Recursion Theory

Recap

Martin Zimmermann

Universität des Saarlandes

July 30th, 2015

Computability, Decidability, Enumerability

Without formalizing the notion of "algorithm" yet, we say that..

- .. an algorithm \mathcal{A} computes a partial function $f : \mathbb{N}^n \to \mathbb{N}$, if \mathcal{A} terminates on input \overline{x} iff $f(\overline{x})$ is defined. Furthermore, if $f(\overline{x})$ is defined, then \mathcal{A} has to return $f(\overline{x})$. We say f is computable.
- .. an algorithm A decides a set A ⊆ Nⁿ, if A on input x
 terminates and returns 1 if x ∈ A and 0 if x ∉ A. We say A is
 decidable.
- .. an algorithm \mathcal{A} enumerates a set $A \subseteq \mathbb{N}^n$, if \mathcal{A} started without input returns the members of A one after the after (in any order). We say that A is enumerable.
- **1.** A decidable iff A and $\mathbb{N}^n \setminus A$ enumerable.
- **2.** A enumerable iff A = dom(f) for some computable f.

Unlimited Register Machines

Very simple notion of algorithm (no distinction between machine and code!)

An unlimited register machine (URM) is a list $\mathcal{P} = I_1, \ldots, I_k$ of instructions such that $I_k = k$ STOP and for every j < k is

$$I_{j} = j \text{ INC}(X_{i}),$$

$$I_{j} = j \text{ DEC}(X_{i}), \text{ or}$$

$$I_{j} = j \text{ IF } X_{i} > 0 \text{ GOTO } \ell$$
with $\ell \in \{1, \dots, k\}$ and $i \ge 1$.

1

Configuration: $(k_0, k_1, k_2, ...)$ where

• $k_0 \in \{1, \ldots, k\}$ is the current line number, and

• $k_i \in \mathbb{N}$ is the current content of register *i*.

URM - Semantics

Successor configuration of (k_0, k_1, k_2, \ldots) :

• none, if $k_0 = k$ (termination)

•
$$(k_0 + 1, k_1, \dots, k_{i-1}, k_i + 1, k_{i+1}, \dots)$$
, if $l_j = j$ INC(X_i)

•
$$(k_0 + 1, k_1, \dots, k_{i-1}, k_i - 1, k_{i+1}, \dots)$$
, if $I_j = j$ DEC(X_i)

•
$$(k'_0, k_1, k_2, ...)$$
, if $I_j = j$ IF $X_i > 0$ GOTO ℓ , where $k'_0 = \ell$, if $k_i > 0$, and $k'_0 = k_0 + 1$, if $k_i = 0$.

- $\mathcal{P}x_1 \cdots x_n \downarrow$, if \mathcal{P} starting with conf. $(1, x_1, \dots, x_n, 0, \dots)$ reaches configuration of the form (k, y_1, y_2, \dots) .
- Then: $\mathcal{P}x_1 \cdots x_n \downarrow y_1$.
- Otherwise: $\mathcal{P}x_1 \cdots x_n \uparrow$.

Encoding URM's

- The pairing function $[x, y] = 2^{x}(2y + 1) 1$ is bijective.
- The inverses
 - $[z]_1 =$ "exponent of 2 in prime factorization of z + 1" and • $[z]_2 = (z + 1)/[z]_1$ satisfy $[[z]_1, [z]_2] = z$.
- \blacksquare The sequence encoding $\langle \varepsilon \rangle = 0$ and

$$\langle x_0, \dots, x_k \rangle = p_0^{x_0} \cdots p_{k-1}^{x_{k-1}} p_k^{x_k+1} - 1$$

is bijective.

Encoding URM's cont'd

Instructions encoded by

- $\operatorname{code}(\operatorname{INC}(X_i)) = [0, i]$
- $\operatorname{code}(\operatorname{DEC}(X_i)) = [i, 0]$
- $code(IF X_i > 0 GOTO \ell) = [i, \ell]$

•
$$code(STOP) = 0$$

URM $\mathcal{P} = I_1, \ldots, I_k$ encoded by

$$\operatorname{code}(\mathcal{P}) = \langle \operatorname{code}(I_1), \ldots, \operatorname{code}(I_k) \rangle$$

- Some *e* do not encode an URM.
- Let \mathcal{P}_e be URM encoded by e, if e encodes one, otherwise an always non-terminating URM.

Primitive Recursive Functions

Base functions:

• Successor
$$S(x) = x + 1$$

- *n*-ary constant zero $c_0^{(n)}(\overline{x}) = 0$
- *i*-th n-ary projection $p_i^{(n)}(x_1, \ldots, x_n) = x_i$ for $1 \le i \le n$

Composition: given $h: \mathbb{N}^m \to \mathbb{N}$ and $g_1, \ldots, g_m: \mathbb{N}^n \to \mathbb{N}$ define $f: \mathbb{N}^n \to \mathbb{N}$ via

$$f(\overline{x}) = h(g_1(\overline{x}), \ldots, g_m(\overline{x}))$$

Primitive recursion: given $g: \mathbb{N}^n \to \mathbb{N}$ and $h: \mathbb{N}^{n+2} \to \mathbb{N}$ define $f: \mathbb{N}^{n+1} \to \mathbb{N}$ via

$$f(\overline{x}, 0) = g(\overline{x})$$
$$f(\overline{x}, y + 1) = h(\overline{x}, y, f(\overline{x}, y))$$

Definition

- **1.** A function is primitive recursive, if it can be constructed from the base functions, composition, and primitive recursion.
- **2.** A set $A \subseteq \mathbb{N}^n$ is primitive recursive, if its characteristic function is primitiverecursive.

Syntactic Sugar:

- Bounded sum and product, e.g., $sum_g(\overline{x}, y) = \sum_{z=0}^{y} g(\overline{x}, y, z)$
- Bounded quantification, e.g., $Q_E \overline{x} y \Leftrightarrow \exists z \leq y R \overline{x} y z$
- Bounded minimization, e.g.,

$$\mu z \leq y \, R \overline{x} y z = \min \left(\{ z \leq y \mid R \overline{x} y z \} \cup \{ y \} \right)$$

• Case distinction (if the conditions are primitive recursive)

$\mu\text{-}\mathbf{recursive}$ Functions

Unbounded minimization (μ -operator): given $g \colon \mathbb{N}^{n+1} \to \mathbb{N}$ define $f \colon \mathbb{N}^n \to \mathbb{N}$ via

$$f(\overline{x}) = \min\{y \mid g(\overline{x}, y) = 0 \text{ and } g(\overline{x}, z) > 0 \text{ for all } z < y\}$$

where min $\emptyset = \bot$.

Notation:
$$f(\overline{x}) = \mu y : g(\overline{x}, y) = 0$$

Definition

- 1. A function is μ -recursive, if it can be constructed from the base functions, composition, primitive recursion, and unbounded minimization.
- **2.** A set $A \subseteq \mathbb{N}^n$ is μ -recursive, if its characteristic function is μ -recursive.

Theorem

There is a primitive recursive function $U: \mathbb{N} \to \mathbb{N}$ and a primitive recursive predicate $T_n \subseteq \mathbb{N}^{n+2}$ for every n such that for every n-ary URM-computable function f, we have

 $f(\overline{x}) = U(\mu y \ T_n e \overline{x} y)$

for some suitable e (an index of f).

Note: U and T_n independent on f, only e depends on f.

- Converse is true as well: every μ-recursive function is URM-computable.
- Corollary: every μ -recursive function is definable with just one application of the μ -operator.

Non-recursive Sets

•
$$\mathcal{K} = \{e \mid \varphi_e(e) \downarrow\} = \{e \mid e \in W_e\} = \{e \mid \exists y T_1 e e y\}.$$

• Tot = $\{e \mid \varphi_e \text{ total}\} = \{e \mid W_e = \mathbb{N}\} = \{e \mid \forall x \exists y T_1 e x y\}.$

Theorem

- **1.** *K* is not recursive.
- 2. Tot is not recursive.

Universal Functions

Let \mathcal{R} be a class of *n*-ary functions. $F: \mathbb{N}^{n+1} \to \mathbb{N}$ is universal for \mathcal{R} , if

• for every $f \in \mathcal{R}$ there exists e such that $f(\overline{x}) = F(e, \overline{x})$, and

• for every e, the function $\overline{x} \mapsto F(e, \overline{x})$ is in \mathcal{R} .

Let $\Phi^{(n+1)}$: $\mathbb{N}^{n+1} \to \mathbb{N}$ be defined by $\Phi(e, \overline{x}) = U(\mu y T_n e \overline{x} y)$.

Theorem

 Φ^{n+1} is universal for the class of n-ary μ -recursive functions, and is itself μ -recursive.

Theorem

- 1. There is no universal function for the class of n-ary total μ -recursive functions that is itself total and μ -recursive.
- **2.** There is no universal function for the class of n-ary p.r. functions that is itself total and p.r..

s-m-n, Rice and Recursion Theorem

Theorem

For all $m, n \ge 1$ there is a total μ -recursive $s_n^m \colon \mathbb{N}^{m+1} \to \mathbb{N}$ such that $\varphi_e^{(m+n)}(\overline{x}, \overline{y}) = \varphi_{s_n^m(e,\overline{x})}^{(n)}(\overline{y})$ for all $\overline{x} \in \mathbb{N}^m, \overline{y} \in \mathbb{N}^n$.

- $A \subseteq \mathbb{N}$ represents semantic program property, if there is a class \mathcal{F} of functions s.t. $e \in A \Leftrightarrow \varphi_e \in \mathcal{F}$.
- A is non-trivial, if $A \neq \emptyset$ and $A \neq \mathbb{N}$.

Theorem

Every non-trivial set that represents a semantic program property is not μ -recursive.

Theorem

For every total μ -recursive $f : \mathbb{N} \to \mathbb{N}$ there is an e s.t. $\varphi_e = \varphi_{f(e)}$.

Enumerable Sets

Theorem

Let $A \subseteq \mathbb{N}$ be non-empty. The following three conditions are equivalent:

- **1.** There is a total μ -recursive $f : \mathbb{N} \to \mathbb{N}$ s.t. $A = f(\mathbb{N})$.
- **2.** There is a μ -recursive $f : \mathbb{N} \to \mathbb{N}$ s.t. $A = f(\mathbb{N})$.
- **3.** There is a μ -recursive $f : \mathbb{N} \to \mathbb{N}$ s.t. A = dom(f).

Such an A is called (μ -recursively) enumerable.

Theorem

K is enumerable.

Reductions

Let $A, B \subseteq \mathbb{N}$.

- $A \leq_m B$ if there exists a total μ -recursive $f : \mathbb{N} \to \mathbb{N}$ such that $x \in A \Leftrightarrow f(x) \in B$.
- $A \leq_1 B$ if there exists an injective total μ -recursive $f : \mathbb{N} \to \mathbb{N}$ such that $x \in A \Leftrightarrow f(x) \in B$.

Lemma

- **1.** \leq_1 , \leq_m are reflexive and transitive.
- **2.** $A \leq_1 B$ implies $A \leq_m B$.
- **3.** $A \leq_1 B$ iff $\overline{A} \leq_1 \overline{B}$.
- **4.** $A \leq_m B$ iff $\overline{A} \leq_m \overline{B}$.
- **5.** $A \leq_m B$ and B μ -recursive, then A μ -recursive.
- **6.** $A \leq_m B$ and B enumerable, then A enumerable.

Completeness

Theorem

 A, \overline{A} enumerable iff $A \mu$ -recursive.

Hence: \overline{K} not enumerable.

A is 1-complete (*m*-complete) if

- A is enumerable, and
- $B \leq_1 A (B \leq_m A)$ for all enumerable B.

Theorem

K is 1-complete and m-complete.

Degrees and Myhill's Theorem

•
$$A \equiv_1 B$$
 iff $A \leq_1 B$ and $B \leq_1 A$.

•
$$A \equiv_m B$$
 iff $A \leq_m B$ and $B \leq_m A$.

Equivalence classes are called degrees.

A and B are recursively isomorphic, if there is a recursive bijection $f : \mathbb{N} \to \mathbb{N}$ such that $x \in A \Leftrightarrow f(x) \in B$.

Theorem

 $A \equiv_1 B$ iff A and B are recursively isomorphic.

Productive and Creative Sets

• $A \subseteq \mathbb{N}$ is productive, if there is a recursive $f : \mathbb{N} \to \mathbb{N}$ such that

$$W_x \subseteq A \Rightarrow f(x) \downarrow \text{ and } f(x) \in A \setminus W_x.$$

• $A \subseteq \mathbb{N}$ is creative, if A is enumerable and \overline{A} is productive.

Lemma

Productive sets are not enumerable.

Theorem

- 1. K is creative.
- **2.** If $A \leq_m B$ and A productive, then B productive.

Immune and Simple Sets

Theorem

- **1.** Every infinite enumerable set contains an infinite recursive subset.
- 2. Every productive set contains an infinite enumerable subset.

- A ⊆ N is immune, if it is infinite and contains no infinite enumerable subset.
- $A \subseteq \mathbb{N}$ is simple, if it is enumerable and \overline{A} is immune.

Theorem

There exists a simple set S.

Comparing Degree Structures

Theorem

There are sets $A \subseteq \mathbb{N}$ and $B \subseteq \mathbb{N}$ such that $A \equiv_m B$ and $A \not\equiv_1 B$.

Theorem

 $A \subseteq \mathbb{N}$ is creative iff A is m-complete.

Theorem

Every simple set is enumerable, not recursive, but also not m-complete.

Truth-table Reductions

- A truth-table condition is a pair $((y_1, \ldots, y_n), \alpha)$ where $\alpha \colon \mathbb{B}^n \to \mathbb{B}$.
- $B \subseteq \mathbb{N}$ satisfies the condition, if $\alpha(\chi_B(y_1), \ldots, \chi_B(y_n)) = 1$.
- tt-conditions are enumerable.

 $A \leq_{tt} B$ if there exists a total recursive function $f : \mathbb{N} \to \mathbb{N}$ such that $x \in A \Leftrightarrow B$ satisfies tt-condition f(x).

Lemma

- **1.** \leq_{tt} is reflexive and transitive.
- **2.** $A \leq_m B$ implies $A \leq_{tt} B$ but the converse is not necessarily true.
- **3.** $A \leq_{tt} \overline{A}$ for every $A \subseteq \mathbb{N}$.
- **4.** $A \leq_{tt} B$ and $B \mu$ -recursive, then $A \mu$ -recursive.

Turing Reductions

Consider URMs with additional oracle instructions

j IF $\mathtt{X_i} \in B$ GOTO ℓ

- \$\mathcal{P}_e^B\$: program with code e and oracle B
 \$\varphi_e^B\$: unary function computed by \$\mathcal{P}_e^B\$.
 \$W_e^B\$: domain of \$\varphi_e^B\$.
- **1.** $A \leq_T B$, if $\chi_A = \varphi_e^B$ for some e (A recursive in B). **2.** A enumerable in B, if $A = W_e^B$ for some e.

Friedberg & Muchnik

Lemma

- **1.** A, \overline{A} enumerable in A iff A recursive in B.
- **2.** \leq_T is reflexive and transitive.
- **3.** $A \leq_{tt} B$ implies $A \leq_T B$, but the converse is not necessarily true.
- **4.** $A \leq_T B$ and B μ -recursive, then A μ -recursive.
 - $A \equiv_T B$ if $A \leq_T B$ and $B \leq_T A$.
 - Equivalence classes are Turing degrees.
 - A Turing degree is enumerable, if it contains an enumerable set.

Theorem

There are incomparable enumerable Turing degrees.

The Turing Jump

For
$$A \subseteq \mathbb{N}$$
 let $A' = \{x \in \mathbb{N} \mid \varphi_x^A(x) \downarrow\}$ and $A^{(n)} = A^{n \text{ times}}$.

Lemma

1. $A \leq_T A'$, but $A' \not\leq_T A$. **2.** $\emptyset' \equiv_T K$.

Theorem

Let B be enumerable in A. Then, $B \leq_m A'$.

The Arithmetic Hierarchy

Define hierarchy Σ_n^0 , Π_n^0 of relations via

- $\Sigma_0^0 = \Pi_0^0$ are the class of recursive relations.
- Σ_{n+1}^0 is the class of relations R such that

$$R\overline{x} \Leftrightarrow \exists y_1 \cdots \exists y_m Q\overline{x}y_1 \dots y_m$$

for some $Q \in \Pi_n^0$.

Π⁰_{n+1} dually with universal quantifiers and Q ∈ Σ⁰_n.
 Define Δ⁰_n = Σ⁰_n ∩ Π⁰_n.

R is arithmetic if it is in some Σ_n^0 .

The Arithmetic Hierarchy

Lemma

Theorem

1.
$$A \in \Sigma_{n+1}^{0}$$
 iff A is enumerable in some $B \in \Sigma_{n}^{0}$.
2. $A \in \Delta_{n+1}^{0}$ iff $A \leq_{T} B$ for some $B \in \Sigma_{n}^{0}$.
3. $A \in \Sigma_{n}^{0}$ iff $A \leq_{m} \emptyset^{(n)}$.
4. $A \in \Delta_{n+1}^{0}$ iff $A \leq_{T} \emptyset^{(n)}$.