Streett
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Streett

Name: Streett Game
Format: (A,Streett((Qj ,Pj)j∈[k])) with Qj ,Pj ⊆ V

vh

vi

c1

s1

q1

c2

s2

q2

c3

s3

q3

c4

s4

q4

Q1,Q2,Q3,Q4

P1

P2,P3,P4

P2

P3,P4

Q1

P3

P4

Q1,Q2

P4

Q1,Q2,Q3

Winning condition: ∀j(Inf(ρ) ∩ Qj 6= ∅ ⇒ Inf(ρ) ∩ Pj 6= ∅)
Solution complexity: co-NP-complete
Algorithm: reduction to parity or direct one
Memory requirements for Player 0: k!
Memory requirements for Player 1: uniform positional
Dual game: Rabin
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Reducibility

Σ1︷ ︸︸ ︷
Σ2︷ ︸︸ ︷

Σ3︷ ︸︸ ︷

︸ ︷︷ ︸
Π1︸ ︷︷ ︸

Π2︸ ︷︷ ︸
Π3
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coBüchi(C)

Parity(Ω)

Martin Zimmermann Saarland University Infinite Games - Recap and Outlook 16/35



Reducibility

Σ1︷ ︸︸ ︷
Σ2︷ ︸︸ ︷

Σ3︷ ︸︸ ︷

︸ ︷︷ ︸
Π1︸ ︷︷ ︸

Π2︸ ︷︷ ︸
Π3

Reach(R)

Safety(S) Büchi(F )
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coBüchi(C)

Parity(Ω) Muller(F)

GenReach(R)

wParity(Ω) wMuller(F)

ReqRes(Qj , Pj )

Rabin(Qj , Pj )

Martin Zimmermann Saarland University Infinite Games - Recap and Outlook 16/35



Reducibility

Σ1︷ ︸︸ ︷
Σ2︷ ︸︸ ︷

Σ3︷ ︸︸ ︷

︸ ︷︷ ︸
Π1︸ ︷︷ ︸

Π2︸ ︷︷ ︸
Π3

Reach(R)

Safety(S) Büchi(F )
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coBüchi(C)

Parity(Ω) Muller(F)

GenReach(R)

wParity(Ω) wMuller(F)

ReqRes(Qj , Pj )

Rabin(Qj , Pj )

Streett(Qj , Pj )

Martin Zimmermann Saarland University Infinite Games - Recap and Outlook 16/35



Reducibility

Σ1︷ ︸︸ ︷
Σ2︷ ︸︸ ︷

Σ3︷ ︸︸ ︷

︸ ︷︷ ︸
Π1︸ ︷︷ ︸

Π2︸ ︷︷ ︸
Π3

Reach(R)

Safety(S) Büchi(F )
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Wadge Games

(Wadge) reductions are (Wadge) games!

A winning strategy for II in the Wadge game W (L, L′) is a
witness for the existence of a Wadge reduction L ≤ L′.

A winning strategy for I in the Wadge game W (L, L′) is a
witness for the non-existence of a Wadge reduction L ≤ L′.
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S2S and Parity Tree Automata

S2S: Monadic second-order logic over two successors

PTA: Parity tree automata

Both formalisms are equivalent:

For every A exists ϕA s.t. t ∈ L(A )⇔ t |= ϕA

For every ϕ exists Aϕ s.t. t |= ϕ⇔ t ∈ L(Aϕ)

Consequence: Satisfiability of S2S reduces to PTA emptiness

(Parity) games everywhere:

Acceptance game G(A , t) for complement closure of PTA

Emptiness game G(A ) for emptiness check of PTA

“The mother of all decidability results”
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Change Log
Lecture Notes
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Change Log Lecture Notes 1/2

Old definition:

New definition:
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Change Log Lecture Notes 2/2

Graphical notation for finite-state strategies:

We represent the initialization function as labeled initial arrows.
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Exam
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Organizational Matters

End-of-term exam

When: August 1st, 2016, 10:15 - 12:15

Where: HS 003, Building E1 3

Mode: Open-book

What to bring: Student ID

Exam inspection: TBA

End-of-semester exam: September 20th, 2016 (more information
after first exam)
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Questions

Challenge us before we challenge you in the exam.
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Outlook
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(Simple) Stochastic Games

Enter a new player ( ), it flips a coin to pick a successor.

0 wins 1 wins

No (sure) winning strategy...

...but one with probability 1.

Value of the game for Player 0: max
σ

min
τ

pσ,τ

where pσ,τ is the probability that Player 0 wins when using
strategy σ and Player 1 uses strategy τ .
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Concurrent Games

Both players choose their moves simultaneously

Matching pennies:

randomized strategy winning with probability 1.

(heads, heads)

(tails, tails)

(heads, tails)

(tails, heads)

(*,*)

The “Snowball Game”:

for every ε, randomized strategy winning
with probability 1− ε.

(run, wait)

(hide, throw)

(hide, wait)

(run, throw)
(*,*)(*,*)
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Games of Imperfect Information

Players do not observe sequence of states, but sequence of
non-unique observations (yellow , purple , blue ,
brown ).
Player 0 picks action a/b, Player 1 resolves non-determinism.

v0

v1

v2

v3

v4 v5

a,b

a,b

a

b

b
a

a,b

a,b

a,b

No winning strategy for Player 0: every fixed choice of actions to
pick at ( )∗( ) can be countered by going to v1 or v2.
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Pushdown Games

v0/0

v ′
0/1

v1/0

v ′
1/1

v2/0

v ′
2/1

v3/0

v ′
3/1

v4/0

v ′
4/1

v5/0

v ′
5/1

A⊥ AA⊥ AAA⊥ AAAA⊥ AAAAA⊥

v ′′
0 /0

⊥

...

...

qI

q1

q2

Pushdown Parity Games can be reduced to parity games in
exponentially sized arenas ⇒ Exptime-complete.
Both players have positional winning strategies (but these are
now infinite objects!).
Finite representation of winning strategies: pushdown
automata with output.
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Playing Infinite Games in a Hurry

Parity games in finite time: play until first loop is closed,
minimal color in loop determines winner.
Positional determinacy ⇒ winning regions preserved

No longer works for Muller games. Need scoring functions:

w 0 0 1 1 0 0 1 2

Sc{0}

1 2 0 0 1 2 0 0

Acc{0}

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Sc{0,1,2}

0 0 0 0 0 0 0 1

Acc{0,1,2}

{0} {0} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1} ∅

Theorem
Player i has strategy to bound the opponent’s scores by two when
starting in Wi (G).

Corollary: Stopping play after first score reaches value three
preserves winning regions (at most exponential play length)
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Games with Costs

Parity game: Player 0 wins from everywhere, but it takes
arbitrarily long to “answer” 1 with 0.

1 2 0

Add edge-costs: Player 0 wins if there is a bound b and a
position n such that every odd color after n is followed by a
smaller even color with cost ≤ b in between ⇒ Player 1 wins
example from everywhere (stay longer and longer in 2).

Theorem
Parity games with costs are determined, Player 0 has positional
winning strategies, and they can be solved in NP∩ co-NP.
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Tradeoffs

Every edge has cost 1

3 1 3 1 2 0 2 0

Player 0 has:

Positional winning strategy with bound 9.

Finite-state strategy of size 2 with bound 8.

With d odd colors and d gadgets for each player: Player 0 has:

Positional winning strategy with bound d2 + 3d − 1.

Finite-state strategy of size 2d − 2 with bound d2 + 2d .
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Many other variants

More winning conditions: various quantitative conditions

Games on timed automata ⇒ uncountable arenas

Play even longer: games of ordinal length

Games with delay: Player 0 is allowed to skip some moves to
obtain lookahead on Player 1’s moves. Basic question: what
kind of lookahead is necessary to win.

More than two players ⇒ no longer zero-sum games. Requires
whole new theory (equilibria).

And: any combination of extensions discussed above.
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Thesis Topics

DFG project TriCS: Tradeoffs in Controller Synthesis.

How to compute optimal strategies?

Games with delay: how much lookahead is necessary for
different winning conditions? Tradeoffs between lookahead
and memory?

Temporal logics for the specification of reactive systems.

...

Your own idea?

Or what about some open problems:

Generalized reachability games with sets of size two: P,
NP, or PSPACE?
Exact complexity of parity games.

If you are interested in working on current research topics, contact us!
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Thank You

&

Good luck for the exam
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