
Recall that we want to define

Sn(e, x, S(z)) =


h1(e, x, z, Sn(e, x, z)) if conf. encoded by Sn(e, x, z) requires increment

h2(e, x, z, Sn(e, x, z)) if conf. encoded by Sn(e, x, z) requires decrement

h3(e, x, z, Sn(e, x, z)) if conf. encoded by Sn(e, x, z) requires jump

0 otherwise.

The scheme of case distinction is primitive recursive, if the condition guards are
primitive recursive and the functions hi are primitive recursive.

We will need to determine the code of the next instruction to be executed,
which is given by

` = 〈e〉〈Sn(e,x,z)〉0

The configuration encoded by Sn(e, x, z) requires..

• .. an increment, if [`]1 = 0 and [`]2 > 0. In this case, register X[`]2 and
the line number have to be incremented.

• .. a decrement, if [`]1 > 0 and [`]2 = 0. In this case, register X[`]1 has to
be decremented and the line number has to be incremented.

• .. a jump, if [`]1 > 0 and [`]2 > 0. In this case, the line number has to be
set to [`]2, if the current value of register X[`]1 is greater than zero, and
the line number is incremented otherwise (the registers stay unchanged).

Thus, the guards are primitive recursive, as [·]1 and [·]2 are primitive recursive.
Now, we use the following functions to manipulate sequences encoded by 〈·〉:

• inc : N2 → N with inc(0, i) = 0 and

inc(〈x0, . . . , xk〉, i) =

{
〈x0, . . . , xi−1, xi + 1, xi+1, . . . , xk〉 if i < k + 1,

0 otherwise.

We have

inc(x, i) = χ<(0, x) · χ<(i, len(x)) · ((x+ 1) · p(i)− 1)

where p returns the i-th prime number on input i.

• dec: N2 → N with inc(0, i) = 0 and

dec(〈x0, . . . , xk〉, i) =

{
〈x0, . . . , xi−1, xi .− 1, xi+1, . . . , xk〉 if i < k + 1,

0 otherwise.

Note that we use .−, which means we cannot just divide x + 1 by p(i) to
decrement the entry in coordinate i, we first have to check that it is greater
than zero. Also we have to pay attention to the fact that the exponent

1



corresponding to the last entry of the sequence is incremented, hence, we
have to treat it specially (in this case, χ=(i, len(x) − 1) evaluates to 1).
Thus, we have

dec(x, i) = χ<(0, x) · χ<(i, len(x))·(
χ<(χ=(i, len(x)− 1), (x+ 1)i) ·

(
div(x+ 1, p(i))− 1

)
+

χ=(χ=(i, len(x)− 1), (x+ 1)i) · x
)

where (x)y is the power of the i-th prime number in the prime factorization
of x (see problem set 4), and where div is the division function (see problem
set 3).

• upd: N3 → N with inc(0, i, v) = 0 and

upd(〈x0, . . . , xk〉, i, v) =

{
〈x0, . . . , xi−1, v, xi+1, . . . , xk〉 if i < k + 1,

0 otherwise.

We have

upd(x, i, v) = χ<(0, x)·χ<(i, len(x))·[(div(x+1, p(i)(x+1)i+χ=(i,len(x)−1)))·p(i)v−1].

Hence, inc, dec, and upd are primitive recursive.
Now, we can define

h1(e, x, z, Sn(e, x, z)) = inc(inc(Sn(e, x, z), [`]2), 0)

h1(e, x, z, Sn(e, x, z)) = inc(dec(Sn(e, x, z), [`]1), 0)

h3(e, x, z, Sn(e, x, z)) = χ<(0, 〈Sn(e, x, z)〉[`]1) · upd(Sn(e, x, z), 0, [`]2) +

χ=(0, 〈Sn(e, x, z)〉[`]1) · inc(Sn(e, x, z), 0)

where ` = 〈e〉〈Sn(e,x,z)〉0 is still the code of the next instruction that has to be
executed.

2


