Verification – Lecture 10 From LTL to NBA

Bernd Finkbeiner – Sven Schewe Rayna Dimitrova – Lars Kuhtz – Anne Proetzsch

Wintersemester 2007/2008

REVIEW

Büchi automata

A nondeterministic Büchi automaton (NBA) \mathcal{A} is a tuple $(Q, \Sigma, \delta, Q_0, F)$ where:

- ullet Q is a finite set of states with $Q_0\subseteq Q$ a set of initial states
- Σ is an alphabet
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function
- $F \subseteq Q$ is a set of accept (or: final) states

The size of A, denoted |A|, is the number of states and transitions in A:

$$|\mathcal{A}| = |Q| + \sum_{q \in Q} \sum_{A \in \Sigma} |\delta(q, A)|$$

Facts about Büchi automata

- They are as expressive as ω -regular languages
- Nondeterministic BA are more expressive than deterministic BA
- Emptiness check = check for reachable recurrent accept state
 - this can be done in $\mathcal{O}(|\mathcal{A}|)$

Bernd Finkbeiner

Verification - Lecture 10

REVIEW

2

Generalized Büchi automata

A *generalized NBA* (GNBA) \mathcal{G} is a tuple $(Q, \Sigma, \delta, Q_0, \mathcal{F})$ where:

- ullet Q is a finite set of states with $Q_0\subseteq Q$ a set of initial states
- Σ is an alphabet
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function
- ullet $\mathcal{F}=\set{F_1,\ldots,F_k}$ is a (possibly empty) subset of 2^Q

The size of \mathcal{G} , denoted $|\mathcal{G}|$, is the number of states and transitions in \mathcal{G} :

$$|\mathcal{G}| = |Q| + \sum_{q \in Q} \sum_{A \in \Sigma} |\delta(q, A)|$$

Bernd Finkbeiner

Language of a GNBA

- GNBA $\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ and word $\sigma = A_0 A_1 A_2 \ldots \in \Sigma^{\omega}$
- A *run* for σ in \mathcal{G} is an infinite sequence $q_0 q_1 q_2 \dots$ such that:
 - $-q_0 \in Q_0$ and $q_i \xrightarrow{A_i} q_{i+1}$ for all $0 \leqslant i$
- Run $q_0 q_1 \dots$ is *accepting* if for all $F \in \mathcal{F}$: $q_i \in F$ for infinitely many i
- $\sigma \in \Sigma^{\omega}$ is *accepted* by \mathcal{G} if there exists an accepting run for σ
- The accepted language of \mathcal{G} :
 - $-\mathcal{L}_{\omega}(\mathcal{G})=\left\{\sigma\in\Sigma^{\omega}\mid ext{ there exists an accepting run for }\sigma ext{ in }\mathcal{G}
 ight.
 ight\}$
- ullet GNBA ${\cal G}$ and ${\cal G}'$ are ${\it equivalent}$ if ${\cal L}_{\omega}({\cal G})={\cal L}_{\omega}({\cal G}')$

Bernd Finkbeiner Verification – Lecture 10 4

REVIEW

Example

$$\mathcal{F} = \{F_1, F_2\}; F_1 = \{q_1\}; F_2 = \{q_2\}$$

A GNBA for the property "both processes are infinitely often in their critical section"

From GNBA to NBA

For any GNBA \mathcal{G} there exists an NBA \mathcal{A} with:

$$\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{A}) \text{ and } |\mathcal{A}| = \mathcal{O}(|\mathcal{G}| \cdot |\mathcal{F}|)$$

where $\mathcal F$ denotes the set of acceptance sets in $\mathcal G$

Bernd Finkbeiner Verification – Lecture 10 6

Construction

- Let $\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ be the GNBA.
- We assume w.l.o.g that $\mathcal{F} = \{F_1, \dots, F_k\}$ for $k \geqslant 1$. (otherwise just add Q to \mathcal{F} .)
- We construct the NBA $\mathcal{A} = (Q', \Sigma, \delta', Q'_0, F')$ where

$$\begin{split} & - \ Q' = Q \times \{1, \dots k\}; \\ & - \ Q'_0 = Q_0 \times \{1\}; \\ & - \ \delta(\langle q, i \rangle, A) = \left\{ \begin{array}{ll} \{\langle q', i \rangle \mid q' \in \delta(q, A)\} & \text{if } q \not \in F_i, \\ \{\langle q', i + 1 \rangle \mid q' \in \delta(q, A)\} & \text{if } q \in F_i, i < k, \\ \{\langle q', 1 \rangle \mid q' \in \delta(q, A)\} & \text{if } q \in F_i, i = k; \end{array} \right. \\ & - \ F' = F_1 \times \{1\}. \end{aligned}$$

Example

Bernd Finkbeiner Verification – Lecture 10 8

Product of Büchi automata

The product construction for finite automata does *not* work:

$$\mathcal{L}_{\omega}(\mathcal{A}_1) = \mathcal{L}_{\omega}(\mathcal{A}_2) = \{ A^{\omega} \}, \text{ but } \mathcal{L}_{\omega}(\mathcal{A}_1 \otimes \mathcal{A}_2) = \emptyset$$

Product of Büchi automata

Bernd Finkbeiner Verification – Lecture 10 10

Intersection

For GNBA \mathcal{G}_1 and \mathcal{G}_2 there exists a GNBA \mathcal{G} with $\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{G}_1) \cap \mathcal{L}_{\omega}(\mathcal{G}_2) \quad \text{and} \quad |\mathcal{G}| = \mathcal{O}(|\mathcal{G}_1| \cdot |\mathcal{G}_2|)$

Construction

- Let $\mathcal{G}_1 = (Q_1, \Sigma, \delta_1, Q_{0,1}, \mathcal{F}_1)$ and $\mathcal{G}_2 = (Q_2, \Sigma, \delta_2, Q_{0,2}, \mathcal{F}_2)$.
- Construct $\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ where
 - $Q = Q_1 \times Q_2;$
 - $-Q_0=Q_{0,1}\times Q_{0,2};$
 - $-\langle q_1',q_2'\rangle\in\delta(\langle q_1,q_2\rangle,A)$ iff $q_1'\in\delta_1(q_1,A)$ and $q_2'\in\delta_2(a_2,A)$;
 - $\mathcal{F} = \{F_1 \times Q_2 \mid F_1 \in \mathcal{F}_1\} \cup \{Q_1 \times F_2 \mid F_2 \in \mathcal{F}_2\}.$

Bernd Finkbeiner Verification – Lecture 10 12

From LTL to NBA

Propositional linear-time temporal logic

Propositional LTL: assertion language = propositional logic

BNF grammar for LTL formulas over propositions AP with $a \in AP$:

$$\varphi ::= \mathsf{true} \; \left| \; a \; \right| \; \varphi_1 \wedge \varphi_2 \; \left| \; \varphi_1 \vee \varphi_2 \; \right| \; \neg \varphi \; \left| \; \bigcirc \varphi \; \right| \; \Box \varphi \; \left| \; \diamondsuit \varphi \; \right| \; \varphi_1 \, \mathcal{W} \, \varphi_2 \; \left| \; \varphi_1 \, \mathcal{U} \, \varphi_2 \; \right|$$

Bernd Finkbeiner Verification – Lecture 10 14

REVIEW

Expansion laws

Sublogic

For the purposes of the construction, we can assume that our formulas only contain the operators \land , \neg , \bigcirc , and $\mathcal U$:

$$\varphi \lor \psi \quad \equiv \quad \neg(\neg \varphi \land \neg \psi)$$

$$\diamondsuit \varphi \quad \equiv \quad \mathsf{true} \ \mathcal{U} \ \varphi$$

$$\Box \ \varphi \quad \equiv \quad \neg(\diamondsuit \neg \varphi)$$

$$\varphi \ \mathcal{W} \ \psi \quad \equiv \quad \varphi \ \mathcal{U} \ \psi \lor \Box \ \phi$$

Bernd Finkbeiner Verification – Lecture 10 16

From LTL to GNBA: Idea

- States are sets of formulas:
 - for $\sigma = A_0 A_1 A_2 \ldots$, expand $A_i \subseteq \mathit{AP}$ with sub-formulas of φ
 - . . . to obtain the infinite word $\bar{\sigma} = B_0 B_1 B_2 \dots$ such that

$$\psi \in B_i$$
 if and only if $\sigma^i = A_i A_{i+1} A_{i+2} \ldots \models \psi$

- $-\bar{\sigma}$ is a run in GNBA \mathcal{G}_{ω} for σ
- \bullet Transitions are derived from the semantics of \bigcirc and the expansion law for $\mathcal U$
- Accept sets guarantee that: $\bar{\sigma}$ is an accepting run for σ iff $\sigma \models \varphi$

From LTL to GNBA: Idea (cont'd)

- Example: $\varphi = a \ \mathcal{U} (\neg a \land b)$ and $\sigma = \{a\}\{a,b\}\{b\}\dots$
 - B_i is a subset of $\{a, b, \neg a \land b, \varphi\} \cup \{\neg a, \neg b, \neg (\neg a \land b), \neg \varphi\}$
 - this set of formulas is also called the *closure* of φ
- Extend $A_0 = \{ a \}$, $A_1 = \{ a, b \}$, $A_2 = \{ b \}$, ... as follows:
 - extend A_0 with $\neg b$, $\neg(\neg a \land b)$, and φ as they hold in $\sigma^0 = \sigma$ (and no others)
 - extend A_1 with $\neg(\neg a \land b)$ and φ as they hold in σ^1 (and no others)
 - extend A_2 with $\neg a$, $\neg a \wedge b$ and φ as they hold in σ^2 (and no others)
 - . . . and so forth
- Result:

$$- \bar{\sigma} = \underbrace{\{a, \neg b, \neg(\neg a \land b), \varphi\}}_{B_0} \underbrace{\{a, b, \neg(\neg a \land b), \varphi\}}_{B_1} \underbrace{\{\neg a, b, \neg a \land b, \varphi\}}_{B_2} \dots$$

Bernd Finkbeiner Verification – Lecture 10 18

Closure

For LTL-formula φ , the set $\mathit{closure}(\varphi)$ consists of all subformulas ψ of φ and their negation $\neg \psi$

(where ψ and $\neg\neg\psi$ are identified)

$$\text{for } \varphi = a \, \mathcal{U} \, (\neg a \wedge b), \, \textit{closure}(\varphi) = \{ \, a, b, \neg a, \neg b, \neg a \wedge b, \neg (\neg a \wedge b), \varphi, \neg \varphi \, \}$$

Can we choose any subset of $closure(\varphi)$ for B_i ?

Elementary sets of formulae

 $B \subseteq \mathit{closure}(\varphi)$ is *elementary* if:

- 1. B is *logically consistent* if for all $\varphi_1 \wedge \varphi_2, \psi \in closure(\varphi)$:
 - $\varphi_1 \land \varphi_2 \in B \iff \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\psi \in B \Rightarrow \neg \psi \notin B$
 - true $\in closure(\varphi) \Rightarrow true \in B$
- 2. *B* is *locally consistent* if for all $\varphi_1 \mathcal{U} \varphi_2 \in closure(\varphi)$:
 - $\varphi_2 \in B \Rightarrow \varphi_1 \mathcal{U} \varphi_2 \in B$
 - $\varphi_1 \mathcal{U} \varphi_2 \in B \text{ and } \varphi_2 \not\in B \Rightarrow \varphi_1 \in B$
- 3. *B* is *maximal*, i.e., for all $\psi \in closure(\varphi)$:
 - $\psi \notin B \Rightarrow \neg \psi \in B$

Bernd Finkbeiner

Verification - Lecture 10

20

The GNBA of LTL-formula φ

For LTL-formula φ , let $\mathcal{G}_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$ where

• Q is the set of all elementary sets of formulas $B \subseteq \mathit{closure}(\varphi)$

$$-Q_0 = \left\{ B \in Q \mid \varphi \in B \right\}$$

- $\bullet \ \mathcal{F} \ = \ \big\{ \ \big\{ \ B \in Q \mid \varphi_1 \, \mathcal{U} \, \varphi_2 \not \in B \ \text{or} \ \varphi_2 \in B \ \big\} \mid \varphi_1 \, \mathcal{U} \, \varphi_2 \in \textit{closure}(\varphi) \big\}$
- The transition relation $\delta: Q \times 2^{AP} \rightarrow 2^Q$ is given by:
 - $-\delta(B,B\cap AP)$ is the set of all elementary sets of formulas B' satisfying:
 - (i) For every $\bigcirc \psi \in closure(\varphi)$: $\bigcirc \psi \in B \iff \psi \in B'$, and
 - (ii) For every $\varphi_1 \mathcal{U} \varphi_2 \in \mathit{closure}(\varphi)$:

$$\varphi_1 \mathcal{U} \varphi_2 \in B \iff \left(\varphi_2 \in B \lor (\varphi_1 \in B \land \varphi_1 \mathcal{U} \varphi_2 \in B') \right)$$

GNBA for LTL-formula \bigcirc a

Bernd Finkbeiner Verification – Lecture 10 22

GNBA for LTL-formula $a\,\mathcal{U}\,b$

Main result

[Vardi, Wolper & Sistla 1986]

For any LTL-formula φ (over AP) there exists a GNBA \mathcal{G}_{φ} over 2^{AP} such that:

(a)
$$\sigma \in \mathcal{L}_{\omega}(\mathcal{G}_{\varphi})$$
 iff $\sigma \models \varphi$

- (b) \mathcal{G}_{arphi} can be constructed in time and space $\mathcal{O}\left(2^{|arphi|}
 ight)$
- (c) #accepting sets of \mathcal{G}_{arphi} is bounded above by $\mathcal{O}(|arphi|)$
- \Rightarrow every LTL-formula expresses an ω -regular property!