Verification – Lecture 12 Model Checking (Complexity)

Bernd Finkbeiner – Sven Schewe Rayna Dimitrova – Lars Kuhtz – Anne Proetzsch

Wintersemester 2007/2008

LTL model checking

The LTL model checking problem

- Input:
 - LTL formula φ over atomic propositions AP
 - Finite state graph (Kripke structure) $S = (Q, Q_0, E, L)$ with
 - * finite set of states Q,
 - * initial states $Q_0 \subseteq Q$,
 - * edges $E \subseteq Q \times Q$,
 - * labeling function $L:Q\to 2^{AP}$.
- Output:
 - path π in T such that $\pi \models \neg \varphi$, or
 - "yes" if no such path exists.

Bernd Finkbeiner

Verification – Lecture 12

2

REVIEW

From LTL to GNBA

GNBA \mathcal{G}_{φ} over 2^{AP} for LTL-formula φ with $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi}) = \mathit{Words}(\varphi)$:

- Assume φ only contains the operators \wedge , \neg , \bigcirc and $\mathcal U$
 - \vee , \rightarrow , \diamond , \square , $\,\mathcal{W}$, and so on, are expressed in terms of these basic operators
- States are *elementary sets* of sub-formulas in φ
 - for $\sigma = A_0 A_1 A_2 \ldots \in Words(\varphi)$, expand $A_i \subseteq AP$ with sub-formulas of φ
 - . . . to obtain the infinite word $\bar{\sigma} = B_0 B_1 B_2 \ldots$ such that

$$\psi \in B_i$$
 if and only if $\sigma^i = A_i A_{i+1} A_{i+2} \ldots \models \psi$

- $\bar{\sigma}$ is intended to be a run in GNBA \mathcal{G}_{φ} for σ
- ullet Transitions are derived from semantics \bigcirc and expansion law for ${\mathcal U}$
- Accept sets guarantee that: $\bar{\sigma}$ is an accepting run for σ iff $\sigma \models \varphi$

Complexity for LTL to NBA

For any LTL-formula φ (over AP) there exists an NBA \mathcal{A}_{φ} with $Words(\varphi) = \mathcal{L}_{\omega}(\mathcal{A}_{\varphi})$ and which can be constructed in time and space in $2^{\mathcal{O}(|\varphi|)}$.

Bernd Finkbeiner Verification – Lecture 12 4

REVIEW

Complexity

- ullet States GNBA \mathcal{G}_{arphi} are elementary sets of formulae in $\mathit{closure}(arphi)$
 - sets B can be represented by bit vectors with single bit per subformula ψ of φ
- ullet The number of states in \mathcal{G}_{arphi} is bounded by $2^{|\mathsf{subf}(arphi)|}$
 - where $\mathrm{subf}(\varphi)$ denotes the set of all subformulae of φ
- ullet The number of accepting sets of \mathcal{G}_{arphi} is bounded above by $\mathcal{O}(|arphi|)$
- $\bullet \ \ \text{The number of states in NBA} \ \mathcal{A}_{\varphi} \ \text{is thus bounded by} \ 2^{\mathcal{O}(|\varphi)|} \cdot \mathcal{O}(|\varphi|)$

•
$$2^{\mathcal{O}(|\varphi|)} \cdot \mathcal{O}(|\varphi|) = 2^{\mathcal{O}(|\varphi|)}$$

Bernd Finkbeiner Verification – Lecture 12 5

Lower bound

There exists a family of LTL formulas φ_n with $|\varphi_n| = \mathcal{O}(poly(n))$ such that every NBA \mathcal{A}_{φ_n} for φ_n has at least 2^n states

Bernd Finkbeiner Verification – Lecture 12 6

Product automaton

- Given:
 - state graph $S = (Q, Q_0, E, L)$,
 - Büchi automaton $\mathcal{A}_{\neg \varphi} = (Q', Q'_0, \delta', F')$
- Compute: Büchi automaton $S\otimes \mathcal{A}_{\neg \varphi}=(Q'',Q_0'',\delta'',F'')$
 - $-Q'' = Q \times Q',$
 - $-Q_0''=Q_0\times Q_0',$
 - $\begin{array}{l} \textbf{-} \ (q,q') \in \delta^{\prime\prime}((p,p'),A) \\ \text{iff } A = L(p), q' \in \delta^{\prime}(p',A), \text{ and } (p,q) \in E. \end{array}$
 - $-F'' = Q \times F'$

Nested depth-first search

- Idea: perform the two depth-first searches in an *interleaved* way
 - the outer DFS serves to encounter all reachable F-states
 - the inner DFS seeks for backward edges
- Nested DFS
 - on full expansion of F-state s in the outer DFS, start inner DFS
 - in inner DFS, visit all states reachable from s not visited in the inner DFS yet
 - no backward edge found? continue the outer DFS (look for next F state)
- Counterexample generation: DFS stack concatenation
 - stack U for the outer DFS = path fragment from $s_0 \in I$ to s (in reversed order)
 - stack V for the inner DFS = a cycle from state s to s (in reversed order)

Bernd Finkbeiner Verification – Lecture 12 8

REVIEW

Time complexity

The worst-case time complexity of nested DFS is in $\mathcal{O}(N+M)$

where N is # reachable states in S, and M is # edges in state graph

Complexity for LTL model checking

The time and space complexity of LTL model checking is in $\mathcal{O}\left((M+N)\cdot 2^{|\varphi|}\right)$

Bernd Finkbeiner Verification – Lecture 12 10

On-the-fly LTL model checking

- • Idea: find a counter-example during the generation of Reach(S) and $\mathcal{A}_{\neg \varphi}$
 - exploit the fact that $\operatorname{\it Reach}(S)$ and ${\cal A}_{\neg \varphi}$ can be generated in parallel
- \Rightarrow Generate $Reach(S \otimes \mathcal{A}_{\neg \varphi})$ "on demand"
 - consider a new vertex only if no accepting cycle has been found yet
 - only consider the successors of a state in $\mathcal{A}_{\lnot arphi}$ that match current state in S
- \Rightarrow Possible to find an accepting cycle without generating $\mathcal{A}_{\neg \varphi}$ entirely

The LTL model checking problem is PSPACE-complete.

Bernd Finkbeiner Verification – Lecture 12 12