
First, we present a full proof of correctness for the construction presented in the
lecture. Then, we do something even better: we present constructions due to
Yannick for both directions of the proof that are simpler than the ones presented
in the lecture and the first one even avoids the case distinction.

1 Construction from the Lecture

Recall that we want to show the following statement:

For every recursive g : N → N with dom(g) 6= ∅ there exists a total
recursive f : N→ N with dom(g) = f(N).

Also, only the case where |dom(g)| =∞ remains to be considered. We define
f ′ : N→ N via the scheme of primitive recursion as

f ′(0) = µt : T1e[t]1[t]2 and f ′(z + 1) = µt : T1e[t]1[t]2 ∧ t > f ′(z) ,

where e is an index of g, i.e., we have g(x) = U(µy : T1exy). Now, define
f(z) = [f ′(z)]1. The function f is recursive by construction. Hence, it remains
to show that it is total and that f(N) = dom(g).

To this end, we use the following property of the paring function: we have
[x, y] ≥ 2x−1 for every x, independently of y. Thus, by picking x large enough,
we can make [x, y] arbitrarily large.

To show that f is total, it suffices to show that f ′ is total, as [·]1 is total.
As dom(g) 6= ∅, there is some x ∈ dom(g). Thus, by the KNFT there is also a
y such that T1exy holds. Hence, there is a t = [x, y] such that T1e[t]1[t]2 holds,
which implies that f ′(0) is defined.

Now, consider f ′(z + 1). We have to find for every possible value of f ′(z)
a t with t > f(z + 1) and T1e[t]1[t]2. As dom(g) is infinite, we can always
pick a large enough x ∈ dom(g) (with an associated y with T1exy) such that
[x, y] > f ′(z). Thus, f ′(z + 1) is defined.

To show that f(N) = dom(g), we first argue f(N) ⊆ dom(g): let x ∈ f(N).
Then, there is a y such that [x, y] ∈ f ′(N). Hence, as f ′ only returns num-
bers [x, y] with T1exy, we conclude x ∈ dom(g) by the KNFT.

Now, we show dom(g) ⊆ f(N): let x ∈ dom(g), i.e., there is a y such that
T1exy. Towards a contradiction assume that x /∈ f(N). Then, [x, y] /∈ f ′(N).

It cannot be the case that [x, y] is strictly smaller than f(0), as f ′(0) is the
smallest t with T1e[t]1[t]2. By assumption, [x, y] is not equal to f ′(0). Also,
[x, y] cannot satisfy f ′(0) < [x, y] < f ′(1), as as f ′(1) is the smallest t > f ′(0)
with T1e[t]1[t]2. Repeating this argument, we have that [x, y] is strictly greater
than f ′(i) for every i. But the set f ′(N) is unbounded, as dom(g) is infinite.
Hence, [x, y] is strictly greater than every natural number, i.e., we have derived
our contradiction.
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2 Yannick’s Constructions

• “⇐”: given a recursive g define a total recursive f with f(N) = dom(g).

Let e be an index of g and x0 ∈ dom(g) 6= ∅. Now, define f : N→ N by

f(t) =

{
[t]1 if T1e[t]1[t]2,

x0 otherwise,

which is primitive recursive (as case distinction and T1 are primitive re-
cursive) and thus total. Furthermore, if x ∈ dom(g), then there is a y
such that T1exy holds, i.e., f([x, y]) = x. Thus, x ∈ f(N).

On the other hand, f only returns elements from dom(g): either x0, or
[t]1 such that T1e[t]1[t]2 holds, which implies that [t]1 is in dom(g).

• “⇒”: given a total recursive f define a recursive g with dom(g) = f(N).

Let g(x) = µy : f(y) = x. As f is total, g(x) is only undefined, if there
is no y such that f(y) = x, i.e., if x /∈ f(N). On the other hand, if g(x)
is defined, then there is an y such that f(y) = x, i.e., if x ∈ f(N). Thus,
dom(g) = f(N).
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