Infinite Games
 Recap and Outlook

Martin Zimmermann
Saarland University
July 26th, 2016

Plan for Today

- Review
- Change Log Lecture Notes
- Exam
- Organizational Matters
- Questions

■ Outlook: Even More Games

Review

Reachability

- Name:
- Format:

Reachability Game

 $(\mathcal{A}, \operatorname{REAch}(R))$ with $R \subseteq V$

■ Winning condition:
■ Solution complexity:

- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:
$\operatorname{Occ}(\rho) \cap R \neq \emptyset$ linear time in $|E|$ attractor uniform positional uniform positional safety

Safety

■ Name:

- Format:

Safety Game

$(\mathcal{A}, \operatorname{Safety}(S))$ with $S \subseteq V$

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:
$\operatorname{Occ}(\rho) \subseteq S$ linear time in $|E|$ dualize + attractor uniform positional uniform positional reachability

Büchi

■ Name:
Büchi Game

- Format:

$(\mathcal{A}, \operatorname{Büchi}(F))$ with $F \subseteq V$

- Winning condition:
$\operatorname{Inf}(\rho) \cap F \neq \emptyset$
■ Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:
iterated attractor uniform positional uniform positional co-Büchi

Co-Büchi

■ Name:

- Format:

Co-Büchi Game

$(\mathcal{A}, \operatorname{CoBü} \mathrm{CHI}(C))$ with $C \subseteq V$

- Winning condition:
- Solution complexity:
- Algorithm:
dualize + iterated attractor
- Memory requirements for Player 0: uniform positional
- Memory requirements for Player 1: uniform positional
- Dual game:

Büchi

Parity

■ Name:

- Format:

Parity Game

$(\mathcal{A}, \operatorname{Parity}(\Omega))$ with $\Omega: V \rightarrow \mathbb{N}$

■ Winning condition:
■ Solution complexity:

- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:
$\min (\operatorname{Inf}(\Omega(\rho)))$ even NP \cap co-NP
progress measures and many others
uniform positional uniform positional parity

Muller

■ Name:

- Format:

Muller Game $(\mathcal{A}, \operatorname{Muller}(\mathcal{F}))$ with $\mathcal{F} \subseteq 2^{V}$

■ Winning condition:
■ Solution complexity:

- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game: $\mathbf{P}, \mathbf{N P} \cap \mathbf{c o}-\mathbf{N P}, \mathbf{P S P A C E}$-complete reduction to parity and many others

Generalized Reachability

■ Name:

- Format:

Generalized Reachability Game $(\mathcal{A}, \operatorname{GenREach}(\mathcal{R}))$ with $\mathcal{R} \subseteq 2^{V}$

■ Winning condition:
■ Solution complexity:

- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

Weak Parity

- Name:
- Format:

Weak Parity Game $(\mathcal{A}, \operatorname{wParity}(\Omega))$ with $\Omega: V \rightarrow \mathbb{N}$

■ Winning condition:

- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:
$\min (\operatorname{Occ}(\Omega(\rho)))$ even P
iterated attractor uniform positional uniform positional
weak parity

Weak Muller

■ Name:

- Format:

Weak Muller Game

 $(\mathcal{A}, \operatorname{wMuller}(\mathcal{F}))$ with $\mathcal{F} \subseteq 2^{V}$

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0: reduction to weak parity or direct one
- Memory requirements for Player 1:
- Dual game:
weak Muller

Request-Response

■ Name:
Request-Response Game

- Format: $\left(\mathcal{A}, \operatorname{REQRES}\left(\left(Q_{j}, P_{j}\right)_{j \in[k]}\right)\right)$ with $Q_{j}, P_{j} \subseteq V$

- Winning condition: $\quad \forall j \forall n\left(\rho_{n} \in Q_{j} \rightarrow \exists m \geq n . \rho_{m} \in P_{j}\right)$
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1: EXPTIME-complete reduction to Büchi
- Dual game:

Rabin

■ Name:
Rabin Game

- Format:
$\left(\mathcal{A}, \operatorname{Rabin}\left(\left(Q_{j}, P_{j}\right)_{j \in[k]}\right)\right)$ with $Q_{j}, P_{j} \subseteq V$

■ Winning condition: $\exists j\left(\operatorname{Inf}(\rho) \cap Q_{j} \neq \emptyset\right.$ and $\left.\operatorname{Inf}(\rho) \cap P_{j}=\emptyset\right)$
■ Solution complexity: NP-complete

- Algorithm: reduction to parity or direct one
- Memory requirements for Player 0: uniform positional
- Memory requirements for Player 1:
- Dual game:

Streett

- Name:

Streett Game

- Format: $\quad\left(\mathcal{A}, \operatorname{Streett}\left(\left(Q_{j}, P_{j}\right)_{j \in[k]}\right)\right)$ with $Q_{j}, P_{j} \subseteq V$

- Winning condition: $\quad \forall j\left(\operatorname{Inf}(\rho) \cap Q_{j} \neq \emptyset \Rightarrow \operatorname{Inf}(\rho) \cap P_{j} \neq \emptyset\right)$

■ Solution complexity: co-NP-complete

- Algorithm: reduction to parity or direct one
- Memory requirements for Player 0:
- Memory requirements for Player 1: uniform positional
- Dual game:

Rabin

Reducibility

Reducibility

Reducibility

Reducibility

Reducibility

Reducibility

Reducibility

Reducibility

Reducibility

Reducibility

Reducibility

Reducibility

Reducibility

Wadge Games

(Wadge) reductions are (Wadge) games!

- A winning strategy for II in the Wadge game $W\left(L, L^{\prime}\right)$ is a witness for the existence of a Wadge reduction $L \leq L^{\prime}$.
- A winning strategy for I in the Wadge game $W\left(L, L^{\prime}\right)$ is a witness for the non-existence of a Wadge reduction $L \leq L^{\prime}$.

S2S and Parity Tree Automata

■ S2S: Monadic second-order logic over two successors

- PTA: Parity tree automata

Both formalisms are equivalent:
■ For every \mathscr{A} exists $\varphi_{\mathscr{A}}$ s.t. $t \in \mathcal{L}(\mathscr{A}) \Leftrightarrow t \vDash \varphi_{\mathscr{A}}$
■ For every φ exists \mathscr{A}_{φ} s.t. $t \models \varphi \Leftrightarrow t \in \mathcal{L}\left(\mathscr{A}_{\varphi}\right)$
Consequence: Satisfiability of S2S reduces to PTA emptiness
(Parity) games everywhere:

- Acceptance game $\mathcal{G}(\mathscr{A}, t)$ for complement closure of PTA
- Emptiness game $\mathcal{G}(\mathscr{A})$ for emptiness check of PTA
"The mother of all decidability results"

Change Log Lecture Notes

Change Log Lecture Notes $\mathbf{1 / 2}$

Old definition:

Definition 2.7 (Game). A game $\mathcal{G}=(\mathcal{A}, \mathrm{Win})$ consists of an arena \mathcal{A} and a set of winning plays Win $\subseteq \operatorname{Plays}(\mathcal{A})$. We call a play ρ winning for Player 0 if, and only if, $\rho \in$ Win and winning for Player 1 otherwise.

New definition:
Definition 2.7 (Game). A game $\mathcal{G}=(\mathcal{A}, \mathrm{Win})$ consists of an arena \mathcal{A} and a set of winning plays Win $\subseteq V^{\omega}$. We call a play ρ winning for Player 0 if, and only if, $\rho \in$ Win and winning for Player 1 otherwise.

Change Log Lecture Notes 2/2

Graphical notation for finite-state strategies:

We represent the initialization function as labeled initial arrows.

Exam

Organizational Matters

End-of-term exam

- When:
- Where:

August 1st, 2016, 10:15-12:15

- Mode:
- What to bring: HS 003, Building E1 3
- Exam inspection:

Organizational Matters

End-of-term exam

- When:
- Where:

August 1st, 2016, 10:15-12:15

- Mode:
- What to bring: HS 003, Building E1 3
- Exam inspection:

End-of-semester exam: September 20th, 2016 (more information after first exam)

Questions

Challenge us before we challenge you in the exam.

Outlook

(Simple) Stochastic Games

■ Enter a new player (\diamond), it flips a coin to pick a successor.

(Simple) Stochastic Games

■ Enter a new player (\diamond), it flips a coin to pick a successor.

■ No (sure) winning strategy...
■ ...but one with probability 1.

(Simple) Stochastic Games

■ Enter a new player (\diamond), it flips a coin to pick a successor.

■ No (sure) winning strategy...

- ...but one with probability 1.

Value of the game for Player 0: $\max _{\sigma} \min _{\tau} p_{\sigma, \tau}$
where $p_{\sigma, \tau}$ is the probability that Player 0 wins when using strategy σ and Player 1 uses strategy τ.

Concurrent Games

■ Both players choose their moves simultaneously
Matching pennies:

Concurrent Games

■ Both players choose their moves simultaneously
Matching pennies: randomized strategy winning with probability 1.

Concurrent Games

■ Both players choose their moves simultaneously
Matching pennies: randomized strategy winning with probability 1.

The "Snowball Game":

Concurrent Games

■ Both players choose their moves simultaneously
Matching pennies: randomized strategy winning with probability 1.

The "Snowball Game": for every ε, randomized strategy winning with probability $1-\varepsilon$.

Games of Imperfect Information

- Players do not observe sequence of states, but sequence of non-unique observations (yellow \bigcirc, purple \bigcirc, blue \bigcirc, brown).
- Player 0 picks action a / b, Player 1 resolves non-determinism.

Games of Imperfect Information

- Players do not observe sequence of states, but sequence of non-unique observations (yellow \bigcirc, purple \bigcirc, blue \bigcirc, brown).
- Player 0 picks action a / b, Player 1 resolves non-determinism.

No winning strategy for Player 0: every fixed choice of actions to pick at $(\bigcirc \bigcirc)^{*}(\bigcirc)$ can be countered by going to v_{1} or v_{2}.

Pushdown Games

Pushdown Games

- Pushdown Parity Games can be reduced to parity games in exponentially sized arenas \Rightarrow Exptime-complete.
- Both players have positional winning strategies (but these are now infinite objects!).
■ Finite representation of winning strategies: pushdown automata with output.

Playing Infinite Games in a Hurry

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

Playing Infinite Games in a Hurry

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$\operatorname{Sc}_{\{0\}}$								
$\operatorname{Acc}_{\{0\}}$								
$\operatorname{Sc}_{\{0,1,2\}}$								
$\operatorname{Acc}_{\{0,1,2\}}$								

Playing Infinite Games in a Hurry

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$\operatorname{Sc}_{\{0\}}$	1							
$\operatorname{Acc}_{\{0\}}$	\emptyset							
$\operatorname{Sc}_{\{0,1,2\}}$								
$\operatorname{Acc}_{\{0,1,2\}}$								

Playing Infinite Games in a Hurry

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$\operatorname{Sc}_{\{0\}}$	1	2						
$\operatorname{Acc}_{\{0\}}$	\emptyset	\emptyset						
$\operatorname{Sc}_{\{0,1,2\}}$								
$\operatorname{Acc}_{\{0,1,2\}}$								

Playing Infinite Games in a Hurry

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$\operatorname{Sc}_{\{0\}}$	1	2	0					
$\operatorname{Acc}_{\{0\}}$	\emptyset	\emptyset	\emptyset					
$\operatorname{Sc}_{\{0,1,2\}}$								
$\operatorname{Acc}_{\{0,1,2\}}$								

Playing Infinite Games in a Hurry

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$\operatorname{Sc}_{\{0\}}$	1	2	0	0				
$\operatorname{Acc}_{\{0\}}$	\emptyset	\emptyset	\emptyset	\emptyset				
$\operatorname{Sc}_{\{0,1,2\}}$								
$\operatorname{Acc}_{\{0,1,2\}}$								

Playing Infinite Games in a Hurry

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$\operatorname{Sc}_{\{0\}}$	1	2	0	0	1			
$\operatorname{Acc}_{\{0\}}$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset			
$\operatorname{Sc}_{\{0,1,2\}}$								
$\operatorname{Acc}_{\{0,1,2\}}$								

Playing Infinite Games in a Hurry

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$\operatorname{Sc}_{\{0\}}$	1	2	0	0	1	2		
$\operatorname{Acc}_{\{0\}}$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset		
$\operatorname{Sc}_{\{0,1,2\}}$								
$\operatorname{Acc}_{\{0,1,2\}}$								

Playing Infinite Games in a Hurry

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$\operatorname{Sc}_{\{0\}}$	1	2	0	0	1	2	0	
$\operatorname{Acc}_{\{0\}}$	\emptyset							
$\operatorname{Sc}_{\{0,1,2\}}$								
$\operatorname{Acc}_{\{0,1,2\}}$								

Playing Infinite Games in a Hurry

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\operatorname{Acc}_{\{0\}}$	\emptyset							
$\mathrm{Sc}_{\{0,1,2\}}$								
$\mathrm{Acc}_{\{0,1,2\}}$								

Playing Infinite Games in a Hurry

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\operatorname{Acc}_{\{0\}}$	\emptyset							
$\mathrm{Sc}_{\{0,1,2\}}$	0							
$\operatorname{Acc}_{\{0,1,2\}}$	$\{0\}$							

Playing Infinite Games in a Hurry

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\operatorname{Acc}_{\{0\}}$	\emptyset							
$\mathrm{Sc}_{\{0,1,2\}}$	0	0						
$\operatorname{Acc}_{\{0,1,2\}}$	$\{0\}$	$\{0\}$						

Playing Infinite Games in a Hurry

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\operatorname{Acc}_{\{0\}}$	\emptyset							
$\mathrm{Sc}_{\{0,1,2\}}$	0	0	0					
$\operatorname{Acc}_{\{0,1,2\}}$	$\{0\}$	$\{0\}$	$\{0,1\}$					

Playing Infinite Games in a Hurry

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\operatorname{Acc}_{\{0\}}$	\emptyset							
$\mathrm{Sc}_{\{0,1,2\}}$	0	0	0	0				
$\operatorname{Acc}_{\{0,1,2\}}$	$\{0\}$	$\{0\}$	$\{0,1\}$	$\{0,1\}$				

Playing Infinite Games in a Hurry

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\operatorname{Acc}_{\{0\}}$	\emptyset							
$\mathrm{Sc}_{\{0,1,2\}}$	0	0	0	0	0			
$\operatorname{Acc}_{\{0,1,2\}}$	$\{0\}$	$\{0\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$			

Playing Infinite Games in a Hurry

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\operatorname{Acc}_{\{0\}}$	\emptyset							
$\mathrm{Sc}_{\{0,1,2\}}$	0	0	0	0	0	0		
$\operatorname{Acc}_{\{0,1,2\}}$	$\{0\}$	$\{0\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$		

Playing Infinite Games in a Hurry

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\operatorname{Acc}_{\{0\}}$	\emptyset							
$\mathrm{Sc}_{\{0,1,2\}}$	0	0	0	0	0	0	0	
$\operatorname{Acc}_{\{0,1,2\}}$	$\{0\}$	$\{0\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	

Playing Infinite Games in a Hurry

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\operatorname{Acc}_{\{0\}}$	\emptyset							
$\mathrm{Sc}_{\{0,1,2\}}$	0	0	0	0	0	0	0	1
$\operatorname{Acc}_{\{0,1,2\}}$	$\{0\}$	$\{0\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	\emptyset

Playing Infinite Games in a Hurry

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\operatorname{Acc}_{\{0\}}$	\emptyset							
$\mathrm{Sc}_{\{0,1,2\}}$	0	0	0	0	0	0	0	1
$\operatorname{Acc}_{\{0,1,2\}}$	$\{0\}$	$\{0\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	\emptyset

Theorem

Player i has strategy to bound the opponent's scores by two when starting in $W_{i}(\mathcal{G})$.

Playing Infinite Games in a Hurry

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$\mathrm{Sc}_{\{0\}}$	1	2	0	0	1	2	0	0
$\operatorname{Acc}_{\{0\}}$	\emptyset							
$\mathrm{Sc}_{\{0,1,2\}}$	0	0	0	0	0	0	0	1
$\operatorname{Acc}_{\{0,1,2\}}$	$\{0\}$	$\{0\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	\emptyset

Theorem

Player i has strategy to bound the opponent's scores by two when starting in $W_{i}(\mathcal{G})$.
Corollary: Stopping play after first score reaches value three preserves winning regions (at most exponential play length)

Games with Costs

- Parity game: Player 0 wins from everywhere, but it takes arbitrarily long to "answer" 1 with 0 .

Games with Costs

- Parity game: Player 0 wins from everywhere, but it takes arbitrarily long to "answer" 1 with 0.

- Add edge-costs: Player 0 wins if there is a bound b and a position n such that every odd color after n is followed by a smaller even color with cost $\leq b$ in between \Rightarrow Player 1 wins example from everywhere (stay longer and longer in 2).

Games with Costs

- Parity game: Player 0 wins from everywhere, but it takes arbitrarily long to "answer" 1 with 0.

■ Add edge-costs: Player 0 wins if there is a bound b and a position n such that every odd color after n is followed by a smaller even color with cost $\leq b$ in between \Rightarrow Player 1 wins example from everywhere (stay longer and longer in 2).

Theorem

Parity games with costs are determined, Player 0 has positional winning strategies, and they can be solved in NP \cap co-NP.

Tradeoffs

Every edge has cost 1

Tradeoffs

Every edge has cost 1

Player 0 has:
■ Positional winning strategy with bound 9 .
■ Finite-state strategy of size 2 with bound 8.

Tradeoffs

Every edge has cost 1

Player 0 has:
■ Positional winning strategy with bound 9 .

- Finite-state strategy of size 2 with bound 8.

With d odd colors and d gadgets for each player: Player 0 has:
■ Positional winning strategy with bound $d^{2}+3 d-1$.

- Finite-state strategy of size $2^{d}-2$ with bound $d^{2}+2 d$.

Many other variants

■ More winning conditions: various quantitative conditions

Many other variants

- More winning conditions: various quantitative conditions
- Games on timed automata \Rightarrow uncountable arenas

Many other variants

- More winning conditions: various quantitative conditions
- Games on timed automata \Rightarrow uncountable arenas
- Play even longer: games of ordinal length

Many other variants

- More winning conditions: various quantitative conditions

■ Games on timed automata \Rightarrow uncountable arenas

- Play even longer: games of ordinal length

■ Games with delay: Player 0 is allowed to skip some moves to obtain lookahead on Player 1's moves. Basic question: what kind of lookahead is necessary to win.

Many other variants

- More winning conditions: various quantitative conditions
- Games on timed automata \Rightarrow uncountable arenas

■ Play even longer: games of ordinal length

- Games with delay: Player 0 is allowed to skip some moves to obtain lookahead on Player 1's moves. Basic question: what kind of lookahead is necessary to win.
- More than two players \Rightarrow no longer zero-sum games. Requires whole new theory (equilibria).

Many other variants

- More winning conditions: various quantitative conditions
- Games on timed automata \Rightarrow uncountable arenas

■ Play even longer: games of ordinal length

- Games with delay: Player 0 is allowed to skip some moves to obtain lookahead on Player 1's moves. Basic question: what kind of lookahead is necessary to win.
- More than two players \Rightarrow no longer zero-sum games. Requires whole new theory (equilibria).

And: any combination of extensions discussed above.

Thesis Topics

DFG project TriCS: Tradeoffs in Controller Synthesis.
■ How to compute optimal strategies?

Thesis Topics

DFG project TriCS: Tradeoffs in Controller Synthesis.
■ How to compute optimal strategies?

- Games with delay: how much lookahead is necessary for different winning conditions? Tradeoffs between lookahead and memory?
■ Temporal logics for the specification of reactive systems.

Thesis Topics

DFG project TriCS: Tradeoffs in Controller Synthesis.
■ How to compute optimal strategies?

- Games with delay: how much lookahead is necessary for different winning conditions? Tradeoffs between lookahead and memory?
- Temporal logics for the specification of reactive systems.

■ Your own idea?

Thesis Topics

DFG project TriCS: Tradeoffs in Controller Synthesis.
■ How to compute optimal strategies?

- Games with delay: how much lookahead is necessary for different winning conditions? Tradeoffs between lookahead and memory?
- Temporal logics for the specification of reactive systems.

■ Your own idea?

- Or what about some open problems:

■ Generalized reachability games with sets of size two: P, NP, or PSPACE?

- Exact complexity of parity games.

Thesis Topics

DFG project TriCS: Tradeoffs in Controller Synthesis.
■ How to compute optimal strategies?

- Games with delay: how much lookahead is necessary for different winning conditions? Tradeoffs between lookahead and memory?
- Temporal logics for the specification of reactive systems.

■ Your own idea?

- Or what about some open problems:

■ Generalized reachability games with sets of size two: P, NP, or PSPACE?

- Exact complexity of parity games.

If you are interested in working on current research topics, contact us!

Thank You

\&
 Good luck for the exam

