Infinite Games

Recap and Outlook

Martin Zimmermann

Saarland University

July 26th, 2016

Plan for Today

Review

- Change Log Lecture Notes
- Exam
 - Organizational Matters
 - Questions
- Outlook: Even More Games

Review

Reachability

Name:

Reachability Game $(\mathcal{A}, \operatorname{REACH}(R))$ with $R \subseteq V$

Format:

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

 $\operatorname{Occ}(\rho) \cap R \neq \emptyset$ linear time in |E|attractor uniform positional uniform positional safety

Safety

Name: Format:

Safety Game $(\mathcal{A}, \text{SAFETY}(S))$ with $S \subseteq V$

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

 $\operatorname{Occ}(\rho) \subseteq S$ linear time in |E|dualize + attractor uniform positional uniform positional reachability

Büchi

Name: Format:

Büchi Game $(\mathcal{A}, \mathrm{B\ddot{U}CHI}(F))$ with $F \subseteq V$

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

 $Inf(\rho) \cap F \neq \emptyset \\ \mathbf{P}$

iterated attractor uniform positional uniform positional co-Büchi

Co-Büchi

Name: Format:

Co-Büchi Game $(\mathcal{A}, \operatorname{COB\"UCHI}(\mathcal{C}))$ with $\mathcal{C} \subseteq V$

- Winning condition:
- Solution complexity:
- Algorithm: dualize + iterated attractor
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

Büchi

 $\operatorname{Inf}(\rho) \subseteq C$

uniform positional

uniform positional

Parity

Name: Format:

Parity Game $(\mathcal{A}, \operatorname{Parity}(\Omega))$ with $\Omega: V \to \mathbb{N}$

- Winning condition:
- Solution complexity:

$\min(\inf(\Omega(\rho)))$ even **NP** \cap **co-NP**

uniform positional

uniform positional

- Algorithm: progress measures and many others
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

parity

Muller

$(\mathcal{A}, \mathrm{MULLER}(\mathcal{F}))$ with $\mathcal{F} \subseteq 2^V$ Format: $\{v_1, v_2, v'_1, v'_2\}$ $\{v_1, v_2, v_1'\}$ $\{v_1, v_2, v_2'\}$ $\{v_1, v_1'\}$ $\{v_1, v_2'\}$ $\{v_1\}$ $\{v_1\}$ $\operatorname{Inf}(\rho) \in \mathcal{F}$ Winning condition: P, NP ∩ co-NP, PSPACE-complete Solution complexity: Algorithm: reduction to parity and many others Memory requirements for Player 0: V|!Memory requirements for Player 1: V|!

Dual game:

Name:

Muller

Muller Game

Generalized Reachability

Name: Format:

Generalized Reachability Game $(\mathcal{A}, \operatorname{GenReach}(\mathcal{R}))$ with $\mathcal{R} \subseteq 2^{V}$

 $\forall R \in \mathcal{R}. \operatorname{Occ}(\rho) \cap R \neq \emptyset$

Simulate for $|V| \cdot |\mathcal{R}|$ steps

PSPACE-complete

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

e: disjunctive safety

 $2^{|\mathcal{R}|}$

Weak Parity

Name: Format:

Weak Parity Game $(\mathcal{A}, \operatorname{WParity}(\Omega))$ with $\Omega: V \to \mathbb{N}$

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

 $\min(\operatorname{Occ}(\Omega(\rho)))$ even

Ρ

iterated attractor uniform positional uniform positional weak parity

Weak Muller

Name: Format:

Weak Muller Game $(\mathcal{A}, \mathrm{wMuller}(\mathcal{F}))$ with $\mathcal{F} \subseteq 2^V$

- Winning condition:
- Solution complexity:

 $Occ(\rho) \in \mathcal{F}$ **PSPACE**-complete

- Algorithm: reduction to weak parity or direct one $2^{|V|}$
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

weak Muller

 $2^{|V|}$

Request-Response

Name: Format:

Request-Response Game

 $\forall j \forall n (\rho_n \in Q_i \rightarrow \exists m \geq n. \rho_m \in P_i)$

EXPTIME-complete

reduction to Büchi

 $(\mathcal{A}, \operatorname{ReQRes}((Q_j, P_j)_{j \in [k]}))$ with $Q_j, P_j \subseteq V$

- Winning condition:
- Solution complexity:
- Algorithm:
- Memory requirements for Player 0:
- Memory requirements for Player 1:
- Dual game:

 2^k

 $k \cdot 2^k$

Rahin

Name:

Rabin Game

Format:

 $(\mathcal{A}, \text{RABIN}((Q_i, P_i)_{i \in [k]}))$ with $Q_i, P_i \subseteq V$

• Winning condition: $\exists j(\operatorname{Inf}(\rho) \cap Q_i \neq \emptyset \text{ and } \operatorname{Inf}(\rho) \cap P_i = \emptyset)$ **NP**-complete

- Solution complexity:
- Algorithm: reduction to parity or direct one
- Memory requirements for Player 0: uniform positional
- Memory requirements for Player 1:
- Dual game:

Streett

k!

Streett

Name:

Streett Game

Format:

 $(\mathcal{A}, \text{STREETT}((Q_i, P_i)_{i \in [k]}))$ with $Q_i, P_i \subseteq V$

 $\forall j(\operatorname{Inf}(\rho) \cap Q_i \neq \emptyset \Rightarrow \operatorname{Inf}(\rho) \cap P_i \neq \emptyset)$ Winning condition: co-NP-complete

- Solution complexity:
- Algorithm: reduction to parity or direct one
- Memory requirements for Player 0:
- Memory requirements for Player 1: uniform positional
- Dual game:

Rabin

k١

Wadge Games

(Wadge) reductions are (Wadge) games!

- A winning strategy for II in the Wadge game W(L, L') is a witness for the existence of a Wadge reduction L ≤ L'.
- A winning strategy for I in the Wadge game W(L, L') is a witness for the non-existence of a Wadge reduction L ≤ L'.

S2S and Parity Tree Automata

S2S: Monadic second-order logic over two successors

PTA: Parity tree automata

Both formalisms are equivalent:

- For every \mathscr{A} exists $\varphi_{\mathscr{A}}$ s.t. $t \in \mathcal{L}(\mathscr{A}) \Leftrightarrow t \models \varphi_{\mathscr{A}}$
- For every φ exists \mathscr{A}_{φ} s.t. $t \models \varphi \Leftrightarrow t \in \mathcal{L}(\mathscr{A}_{\varphi})$

Consequence: Satisfiability of S2S reduces to PTA emptiness

(Parity) games everywhere:

- Acceptance game $\mathcal{G}(\mathscr{A}, t)$ for complement closure of PTA
- Emptiness game $\mathcal{G}(\mathscr{A})$ for emptiness check of PTA

"The mother of all decidability results"

Change Log Lecture Notes

Change Log Lecture Notes 1/2

Old definition:

Definition 2.7 (Game). A game $\mathcal{G} = (\mathcal{A}, \text{Win})$ consists of an arena \mathcal{A} and a set of winning plays Win \subseteq Plays(\mathcal{A}). We call a play ρ winning for Player 0 if, and only if, $\rho \in \text{Win}$ and winning for Player 1 otherwise.

New definition:

Definition 2.7 (Game). A game $\mathcal{G} = (\mathcal{A}, \text{Win})$ consists of an arena \mathcal{A} and a set of winning plays Win $\subseteq V^{\omega}$. We call a play ρ winning for Player 0 if, and only if, $\rho \in \text{Win}$ and winning for Player 1 otherwise.

Change Log Lecture Notes 2/2

Graphical notation for finite-state strategies:

We represent the initialization function as labeled initial arrows.

Organizational Matters

End-of-term exam

- When:
- Where:
- Mode:
- What to bring:
- Exam inspection:

August 1st, 2016, 10:15 - 12:15 HS 003, Building E1 3 Open-book Student ID TBA

Organizational Matters

End-of-term exam

■ When:	August 1st, 2016, 10:15 - 12:15
■ Where:	HS 003, Building E1 3
Mode:	Open-book
What to bring:	Student ID
Exam inspection:	ТВА

End-of-semester exam: September 20th, 2016 (more information after first exam)

Questions

Challenge us before we challenge you in the exam.

Outlook

(Simple) Stochastic Games

• Enter a new player (\diamondsuit), it flips a coin to pick a successor.

(Simple) Stochastic Games

Enter a new player (\diamondsuit), it flips a coin to pick a successor.

- No (sure) winning strategy...
- ...but one with probability 1.

(Simple) Stochastic Games

Enter a new player (\diamondsuit), it flips a coin to pick a successor.

- No (sure) winning strategy...
- ...but one with probability 1.

Value of the game for Player 0: max min $p_{\sigma,\tau}$

where $p_{\sigma,\tau}$ is the probability that Player 0 wins when using strategy σ and Player 1 uses strategy τ .

 Both players choose their moves simultaneously Matching pennies:

Both players choose their moves simultaneously
Matching pennies: randomized strategy winning with probability 1.

Both players choose their moves simultaneously
Matching pennies: randomized strategy winning with probability 1.

The "Snowball Game":

Both players choose their moves simultaneously
Matching pennies: randomized strategy winning with probability 1.

The "Snowball Game": for every ε , randomized strategy winning with probability $1 - \varepsilon$.

Games of Imperfect Information

- Players do not observe sequence of states, but sequence of non-unique observations (yellow
 , purple
 , blue
 , brown
).
- Player 0 picks action a/b, Player 1 resolves non-determinism.

Games of Imperfect Information

- Players do not observe sequence of states, but sequence of non-unique observations (yellow
 , purple
 , blue
 , brown
).
- Player 0 picks action a/b, Player 1 resolves non-determinism.

No winning strategy for Player 0: every fixed choice of actions to pick at $(\bigcirc \bigcirc \bigcirc)^*(\bigcirc \bigcirc)$ can be countered by going to v_1 or v_2 .

Pushdown Games

Pushdown Games

- Pushdown Parity Games can be reduced to parity games in exponentially sized arenas ⇒ EXPTIME-complete.
- Both players have positional winning strategies (but these are now infinite objects!).
- Finite representation of winning strategies: pushdown automata with output.

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- \blacksquare Positional determinacy \Rightarrow winning regions preserved

 Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.

 \blacksquare Positional determinacy \Rightarrow winning regions preserved

w	0	0	1	1	0	0	1	2
Sc{0}								
$Acc_{\{0\}}$								
Sc _{0,1,2}								
$\mathrm{Acc}_{\{0,1,2\}}$								

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- \blacksquare Positional determinacy \Rightarrow winning regions preserved

W	0	0	1	1	0	0	1	2
$Sc_{\{0\}}$	1							
$\mathrm{Acc}_{\{0\}}$	Ø							
Sc _{0,1,2}								
$\mathrm{Acc}_{\{0,1,2\}}$								

 Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.

 \blacksquare Positional determinacy \Rightarrow winning regions preserved

w	0	0	1	1	0	0	1	2
$Sc_{\{0\}}$	1	2						
$Acc_{\{0\}}$	Ø	Ø						
Sc _{0,1,2}								
$\mathrm{Acc}_{\{0,1,2\}}$								

 Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.

 \blacksquare Positional determinacy \Rightarrow winning regions preserved

W	0	0	1	1	0	0	1	2
$Sc_{\{0\}}$	1	2	0 Ø					
Acc _{{0} }	Ø	Ŵ	Ø					
$\operatorname{Sc}_{\{0,1,2\}}$								
$\operatorname{Acc}_{\{0,1,2\}}$								

 Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.

 \blacksquare Positional determinacy \Rightarrow winning regions preserved

w	0	0	1	1	0	0	1	2
$\operatorname{Sc}_{\{0\}}$	1	2	0	0				
Acc _{0}	Ø	Ø	Ø	Ø				
$\operatorname{Sc}_{\{0,1,2\}}$								
$\mathrm{Acc}_{\{0,1,2\}}$								

 Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.

 \blacksquare Positional determinacy \Rightarrow winning regions preserved

W	0	0	1	1	0	0	1	2
$\begin{array}{c} \operatorname{Sc}_{\{0\}} \\ \operatorname{Acc}_{\{0\}} \end{array}$	$\overset{1}{\emptyset}$	2 Ø	0 Ø	0 Ø	1 Ø			
$\frac{\mathrm{Sc}_{\{0,1,2\}}}{\mathrm{Acc}_{\{0,1,2\}}}$								

 Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.

 \blacksquare Positional determinacy \Rightarrow winning regions preserved

W	0	0	1	1	0	0	1	2
$\begin{array}{c} \operatorname{Sc}_{\{0\}} \\ \operatorname{Acc}_{\{0\}} \end{array}$	$\overset{1}{\emptyset}$	2 Ø	0 Ø	0 Ø	1 Ø	2 Ø		
$\begin{array}{c} {\rm Sc}_{\{0,1,2\}} \\ {\rm Acc}_{\{0,1,2\}} \end{array}$								

 Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.

 \blacksquare Positional determinacy \Rightarrow winning regions preserved

W	0	0	1	1	0	0	1	2
$\begin{array}{c} \operatorname{Sc}_{\{0\}} \\ \operatorname{Acc}_{\{0\}} \end{array}$	$\overset{1}{\emptyset}$	2 Ø	0 Ø	0 Ø	$\overset{1}{\emptyset}$	2 Ø	0 Ø	
$\overline{ \begin{matrix} {\rm Sc}_{\{0,1,2\}} \\ {\rm Acc}_{\{0,1,2\}} \end{matrix} }$								
Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.

 \blacksquare Positional determinacy \Rightarrow winning regions preserved

W	0	0	1	1	0	0	1	2
$\begin{array}{c} \operatorname{Sc}_{\{0\}} \\ \operatorname{Acc}_{\{0\}} \end{array}$	$\overset{1}{\emptyset}$	2 Ø	0 Ø	0 Ø	1 Ø	2 Ø	0 Ø	0 Ø
$\begin{array}{c} {\rm Sc}_{\{0,1,2\}} \\ {\rm Acc}_{\{0,1,2\}} \end{array}$								

 Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.

 \blacksquare Positional determinacy \Rightarrow winning regions preserved

W	0	0	1	1	0	0	1	2
$Sc_{\{0\}}$ Accion	1 Ø	2 Ø	0 Ø	0 Ø	1 Ø	2 Ø	0 Ø	0 Ø
$\frac{Sc_{\{0,1,2\}}}{Acc_{\{0,1,2\}}}$	0 {0}	-	F	-	-	-		

 Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.

 \blacksquare Positional determinacy \Rightarrow winning regions preserved

W	0	0	1	1	0	0	1	2
$Sc_{\{0\}}$	1 Ø	2 Ø	0 Ø	0 Ø	1	2 Ø	0 Ø	0 Ø
Acc{0}	Ŵ	Ø	Ŵ	V	V	V	Ŵ	Ŵ
$Sc_{\{0,1,2\}}$	0	0						
$\operatorname{Acc}_{\{0,1,2\}}$	{0}	{0}						

 Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.

 \blacksquare Positional determinacy \Rightarrow winning regions preserved

W	0	0	1	1	0	0	1	2
$Sc_{\{0\}}$	1	2	0	0	1	2	0	0
$Acc_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
Sc _{0,1,2}	0	0	0					
$\mathrm{Acc}_{\{0,1,2\}}$	{0}	{0}	$\{0,1\}$					

 Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.

 \blacksquare Positional determinacy \Rightarrow winning regions preserved

W	0	0	1	1	0	0	1	2
$Sc_{\{0\}}$	1	2	0	0	1	2	0	0
$Acc_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
Sc _{0,1,2}	0	0	0	0				
$\mathrm{Acc}_{\{0,1,2\}}$	{0}	{0}	$\{0,1\}$	$\{0,1\}$				

 Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.

 \blacksquare Positional determinacy \Rightarrow winning regions preserved

W	0	0	1	1	0	0	1	2
$Sc_{\{0\}}$	1	2	0	0	1	2	0	0
$Acc_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
Sc _{0,1,2}	0	0	0	0	0			
$\mathrm{Acc}_{\{0,1,2\}}$	{0}	{0}	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$			

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- \blacksquare Positional determinacy \Rightarrow winning regions preserved

W	0	0	1	1	0	0	1	2
$Sc_{\{0\}}$	1	2	0	0	1	2	0	0
$Acc_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
Sc _{0,1,2}	0	0	0	0	0	0		
$\mathrm{Acc}_{\{0,1,2\}}$	{0}	{0}	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$		

 Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.

 \blacksquare Positional determinacy \Rightarrow winning regions preserved

W	0	0	1	1	0	0	1	2
$Sc_{\{0\}}$	1	2	0	0	1	2	0	0
$Acc_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
Sc _{0,1,2}	0	0	0	0	0	0	0	
$\mathrm{Acc}_{\{0,1,2\}}$	{0}	{0}	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	

 Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.

 \blacksquare Positional determinacy \Rightarrow winning regions preserved

W	0	0	1	1	0	0	1	2
$Sc_{\{0\}}$	1	2	0	0	1	2	0	0
$Acc_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
Sc _{0,1,2}	0	0	0	0	0	0	0	1
$\mathrm{Acc}_{\{0,1,2\}}$	{0}	{0}	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	Ø

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$Sc_{\{0\}}$	1	2	0	0	1	2	0	0
$Acc_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
Sc _{0,1,2}	0	0	0	0	0	0	0	1
$\mathrm{Acc}_{\{0,1,2\}}$	{0}	{0}	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	Ø

Theorem

Player i has strategy to bound the opponent's scores by two when starting in $W_i(\mathcal{G})$.

- Parity games in finite time: play until first loop is closed, minimal color in loop determines winner.
- Positional determinacy \Rightarrow winning regions preserved

No longer works for Muller games. Need scoring functions:

w	0	0	1	1	0	0	1	2
$Sc_{\{0\}}$	1	2	0	0	1	2	0	0
$Acc_{\{0\}}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
Sc _{0,1,2}	0	0	0	0	0	0	0	1
$\mathrm{Acc}_{\{0,1,2\}}$	{0}	{0}	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$	Ø

Theorem

Player i has strategy to bound the opponent's scores by two when starting in $W_i(\mathcal{G})$.

Corollary: Stopping play after first score reaches value three preserves winning regions (at most exponential play length)

Games with Costs

Parity game: Player 0 wins from everywhere, but it takes arbitrarily long to "answer" 1 with 0.

Games with Costs

Parity game: Player 0 wins from everywhere, but it takes arbitrarily long to "answer" 1 with 0.

■ Add edge-costs: Player 0 wins if there is a bound b and a position n such that every odd color after n is followed by a smaller even color with cost ≤ b in between ⇒ Player 1 wins example from everywhere (stay longer and longer in 2).

Games with Costs

Parity game: Player 0 wins from everywhere, but it takes arbitrarily long to "answer" 1 with 0.

■ Add edge-costs: Player 0 wins if there is a bound b and a position n such that every odd color after n is followed by a smaller even color with cost ≤ b in between ⇒ Player 1 wins example from everywhere (stay longer and longer in 2).

Theorem

Parity games with costs are determined, Player 0 has positional winning strategies, and they can be solved in $NP \cap co-NP$.

Tradeoffs

Tradeoffs

Player 0 has:

- Positional winning strategy with bound 9.
- Finite-state strategy of size 2 with bound 8.

Tradeoffs

Player 0 has:

- Positional winning strategy with bound 9.
- Finite-state strategy of size 2 with bound 8.

With d odd colors and d gadgets for each player: Player 0 has:

- Positional winning strategy with bound $d^2 + 3d 1$.
- Finite-state strategy of size $2^d 2$ with bound $d^2 + 2d$.

More winning conditions: various quantitative conditions

- More winning conditions: various quantitative conditions
- \blacksquare Games on timed automata \Rightarrow uncountable arenas

- More winning conditions: various quantitative conditions
- Games on timed automata \Rightarrow uncountable arenas
- Play even longer: games of ordinal length

- More winning conditions: various quantitative conditions
- Games on timed automata \Rightarrow uncountable arenas
- Play even longer: games of ordinal length
- Games with delay: Player 0 is allowed to skip some moves to obtain lookahead on Player 1's moves. Basic question: what kind of lookahead is necessary to win.

- More winning conditions: various quantitative conditions
- Games on timed automata \Rightarrow uncountable arenas
- Play even longer: games of ordinal length
- Games with delay: Player 0 is allowed to skip some moves to obtain lookahead on Player 1's moves. Basic question: what kind of lookahead is necessary to win.
- More than two players ⇒ no longer zero-sum games. Requires whole new theory (equilibria).

- More winning conditions: various quantitative conditions
- Games on timed automata \Rightarrow uncountable arenas
- Play even longer: games of ordinal length
- Games with delay: Player 0 is allowed to skip some moves to obtain lookahead on Player 1's moves. Basic question: what kind of lookahead is necessary to win.
- More than two players ⇒ no longer zero-sum games. Requires whole new theory (equilibria).
- And: any combination of extensions discussed above.

DFG project TriCS: Tradeoffs in Controller Synthesis.

How to compute optimal strategies?

DFG project TriCS: Tradeoffs in Controller Synthesis.

How to compute optimal strategies?

....

- Games with delay: how much lookahead is necessary for different winning conditions? Tradeoffs between lookahead and memory?
- Temporal logics for the specification of reactive systems.

DFG project **TriCS**: Tradeoffs in Controller Synthesis.

- How to compute optimal strategies?
- Games with delay: how much lookahead is necessary for different winning conditions? Tradeoffs between lookahead and memory?
- Temporal logics for the specification of reactive systems.
- **...**
- Your own idea?

DFG project **TriCS**: Tradeoffs in Controller Synthesis.

- How to compute optimal strategies?
- Games with delay: how much lookahead is necessary for different winning conditions? Tradeoffs between lookahead and memory?
- Temporal logics for the specification of reactive systems.
- ...
- Your own idea?
- Or what about some open problems:
 - Generalized reachability games with sets of size two: P, NP, or PSPACE?
 - Exact complexity of parity games.

DFG project **TriCS**: Tradeoffs in Controller Synthesis.

- How to compute optimal strategies?
- Games with delay: how much lookahead is necessary for different winning conditions? Tradeoffs between lookahead and memory?
- Temporal logics for the specification of reactive systems.
- ...
- Your own idea?
- Or what about some open problems:
 - Generalized reachability games with sets of size two: P, NP, or PSPACE?
 - Exact complexity of parity games.

If you are interested in working on current research topics, contact us!

Thank You

&

Good luck for the exam