Verification — Lecture 15
Computation Tree Logic

Bernd Finkbeiner — Sven Schewe
Rayna Dimitrova — Lars Kuhtz — Anne Proetzsch

Wintersemester 2007/2008

REVIEW

Summary of LTL model checking (1)

e LTL is a logic for formalizing path-based properties

e Expansion law allows for rewriting until into local conditions and next

e LTL-formula ¢ can be transformed algorithmically into NBA A,

— this may cause an exponential blow up
— algorithm: first construct a GNBA for ¢; then transform it into an equivalent NBA

e LTL-formulae describe w-regular LT-properties

— but do not have the same expressivity as w-regular languages

Bernd Finkbeiner Verification — Lecture 15 1

REVIEW

Summary of LTL model checking (2)

S |= ¢ can be solved by a nested depth-first searchin S® A,

— time complexity of the LTL model-checking algorithm is linear in S and
exponential in |¢|

Fairness assumptions can be described by LTL-formulae

the model-checking problem for LTL with fairness is reducible
to the standard LTL model-checking problem

The LTL-model checking problem is PSPACE-complete

Satisfiability and validity of LTL amounts to NBA emptiness-check

The satisfiability and valditiy problem for LTL are PSPACE-complete

Bernd Finkbeiner Verification — Lecture 15 2

Linear and branching temporal logic

e Linear temporal logic:
“statements about (all) paths starting in a state”

— s =0 (z < 20) iff for all possible paths starting in s always = < 20

e Branching temporal logic:
“statements about all or some paths starting in a state”

- s = VO (z < 20) iff for all paths starting in s always < 20
- s = 30 (= < 20) iff for some path starting in s always x < 20
— nesting of path quantifiers is allowed

e Checking dy in LTL can be done using V-

— ... but this does not work for nested formulas such as VOO 3 a

Bernd Finkbeiner Verification — Lecture 15 3

Linear versus branching temporal logic
e Semantics is based on a branching notion of time

— an infinite tree of states obtained by unfolding state graph
— one “time instant” may have several possible successor “time instants”

e Incomparable expressiveness

— there are properties that can be expressed in LTL, but not in CTL
— there are properties that can be expressed in most branching, but not in LTL

e Distinct model-checking algorithms, and their time complexities
e Distinct treatment of fairness assumptions

e Distinct equivalences (pre-orders) on state graphs

— that correspond to logical equivalence in LTL and branching temporal logics

Bernd Finkbeiner Verification — Lecture 15

State graphs and trees

{z=0} /\
{z#0} (52,2) (53,2
R
53,3 52,3 837
Bt U LN /\

(s2,4) 83, 4) (s3,4)(s2,4) (s3,4)

Bernd Finkbeiner Verification — Lecture 15

Branching temporal logics

There are various branching temporal logics:

e Hennessy-Milner logic

Computation Tree Logic (CTL)

Extended Computation Tree Logic (CTL*)

— combines LTL and CTL into a single framework

Alternation-free modal p-calculus
e Modal p-calculus

e Propositional dynamic logic

Bernd Finkbeiner Verification — Lecture 15

Computation tree logic (CTL)

_

@) / @)
fel sdel dednd

3O red JOred 3(yellow U red)

O
SWENS A

o0 ®0 o o O

Vo red vO red v (yellow U red)

Bernd Finkbeiner Verification — Lecture 15

“behavior” path-based: state-based:
in a state s set of paths starting in s computation tree of s
temporal LTL: path formulas ¢ CTL: state formulas
logic s = dff existential path quantification J¢
Vr € Paths(s). m |= ¢ universal path quantification: V¢
complexity of the PSPACE—complete PTIME
model checking
problems 6] <|S| : 2|¢|) o (S| - |®])
implementation- trace inclusion and the like simulation and bisimulation
relation (proof is PSPACE-complete) (proof in polynomial time)
fairness no special techniques special techniques needed
Bernd Finkbeiner Verification — Lecture 15 8
Syntax

modal logic over infinite trees [Clarke & Emerson 1981]

e State formulas: ® ::=true |a | P APy | =P | dp | Vo

- a € AP atomic proposition
— = ®and ¢; A Py negation and conjunction
- dop there exists a path fulfilling ¢
- Vo all paths fulfill ¢

e Path formulas: ¢ :: O® | &1 U &,

- 0% the next state fulfills ®
- d, U Py d, holds until a ®,-state is reached

= note that O and U alternate with V and 3
- YOO ® and V3O ® ¢ CTL, but YOVO ® and VO3IO @ € CTL

Bernd Finkbeiner Verification — Lecture 15 9

Derived operators

potentially ®: 310 = d(trueU)

inevitably ®: VOP = VY(trueU ®)

potentially always ¢: J0é = AVO-d

invariantly @: voOo = 309

weak until: EI((I)W\IJ) = ﬁV(((I)/\—l‘If) U (ﬂ(I)/\—I\I’))
V@WT) = —J(2A-T)U (P A-T))

the boolean connectives are derived as usual

Bernd Finkbeiner Verification — Lecture 15 10

Semantics of CTL state-formulas
Defined by a relation = such that

q = @ if and only if formula @ holds in state ¢

qF=a iff a € L(q)

¢=-® iff —(¢F9?)

=AY iff (¢ 2)A (¢ Y)

g = Jdo iff = = ¢ for some path = € Paths(q)
q =V iff 7 |= ¢ for all paths = € Paths(q)

Notation: Paths(q): set of paths starting in ¢

Bernd Finkbeiner Verification — Lecture 15 11

Semantics of CTL path-formulas

Define a relation |= such that

7 = ¢ if and only if path = satisfies ¢

TEOd ffa[l] = ®
rEOUT iff (307 =T A (VO K< j.alk] E ®))

where 7[i] denotes the state ¢; inthe path m = qpq1 g2 - . -

Bernd Finkbeiner Verification — Lecture 15 12

Transition system semantics
e For CTL-state-formula @, the satisfaction set Sat(®) is defined by:

Sat(®) = {qeQ|qFd}

e State graph S satisfies CTL-formula @ iff & holds in all its initial states:
SE® ifandonlyif Vgo € Qo.q0 F ®
— this is equivalent to Qo C Sat(P)

e Point of attention: S} ® and S }= —~® is possible!

— because of several initial states, e.g. g0 =30 ® and ¢ = 30 @

Bernd Finkbeiner Verification — Lecture 15 13

CTL equivalence

CTL-formulas ® and ¥ (over AP) are equivalent, denoted ® = ¥
if and only if Sat(®) = Sat(¥) for all state graphs S over AP

o =v iff (SE® ifandonlyif SkEVY)

Bernd Finkbeiner Verification — Lecture 15 14
Duality laws
VO¢ = ﬁElOﬁq)
10 = -VO-d
Vod = —-dJ0O0-d
40P = -VO-o
V((I)U‘If) = ﬂa((q)A—!‘If)W(—!(I)/\—!\IJ))

Bernd Finkbeiner Verification — Lecture 15

15

Expansion laws

Recallin LTL: o Uy = ¢ V (9 AO(pU))

In CTL:
V@UT) = TV (& A YOV (PUD))
VOP = & Vv VOVOP
voed = o A VOVOD
HPUT) = TV (& A JOIBUD))
400 = ¢ v dOI0P
400 = & A JOJOP
Bernd Finkbeiner Verification — Lecture 15 16
Distributive laws (1)
Recall in LTL:
O(e A YY) = Oe A Oy
Ol Vy) = So VO
In CTL:

VO AY) = VO A VOU

0@ V) = Jod v IOT

notethat 3OO0 (® A ¥) # 3I0P A IO V¥ and
VO(P vV U) ZVOP V VOU

Bernd Finkbeiner Verification — Lecture 15 17

Distributive laws (2)

S

{b

s =V (a Vv ob) sinceforall m € Paths(s). m =< (a VvV b)
But: s (s")Y = G abut s (s”)Y & O bThus: s & VO b
A similar reasoning applied to path s (s')* yields s [~ VO a
Thus, s [VO a V VO D

Bernd Finkbeiner Verification — Lecture 15 18

Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is given by:

® = true ‘ a ‘ O, A B ‘ - ‘ 300 ‘ 3(®1 U) ‘ IO @

For each CTL formula, there exists an equivalent CTL formula in ENF

YO & -30-d
V((I)U‘If) = —EI(—'\IIU(—@/\—'\IJ)) A =] -=T

Bernd Finkbeiner Verification — Lecture 15 19

Model checking CTL

e How to check whether state graph S satisfies CTL formula $?

— convert the formula @ into the equivalent ® in ENF
— compute recursivelythe set Sat(®) = {qge S|qg=®}
— S |= @ if and only if each initial state of S belongs to Sat(®)

e Recursive bottom-up computation of Sat(®):

— consider the parse-tree of ®
— start to compute Sat(a;), for all leafs in the tree
— then go one level up in the tree and determine Sat(-) for these nodes

e.g.,. Sat(\l’l AN \112) = Sat(vy) N Sat(W,)

node at level 4 node at node at
level 1—1 level 1—1

then go one level up and determine Sat(-) of these nodes

— and so on....... until the root is treated, i.e., Sat(®) is computed
Bernd Finkbeiner Verification — Lecture 15 20
Example

® = dOg A F(bU 30O —¢)
N SN——

\I,ll
N J/
N~

\I]I

Bernd Finkbeiner Verification — Lecture 15

21

Basic algorithm

Input: finite state graph S and CTL formula & (both over AP)
Output: S |= @

(* compute the sets Sat(®) = {¢€ Q |qE P})
forall: < |® | do
forall ¥ € Sub(®) with | ¥ | = i do
compute Sat(¥) from Sat(\¥') (* for maximal proper ¥' € Sub(¥) *)
od
od
return Qo C Sat(d)

Bernd Finkbeiner Verification — Lecture 15 22

Characterization of Sat (1)

For all CTL formulas ®, ¥ over AP it holds:

Saf(true) = Q
Satla) = {qe@Q|acL(qg)}, foranyac AP
Sat(® ANV) = Sal(®) N Sat(V)
Sat(—-®) = Q) Sat(P)
Sat(30®) = {q € Q| Successors(q) N Sat(®) # @}

where S = (Q, Qo, E, L) is a finite state graph without terminal states

Bernd Finkbeiner Verification — Lecture 15 23

Characterization of Sat (2)

o Sat(3(® U W)) is the smallest subset T" of @, such that:

(1) Sat(¥) C T and (2) (g € Sat(®) and Successors(q) NT # &) = q€ T

e Sat(dO @) is the largest subset T of @), such that:

(3) T C Sat(®) and (4) q € T implies Successors(q) N'T # &

where S = (Q, Qo, E, L) is a state graph without terminal states

Bernd Finkbeiner Verification — Lecture 15 24

Computing Sat(3(U v)) (1)

Sat(3(® U 0)) is the smallest set 7' C @ such that:

(1) Sat(w) C T and (2) (q € Sat(®) and Successors(q) NT # @) = q€ T

This suggests to compute Sat(3(® U V)) iteratively:

To = Sat(V) and T;y; = T; U {q € Sat(®) | Successors(q) N T; # @ }

T; = states that can reach a V-state in at most ¢ steps via a ¢-path

By induction on j it follows:

Bernd Finkbeiner Verification — Lecture 15 25

Computing Sat(3(P U V)) (2)

Sis finite, so forsome j > 0we have: T; = Tj11 = Tjyo2 = ...

Therefore: T; = T; U {q € Sat(®) | Successors(q) NT; # & }

Hence: { ¢ € Sat(®) | Successors(q) NT; # @} C T;

— hence, T} satisfies (2), i.e., (¢ € Sat(®) and Successors(q) N T # @) = q € T
— further, Sat(\If) = Ty, C T so, Tj satisfies (1), i.e. Sat(¥) C T}

As Sat(3(® U V)) is the smallest set satisfying (1) and (2):
- Sat(3(¢ U Ww)) C T;andthus Saf(3(PUWY)) =T,

Hence: TO;TlgTQ;;TJZTJ+1::SQt(3<¢Uql))

Bernd Finkbeiner Verification — Lecture 15 26

Computing Sat(3(® U V)) (3)

Input: finite state graph S with state-set @ and CTL-formula 3(® U W)
Output: Sat(3(PUT)) ={qg€ Q| q = I(PUD)}

V = Sat(V); (* V administers states ¢ with ¢ |= 3(® U) *)
T :=V,; (* T contains the already visited states q with ¢ = 3(® U ¥) *)
while V #£ @ do

let ¢’ € V;

Vi=V\{d}

forall ¢ € Pre(q’) do

if g€ Sat(®)\T'thenV :=V U {q};T:=T U {q}; endif

od
od
return T’

Bernd Finkbeiner Verification — Lecture 15 27

