First, we present a full proof of correctness for the construction presented in the
lecture. Then, we do something even better: we present constructions due to
Yannick for both directions of the proof that are simpler than the ones presented
in the lecture and the first one even avoids the case distinction.

1 Construction from the Lecture
Recall that we want to show the following statement:

For every recursive g: N — N with dom(g) # 0 there exists a total
recursive f: N — N with dom(g) = f(N).

Also, only the case where |dom(g)| = oo remains to be considered. We define
'+ N — N via the scheme of primitive recursion as

F10) = ut: Tye[t]1[t]s and f'(z+1) = pt: Tie[t]i[tla At > f'(2),

where e is an index of g, i.e., we have g(x) = U(uy: Tiexy). Now, define
f(z) =[f'(2)]1. The function f is recursive by construction. Hence, it remains
to show that it is total and that f(N) = dom(g).

To this end, we use the following property of the paring function: we have
[x,y] > 2% —1 for every z, independently of y. Thus, by picking z large enough,
we can make [z, y] arbitrarily large.

To show that f is total, it suffices to show that f’ is total, as [-]; is total.
As dom(g) # 0, there is some x € dom(g). Thus, by the KNFT there is also a
y such that Tyexy holds. Hence, there is a ¢t = [z, y] such that Tje[t];[t]s holds,
which implies that f’(0) is defined.

Now, consider f'(z + 1). We have to find for every possible value of f/(z)
at with t > f(z+ 1) and Tie[t]1[t]2. As dom(g) is infinite, we can always
pick a large enough z € dom(g) (with an associated y with Tiexy) such that
[z,y] > f/(2). Thus, f'(z + 1) is defined.

To show that f(N) = dom(g), we first argue f(N) C dom(g): let z € f(N).
Then, there is a y such that [z,y] € f'(N). Hence, as f’' only returns num-
bers [z, y] with Tiexy, we conclude x € dom(g) by the KNFT.

Now, we show dom(g) C f(N): let x € dom(g), i.e., there is a y such that
Tiexy. Towards a contradiction assume that « ¢ f(N). Then, [z,y] ¢ f/(N).

It cannot be the case that [z,y] is strictly smaller than f(0), as f/(0) is the
smallest ¢ with Tye[t]1[t]s. By assumption, [z,y] is not equal to f'(0). Also,
[, y] cannot satisfy f'(0) < [z,y] < f'(1), as as f’(1) is the smallest ¢t > f'(0)
with The[t]1[t]2. Repeating this argument, we have that [z, y] is strictly greater
than f/(7) for every i. But the set f/(N) is unbounded, as dom(g) is infinite.
Hence, [x,y] is strictly greater than every natural number, i.e., we have derived
our contradiction.



2  Yannick’s Constructions

e “&”: given a recursive g define a total recursive f with f(N) = dom(g).
Let e be an index of g and xg € dom(g) # 0. Now, define f: N — N by

_ [t]l lf Tle[th[t]g,
ft) = :
ro otherwise,
which is primitive recursive (as case distinction and Tj are primitive re-
cursive) and thus total. Furthermore, if € dom(g), then there is a y
such that Tyexy holds, i.e., f([z,y]) = x. Thus, x € f(N).

On the other hand, f only returns elements from dom(g): either zg, or
[t]1 such that Tie[t];[t]2 holds, which implies that [¢]; is in dom(g).

e “=7: given a total recursive f define a recursive g with dom(g) = f(N).

Let g(x) = py: f(y) = . As f is total, g(z) is only undefined, if there
is no y such that f(y) = «, i.e., if x ¢ f(N). On the other hand, if g(x)
is defined, then there is an y such that f(y) = x, i.e., if x € f(N). Thus,
dom(g) = f(N).



