Verification — Lecture 11
Model Checking

Bernd Finkbeiner — Sven Schewe
Rayna Dimitrova — Lars Kuhtz — Anne Proetzsch

Wintersemester 2007/2008

REVIEW

From LTL to GNBA
GNBA G, over 247 for LTL-formula ¢ with £,,(G,) = Words(y):

e Assume ¢ only contains the operators A, =, O and U
-V, —, <, 0, W, and so on, are expressed in terms of these basic operators

e States are elementary sets of sub-formulas in ¢

— foro = ApA1As ... € Words(p), expand A; C AP with sub-formulas of ¢
— ... to obtain the infinite word @ = ByB;B-. .. such that

”l,/) € B; if and Only if O'i = AiAi—l-lAi—i—Z ce |: ’Lb
— o is intended to be a run in GNBA G, for o
e Transitions are derived from semantics O and expansion law for &/

e Accept sets guarantee that: is an accepting run for o iff 0 = ¢

Bernd Finkbeiner Verification — Lecture 11 1

REVIEW
Elementary sets of formulae

B C closure(y) is elementary if:
1. B is logically consistent if for all o1 A 2,9 € closure(y):
e p1ANp2€EB & ;1 € Bandps, € B
e Yy EB = —Y¢&B
e true € closure(y) = true € B
2. B is locally consistent if for all o1 U po € closure(y):
e po € B = ptUps €B
° <p1L{<p26Band<p2¢B = cpleB
3. Bis maximal, i.e., for all i) € closure(y):

e V¢ B = —Y€EB

Bernd Finkbeiner Verification — Lecture 11 2

REVIEW
The GNBA of LTL-formula ¢
For LTL-formula ¢, let G, = (@, 247, 6, Qo, F) where

e () = all elementary sets B C closure(y) ,Qo={B<€Q|p€ B}

e F = {{BcQ|pihpy g Borgpy € B} | o1l g3 € closure(p)}

e The transition relation § : Q x 24F — 29 is given by:

- IfA# BnNnAPthené(B,A) = @

— §(B, B N AP) is the set of all elementary sets of formulas B’ satisfying:
(i) Forevery O € closure(p): Ov € B & ¢ € B',and
(i) Forevery p1U o € closure(y):

p1UUps € B & (<P2€B V (p1 € B A 9011/{%0263/))

Bernd Finkbeiner Verification — Lecture 11 3

REVIEW

GNBA for LTL-formula O a

Qo ={Bi1,Bs3}sinceOac Biand Oa € Bs
0(Ba,{a})={Bs,By}tasBonN{a}={a},~Oa=0aé€ By, and —a € B3, By
0(B1,{a})={B1,B2}tasBinNn{a}={a},Oa € Bianda € By, B>
0(Bg,{a})=0osinceByNn{a}l =0 #{a}

The set F is empty, since ¢ = O a does not contain an until-operator

Bernd Finkbeiner Verification — Lecture 11 4

REVIEW

GNBA for LTL-formula a U/ b

oam J\Q&

{~a,~b,~(alib) })

Bs
[{a,ﬁb,—u(an)}J

~ {-a,balib}

B, ()

Bernd Finkbeiner Verification — Lecture 11 5

Correctness theorem

Words(ip) = L£.,(G,)

Words(p) = {0 € ¥ | 0 = ¢}

Bernd Finkbeiner Verification — Lecture 11

NBA are more expressive than LTL

Corollary: every LTL-formula expresses an w-regular property

But: there exist w-regular properties that cannot be expressed in LTL

Example: there is no LTL formula ¢ with Words(¢) = P for the LT-property:
P = {AoAlAg... c (2{“})w | a € Ay fori> 0}

But there exists an NBA A with £,(A) = P

= there are w-regular properties that cannot be expressed in LTL!

Bernd Finkbeiner Verification — Lecture 11

Complexity for LTL to NBA

For any LTL-formula ¢ (over AP) there exists an NBA A,
with Words(y) = L, (A,) and

which can be constructed in time and space in 2°(#D.

Bernd Finkbeiner Verification — Lecture 11 8

Time and space complexity in 2€(«l-1og[#)

States GNBA G, are elementary sets of formulae in closure(y)

— sets B can be represented by bit vectors with single bit per subformula) of ¢

The number of states in G, is bounded by 2/sW0f(¥)!

— where subf(y) denotes the set of all subformulae of ¢

The number of accepting sets of G, is bounded above by O(|¢|)

The number of states in NBA A, is thus bounded by 29U . O(|y)|)

20(I2)) . O(|g|) = 20(I%D) M

Bernd Finkbeiner Verification — Lecture 11 9

Lower bound

There exists a family of LTL formulas ¢,, with |¢,,| = O(poly(n))

such that every NBA A, for ¢,, has at least 2" states

Bernd Finkbeiner Verification — Lecture 11

10

Proof (1)

Let AP be non-empty, that is, |2AP| > 2 and:

L, = {Al...AnAl...Ana|AZ-§AP/\a€ (2AP)W}, form >0

It follows £,, = Words(¢,) where o, = /\ A\ (O'a+— 0" a)

acAP 0<i<n
¢n is an LTL formula of polynomial length: |¢,| € O (|AP| : n)

However, any NBA A with £,(.A) = £,, has at least 2" states

Bernd Finkbeiner Verification — Lecture 11

11

Proof (2)

Claim: any NBA Afor A /\ (O'a +— O"""a) has at least 2" states
W AP 0<i<n

Words of the form A; ... A, A, ... A, @3 @ ... are accepted by A

A thus has for every word A; . . . A, of length n, a state q(A; . .. A,), say,
which can be reached from an initial state by consuming A; . . . A,

From q(A; ... A,), itis possible to visit an accept state infinitely often
by accepting the suffix A, ... A, oo o. ..

fA ... A, # A ... A then

A .. AA..AS0D...¢ L, = L,(A)

Therefore, the states ¢(A; . .. A,,) are all pairwise different

Given |2AP| possible sequences A; ... A,, NBA A has > (‘2APD > 2" states

Bernd Finkbeiner Verification — Lecture 11 12

REVIEW

LTL model checking
[Negation of property]

I

’ Transition system ‘ ’ LTL-formula —¢ ‘

model checker

’Generalized Bichi automaton G- ‘

| State graph S ‘ ’ Bchi automaton A ‘
Product
S® A-p
]
L—ne—‘ reachable cycle with F'-state? ’—ye91
¥ ¥
‘Yes’ [‘No’ (counter-example) j

Bernd Finkbeiner Verification — Lecture 11 13

Fair Transition Systems

®=(V,0,7,7,C)

J C T: set of just (weakly fair) transitions.

C C T set of compassionate (strongly fair) transitions.

Justice: for each just transition it is not the case that the transition is
continually enabled but only taken at finitely many positions.

Compassion: for each compassionate transition it is not the case that
the transition is enabled at infinitely many positions but only taken at
finitely many positions.

Bernd Finkbeiner Verification — Lecture 11 14

Fairness

e Justice can be specified in LTL as follows:

justice =\ (O enabled(r)) = (O< taken(r))
TedJ

e Compassion can be specified in LTL as follows:

compassion = [\ (O < enabled(r)) = (O0< taken(t))

TeC

Bernd Finkbeiner Verification — Lecture 11 15

Fairness

Verification of fair transition systems can be reduced to the verification
of transition systems without fairness:

e Let fair = justice N compassion.

e Then,

V.0,T,.7,C) F¢ it (V.0,T,2,0) = fair— ¢

Bernd Finkbeiner Verification — Lecture 11 16

Cycle detection

How to check for a reachable cycles containing an F-state?

e Alternative 1:

— compute the strongly connected components (SCCs) in G(S)
— check whether one such SCC is reachable from an initial state
— ... that contains an F'-state

— “eventually forever — F" is refuted if and only if such SCC is found

e Alternative 2:

— use a nested depth-first search
= more adequate for an on-the-fly verification algorithm
= easier for generating counterexamples

let’s have a closer look into this by first dealing with two-phase DFS

Bernd Finkbeiner Verification — Lecture 11 17

A two-phase depth first-search

1. Determine all F'-states that are reachable from some initial state

this is performed by a standard depth-first search

2. For each reachable F'-state, check whether it belongs to a cycle

— start a depth-first search in s
— check for all states reachable from s whether there is a “backward” edge to s

e Time complexity: ©(N-(N+M))

— where N is the number of states and M the number of edges
— fragments reachable via K F'-states are searched K times

Bernd Finkbeiner Verification — Lecture 11 18

Two-phase depth first-search

Input: finite-state transition system S and accept set F’
Output: "yes” if S contains a reachable cycle with an F'-state, otherwise "no”.

set of states R := 9; Rp := &; (* set of reachable states resp. F'-states)
stack of states U := ¢; (* DFS-stack for first DFS, initial empty *)
set of states T' := o; (* set of visited states for the cycle check *)
stack of states V := ¢; (* DFS-stack for the cycle check *)
forall s = © and s ¢ R do visit(s); od (* phase one *)
forall s € Rr do
T:=9;,V :=¢; (* phase two *)
if cycle_check(s) then return "no” (* s belongs to a cycle *)
od
return "yes” (* none of the F'-states belongs to a cycle *)

Bernd Finkbeiner Verification — Lecture 11 19

Find F-states

procedure visit (state s)
push(s,U); (* push s on the stack *)
R:=R U {s}; (* mark s as reachable *)
repeat
s’ = top(U);
if Successors(s’) C R then
pop(U);
if ' € Fthen Rp := Rp U {s'};fi
else
let s” € Successors(s') \ R
push(s", U);

R:=RuU {s"}; (* state s” is a new reachable state *)
fi
until (U = ¢)
endproc

this is a standard DFS checking for F'-states

Bernd Finkbeiner Verification — Lecture 11 20

Cycle detection

procedure boolean cycle_check(state s)

boolean cycle_found := false; (* no cycle found yet *)
push(s,V); T :=T U {s}; (* push s on the stack *)
repeat
s = top(V); (* take top element of V" *)
if s € Successors(s’) then
cycle_found := true; (*if s € Successors(s'), a cycle is found *)
push(s, V'); (* push s on the stack *)
else

if Successors(s') \ T # @ then
let s € Successors(s’) \ T;
push(s”" , V); T :=T U {s"}; (* push an unvisited successor of s’ *)
else pop(V); (* unsuccessful cycle search for s’ *)
fi
fi
until ((V =¢) Vv cycle_found)
return cycle_found
endproc

Bernd Finkbeiner Verification — Lecture 11 21

Nested depth-first search

e |dea: perform the two depth-first searches in an interleaved way

— the outer DFS serves to encounter all reachable F'-states
— the inner DFS seeks for backward edges

e Nested DFS

— on full expansion of F'-state s in the outer DFS, start inner DFS
— ininner DFS, visit all states reachable from s not visited in the inner DFS yet
— no backward edge found? continue the outer DFS (look for next F' state)

e Counterexample generation: DFS stack concatenation

— stack U for the outer DFS = path fragment from sy € I to s (in reversed order)
— stack V for the inner DFS = a cycle from state s to s (in reversed order)

Bernd Finkbeiner Verification — Lecture 11 22

The outer DFS (1)

Input: transition system S without terminal states, and proposition ®
Output: "yes” if S contains a reachable cycle with an F'-state, otherwise "no” plus counterexample

set of states R := o; (* set of visited states in the outer DFS *)
stack of states U := ¢; (* stack for the outer DFS *)
set of states T := &; (* set of visited states in the inner DFS *)
stack of states V := ¢; (* stack for the inner DFS *)

boolean cycle_found := false;

while (I \ R # @ A =—cycle_found) do
lets € T\ R; (* explore the reachable *)
reachable_cycle(s); (* fragment with outer DFS *)
od
if —cycle_found then
return ("yes”)
else
return ("no”, reverse(V.U)) (* stack contents yield a counterexample *)
fi

Bernd Finkbeiner Verification — Lecture 11 23

The outer DFS (2)

procedure reachable_cycle (state s)
push(s,U);
R:=R U {s};
repeat
s’ = top(U);
if Successors(s’) \ R # @ then
let s/ € Successors(s') \ R;
push(s”, U);
R:=R U {s"};
else
pop(U);
if s’ € F then
cycle_found := cycle_check(s');

fi
fi
until (U = ¢) Vv cycle_found)

endproc

Bernd Finkbeiner

(* push s on the stack *)

(* push the unvisited successor of s’ *)
(* and mark it reachable *)

(* outer DFS finished for s’ *)

(* proceed with the inner *)
(* DFS in state s” *)

(* stop when stack for the outer *)
(* DFS is empty or cycle found *)

Verification — Lecture 11 24

Time complexity

The worst-case time

where N is # reachable states in S, and M is # edges in state graph

complexity of nested DFS is in
O(N+M)

Bernd Finkbeiner

Verification — Lecture 11 25

