Verification – Lecture 11 Model Checking

Bernd Finkbeiner – Sven Schewe Rayna Dimitrova – Lars Kuhtz – Anne Proetzsch

Wintersemester 2007/2008

REVIEW

From LTL to GNBA

GNBA \mathcal{G}_{φ} over 2^{AP} for LTL-formula φ with $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi}) = \mathit{Words}(\varphi)$:

- Assume φ only contains the operators \wedge , \neg , \bigcirc and $\mathcal U$
- States are *elementary sets* of sub-formulas in φ
 - for $\sigma = A_0 A_1 A_2 \ldots \in Words(\varphi)$, expand $A_i \subseteq AP$ with sub-formulas of φ
 - . . . to obtain the infinite word $\bar{\sigma} = B_0 B_1 B_2 \dots$ such that

$$\psi \in B_i$$
 if and only if $\sigma^i = A_i A_{i+1} A_{i+2} \ldots \models \psi$

- $\bar{\sigma}$ is intended to be a run in GNBA \mathcal{G}_{φ} for σ
- ullet Transitions are derived from semantics \bigcirc and expansion law for ${\mathcal U}$
- Accept sets guarantee that: $\bar{\sigma}$ is an accepting run for σ iff $\sigma \models \varphi$

Elementary sets of formulae

 $B \subset closure(\varphi)$ is *elementary* if:

- 1. B is *logically consistent* if for all $\varphi_1 \wedge \varphi_2, \psi \in closure(\varphi)$:
 - $\varphi_1 \land \varphi_2 \in B \iff \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\psi \in B \Rightarrow \neg \psi \notin B$
 - true $\in closure(\varphi) \Rightarrow true \in B$
- 2. *B* is *locally consistent* if for all $\varphi_1 \mathcal{U} \varphi_2 \in closure(\varphi)$:
 - $\varphi_2 \in B \Rightarrow \varphi_1 \mathcal{U} \varphi_2 \in B$
 - $\varphi_1 \mathcal{U} \varphi_2 \in B \text{ and } \varphi_2 \not\in B \Rightarrow \varphi_1 \in B$
- 3. *B* is *maximal*, i.e., for all $\psi \in closure(\varphi)$:
 - $\psi \notin B \Rightarrow \neg \psi \in B$

Bernd Finkbeiner

Verification - Lecture 11

2

REVIEW

The GNBA of LTL-formula φ

For LTL-formula φ , let $\mathcal{G}_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$ where

- Q = all elementary sets $B \subseteq \mathit{closure}(\varphi)$, $Q_0 = \{\, B \in Q \mid \varphi \in B \,\}$
- $\bullet \ \ \mathcal{F} \ = \ \big\{ \ \big\{ \ B \in Q \mid \varphi_1 \, \mathcal{U} \, \varphi_2 \not \in B \ \text{or} \ \varphi_2 \in B \ \big\} \mid \varphi_1 \, \mathcal{U} \, \varphi_2 \in \textit{closure}(\varphi) \big\}$
- The transition relation $\delta: Q \times 2^{AP} \to 2^Q$ is given by:
 - If $A \neq B \cap AP$ then $\delta(B, A) = \emptyset$
 - $\delta(B, B \cap AP)$ is the set of all elementary sets of formulas B' satisfying:
 - (i) For every $\bigcirc \psi \in closure(\varphi)$: $\bigcirc \psi \in B \iff \psi \in B'$, and
 - (ii) For every $\varphi_1 \mathcal{U} \varphi_2 \in \mathit{closure}(\varphi)$:

$$\varphi_1 \mathcal{U} \varphi_2 \in B \iff \left(\varphi_2 \in B \lor (\varphi_1 \in B \land \varphi_1 \mathcal{U} \varphi_2 \in \mathbf{B}') \right)$$

GNBA for LTL-formula \bigcirc a

$$Q_0 = \{\,B_1, B_3\,\} \text{ since } \bigcirc a \in B_1 \text{ and } \bigcirc a \in B_3$$

$$\delta(B_2, \{\,a\,\}) = \{\,B_3, B_4\,\} \text{ as } B_2 \cap \{\,a\,\} = \{\,a\,\}, \, \neg \bigcirc a = \bigcirc \neg a \in B_2, \text{ and } \neg a \in B_3, B_4$$

$$\delta(B_1, \{\,a\,\}) = \{\,B_1, B_2\,\} \text{ as } B_1 \cap \{\,a\,\} = \{\,a\,\}, \, \bigcirc a \in B_1 \text{ and } a \in B_1, B_2$$

$$\delta(B_4, \{\,a\,\}) = \varnothing \text{ since } B_4 \cap \{\,a\,\} = \varnothing \neq \{\,a\,\}$$

The set ${\mathcal F}$ is empty, since $\varphi=\bigcirc a$ does not contain an until-operator

Bernd Finkbeiner Verification – Lecture 11 4

REVIEW

GNBA for LTL-formula $a \mathcal{U} b$

Correctness theorem

$$\mathit{Words}(arphi) = \mathcal{L}_{\omega}(\mathcal{G}_{arphi})$$

$$Words(\varphi) = \{ \sigma \in \Sigma^{\omega} \mid \sigma \models \varphi \}$$

Bernd Finkbeiner Verification – Lecture 11 6

NBA are more expressive than LTL

Corollary: every LTL-formula expresses an ω -regular property

But: there exist ω -regular properties that cannot be expressed in LTL

Example: there is no LTL formula φ with $\mathit{Words}(\varphi) = P$ for the LT-property:

$$P = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{\{a\}} \right)^{\omega} \mid a \in A_{2i} \text{ for } i \geqslant 0 \right\}$$

But there exists an NBA ${\mathcal A}$ with ${\mathcal L}_{\omega}({\mathcal A})={ extit{P}}$

 \Rightarrow there are ω -regular properties that cannot be expressed in LTL!

Complexity for LTL to NBA

For any LTL-formula φ (over AP) there exists an NBA \mathcal{A}_{φ} with $Words(\varphi) = \mathcal{L}_{\omega}(\mathcal{A}_{\varphi})$ and which can be constructed in time and space in $2^{\mathcal{O}(|\varphi|)}$.

Bernd Finkbeiner Verification – Lecture 11 8

Time and space complexity in $2^{\mathcal{O}(|\varphi| \cdot \log |\varphi|)}$

- States GNBA \mathcal{G}_{φ} are elementary sets of formulae in $closure(\varphi)$
 - sets B can be represented by bit vectors with single bit per subformula ψ of φ
- ullet The number of states in \mathcal{G}_{arphi} is bounded by $2^{|\mathrm{subf}(arphi)|}$
 - where $\operatorname{subf}(\varphi)$ denotes the set of all subformulae of φ
- ullet The number of accepting sets of \mathcal{G}_{φ} is bounded above by $\mathcal{O}(|\varphi|)$
- The number of states in NBA \mathcal{A}_{φ} is thus bounded by $2^{\mathcal{O}(|\varphi|)} \cdot \mathcal{O}(|\varphi|)$

•
$$2^{\mathcal{O}(|\varphi|)} \cdot \mathcal{O}(|\varphi|) = 2^{\mathcal{O}(|\varphi|)}$$

Lower bound

There exists a family of LTL formulas φ_n with $|\varphi_n|=\mathcal{O}(\operatorname{poly}(n))$ such that every NBA \mathcal{A}_{φ_n} for φ_n has at least 2^n states

Bernd Finkbeiner Verification – Lecture 11 10

Proof (1)

Let AP be non-empty, that is, $|2^{AP}| \ge 2$ and:

$$\mathcal{L}_n = \left\{ A_1 \dots A_n A_1 \dots A_n \sigma \mid A_i \subseteq AP \land \sigma \in \left(2^{AP}\right)^{\omega} \right\}, \quad \text{for } n \geqslant 0$$

It follows $\mathcal{L}_n = \mathit{Words}(\varphi_n)$ where $\varphi_n = \bigwedge_{a \in \mathit{AP}} \bigwedge_{0 \leqslant i < n} (\bigcirc^i a \longleftrightarrow \bigcirc^{n+i} a)$

 $arphi_n$ is an LTL formula of polynomial length: $|arphi_n| \in \mathcal{O}\Big(|\mathit{AP}| \cdot n\Big)$

However, any NBA ${\mathcal A}$ with ${\mathcal L}_{\omega}({\mathcal A})={\mathcal L}_n$ has at least 2^n states

Proof (2)

Claim: any NBA $\mathcal A$ for $\bigwedge_{a \in \mathit{AP}} \bigwedge_{0 \leqslant i < n} (\bigcirc^i a \longleftrightarrow \bigcirc^{n+i} a)$ has at least 2^n states

Words of the form $A_1 \dots A_n A_1 \dots A_n \varnothing \varnothing \varnothing \dots$ are accepted by A

 \mathcal{A} thus has for every word $A_1 \dots A_n$ of length n, a state $q(A_1 \dots A_n)$, say, which can be reached from an initial state by consuming $A_1 \dots A_n$

From $q(A_1 ... A_n)$, it is possible to visit an accept state infinitely often by accepting the suffix $A_1 ... A_n \varnothing \varnothing \varnothing ...$

If $A_1 \dots A_n \neq A'_1 \dots A'_n$ then

$$A_1 \ldots A_n A'_1 \ldots A'_n \varnothing \varnothing \varnothing \ldots \notin \mathcal{L}_n = \mathcal{L}_{\omega}(\mathcal{A})$$

Therefore, the states $q(A_1 ... A_n)$ are all pairwise different

Given
$$|2^{AP}|$$
 possible sequences $A_1 \dots A_n$, NBA \mathcal{A} has $\geqslant \left(\left|2^{AP}\right|\right)^n \geqslant 2^n$ states

Bernd Finkbeiner Verification – Lecture 11 12

REVIEW

LTL model checking

Bernd Finkbeiner Verification – Lecture 11 13

Fair Transition Systems

$$\Phi = (V, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C})$$

- $\mathcal{J} \subseteq \mathcal{T}$: set of just (weakly fair) transitions.
- $C \subseteq T$: set of compassionate (strongly fair) transitions.
- Justice: for each just transition it is not the case that the transition is continually enabled but only taken at finitely many positions.
- Compassion: for each compassionate transition it is not the case that the transition is enabled at infinitely many positions but only taken at finitely many positions.

Bernd Finkbeiner Verification – Lecture 11 14

Fairness

Justice can be specified in LTL as follows:

$$\textit{justice} \ = \ \bigwedge_{\tau \in \mathcal{J}} \ (\Box \ \textit{enabled}(\tau)) \ \Rightarrow \ (\Box \ \diamondsuit \ \textit{taken}(\tau))$$

Compassion can be specified in LTL as follows:

$$\textit{compassion} \ = \ \bigwedge_{\tau \in \mathcal{C}} \ (\Box \diamondsuit \textit{enabled}(\tau)) \ \Rightarrow \ (\Box \diamondsuit \textit{taken}(\tau))$$

Fairness

Verification of fair transition systems can be reduced to the verification of transition systems without fairness:

- Let $fair = justice \land compassion$.
- Then,

Bernd Finkbeiner

Verification - Lecture 11

16

Cycle detection

How to check for a reachable cycles containing an F-state?

- Alternative 1:
 - compute the strongly connected components (SCCs) in G(S)
 - check whether one such SCC is reachable from an initial state
 - $-\ldots$ that contains an F-state
 - "eventually forever $\neg F$ " is refuted if and only if such SCC is found
- Alternative 2:
 - use a nested depth-first search
 - ⇒ more adequate for an on-the-fly verification algorithm
 - ⇒ easier for generating counterexamples

let's have a closer look into this by first dealing with two-phase DFS

A two-phase depth first-search

- 1. Determine all F-states that are reachable from some initial state this is performed by a standard depth-first search
- 2. For each reachable F-state, check whether it belongs to a cycle
 - start a depth-first search in s
 - check for all states reachable from s whether there is a "backward" edge to s
- Time complexity: $\Theta(N \cdot (N+M))$
 - where N is the number of states and M the number of edges
 - fragments reachable via K F-states are searched K times

Bernd Finkbeiner Verification – Lecture 11 18

Two-phase depth first-search

Input: finite-state transition system S and accept set F *Output:* "yes" if S contains a reachable cycle with an F-state, otherwise "no".

```
set of states R := \emptyset; R_F := \emptyset;
                                               (* set of reachable states resp. F-states *)
stack of states U := \varepsilon;
                                                 (* DFS-stack for first DFS, initial empty *)
                                              (* set of visited states for the cycle check *)
set of states T := \emptyset;
                                                         (* DFS-stack for the cycle check *)
stack of states V := \varepsilon;
for all s \models \Theta and s \notin R do visit(s); od
                                                                               (* phase one *)
for all s \in R_F do
  T := \varnothing; V := \varepsilon;
                                                                               (* phase two *)
  if cycle_check(s) then return "no"
                                                                    (* s belongs to a cycle *)
od
                                             (* none of the F-states belongs to a cycle *)
return "yes"
```

Find F-states

```
procedure visit (state s)
  push(s, U);
                                                                                   (* push s on the stack *)
  R := R \cup \{s\};
                                                                                  (* mark s as reachable *)
  repeat
    s' := top(U)
    if Successors(s') \subseteq R then
       pop(U);
       if s' \in F then R_F := R_F \cup \{s'\}; fi
       let s'' \in Successors(s') \setminus R
       push(s'', U);
      R := R \cup \{s''\};
                                                                    (* state s'' is a new reachable state *)
  until (U = \varepsilon)
endproc
```

this is a standard DFS checking for F-states

Bernd Finkbeiner Verification – Lecture 11 20

Cycle detection

```
procedure boolean cycle_check(state s)
  boolean cycle_found := false;
                                                                                     (* no cycle found yet *)
  push(s, V); T := T \cup \{s\};
                                                                                    (* push s on the stack *)
  repeat
    s' := top(V);
                                                                                 (* take top element of V *)
    if s \in Successors(s') then
                                                              (* if s \in Successors(s'), a cycle is found *)
       cycle_found := true;
                                                                                    (* push s on the stack *)
       push(s, V);
     else
       if Successors(s') \setminus T \neq \emptyset then
         let s'' \in Successors(s') \setminus T;
         push(s'', V), T := T \cup \{s''\};
                                                                    (* push an unvisited successor of s'*)
                                                                      (* unsuccessful cycle search for s'*)
         else pop(V);
       fi
    fi
  \mathbf{until} \; ((V = \varepsilon) \; \vee \; \mathit{cycle\_found})
  return cycle_found
endproc
```

Nested depth-first search

- Idea: perform the two depth-first searches in an interleaved way
 - the outer DFS serves to encounter all reachable F-states
 - the inner DFS seeks for backward edges

Nested DFS

- on full expansion of F-state s in the outer DFS, start inner DFS
- in inner DFS, visit all states reachable from s not visited in the inner DFS yet
- no backward edge found? continue the outer DFS (look for next F state)
- Counterexample generation: DFS stack concatenation
 - stack U for the outer DFS = path fragment from $s_0 \in I$ to s (in reversed order)
 - stack V for the inner DFS = a cycle from state s to s (in reversed order)

Bernd Finkbeiner Verification – Lecture 11 22

The outer DFS (1)

Input: transition system S without terminal states, and proposition Φ Output: "yes" if S contains a reachable cycle with an F-state, otherwise "no" plus counterexample

```
set of states R := \emptyset;
                                                                    (* set of visited states in the outer DFS *)
stack of states U := \varepsilon;
                                                                                   (* stack for the outer DFS *)
                                                                    (* set of visited states in the inner DFS *)
set of states T := \emptyset;
stack of states V := \varepsilon;
                                                                                   (* stack for the inner DFS *)
boolean cycle_found := false;
while (I \setminus R \neq \emptyset \land \neg cycle\_found) do
  let s \in I \setminus R;
                                                                                     (* explore the reachable *)
  reachable_cycle(s);
                                                                                  (* fragment with outer DFS *)
od
if ¬cycle_found then
  return ("yes")
else
                                                                  (* stack contents yield a counterexample *)
  return ("no", reverse(V.U))
fi
```

The outer DFS (2)

```
procedure reachable_cycle (state s)
  push(s, U);
                                                                                        (* push s on the stack *)
  R := R \cup \{s\};
  repeat
     s' := top(U);
     if Successors(s') \setminus R \neq \emptyset then
       let s'' \in Successors(s') \setminus R;

push(s'', U);

R := R \cup \{s''\};
                                                                       (* push the unvisited successor of s'*)
                                                                                     (* and mark it reachable *)
     else
       pop(U);
                                                                                   (* outer DFS finished for s' *)
       if s' \in F then
          cycle\_found := cycle\_check(s');
                                                                                     (* proceed with the inner *)
                                                                                             (* DFS in state s' *)
       fi
    fi
  until ((U = \varepsilon) \lor cycle\_found)
                                                                             (* stop when stack for the outer *)
                                                                              (* DFS is empty or cycle found *)
endproc
```

Bernd Finkbeiner Verification – Lecture 11 24

Time complexity

The worst-case time complexity of nested DFS is in $\mathcal{O}(N+M)$

where N is # reachable states in S, and M is # edges in state graph