Verification – Lecture 15 Computation Tree Logic

Bernd Finkbeiner – Sven Schewe Rayna Dimitrova – Lars Kuhtz – Anne Proetzsch

Wintersemester 2007/2008

REVIEW

Summary of LTL model checking (1)

- LTL is a logic for formalizing path-based properties
- Expansion law allows for rewriting until into local conditions and next
- LTL-formula φ can be transformed algorithmically into NBA \mathcal{A}_{φ}
 - this may cause an exponential blow up
 - algorithm: first construct a GNBA for φ ; then transform it into an equivalent NBA
- LTL-formulae describe ω -regular LT-properties
 - but do not have the same expressivity as ω -regular languages

Summary of LTL model checking (2)

- $S \models \varphi$ can be solved by a nested depth-first search in $S \otimes \mathcal{A}_{\neg \varphi}$
 - time complexity of the LTL model-checking algorithm is linear in S and exponential in $|\varphi|$
- Fairness assumptions can be described by LTL-formulae

the model-checking problem for LTL with fairness is reducible to the standard LTL model-checking problem

- The LTL-model checking problem is PSPACE-complete
- Satisfiability and validity of LTL amounts to NBA emptiness-check
- The satisfiability and valditiy problem for LTL are PSPACE-complete

Bernd Finkbeiner Verification – Lecture 15 2

Linear and branching temporal logic

• Linear temporal logic:

"statements about (all) paths starting in a state"

- $-s \models \Box (x \leqslant 20)$ iff for all possible paths starting in s always $x \leqslant 20$
- Branching temporal logic:

"statements about all or some paths starting in a state"

- $-s \models \forall \square \ (x \leqslant 20)$ iff for all paths starting in s always $x \leqslant 20$
- $-s \models \exists \square \ (x \leqslant 20)$ iff for **some** path starting in s always $x \leqslant 20$
- nesting of path quantifiers is allowed
- Checking $\exists \varphi$ in LTL can be done using $\forall \neg \varphi$
 - . . . but this does not work for nested formulas such as $\forall \Box \exists \diamondsuit a$

Linear versus branching temporal logic

- Semantics is based on a branching notion of time
 - an infinite tree of states obtained by unfolding state graph
 - one "time instant" may have several possible successor "time instants"
- Incomparable expressiveness
 - there are properties that can be expressed in LTL, but not in CTL
 - there are properties that can be expressed in most branching, but not in LTL
- Distinct model-checking algorithms, and their time complexities
- Distinct treatment of fairness assumptions
- Distinct equivalences (pre-orders) on state graphs
 - that correspond to logical equivalence in LTL and branching temporal logics

Bernd Finkbeiner Verification – Lecture 15 4

State graphs and trees

Branching temporal logics

There are various branching temporal logics:

- Hennessy-Milner logic
- Computation Tree Logic (CTL)
- Extended Computation Tree Logic (CTL*)
 - combines LTL and CTL into a single framework
- ullet Alternation-free modal μ -calculus
- Modal μ -calculus
- Propositional dynamic logic

Bernd Finkbeiner Verification – Lecture 15 6

Computation tree logic (CTL)

"behavior" in a state s	path-based: set of paths starting in s	state-based: computation tree of s
temporal logic	LTL: path formulas $arphi$ $s \models arphi$ iff $\forall \pi \in \textit{Paths}(s). \pi \models arphi$	CTL: state formulas existential path quantification $\exists \varphi$ universal path quantification: $\forall \varphi$
complexity of the model checking problems	PSPACE-complete $\mathcal{O}\left(\mathit{S} \cdot 2^{ arphi } ight)$	PTIME $\mathcal{O}\left(\mathcal{S} \cdot \Phi ight)$
implementation- relation	trace inclusion and the like (proof is PSPACE-complete)	simulation and bisimulation (proof in polynomial time)
fairness	no special techniques	special techniques needed

Bernd Finkbeiner Verification - Lecture 15 8

Syntax

modal logic over infinite trees [Clarke & Emerson 1981]

- State formulas: $\Phi ::= \text{true} \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \exists \varphi \mid \forall \varphi$
 - $-a \in AP$
 - $\neg \Phi$ and $\Phi_1 \wedge \Phi_2$
 - $-\exists \varphi$
 - $\forall \varphi$

atomic proposition negation and conjunction

there *exists* a path fulfilling φ

all paths fulfill φ

- Path formulas: $\varphi :: \bigcirc \Phi \mid \Phi_1 \cup \Phi_2$
 - $-\bigcirc\Phi$

 $-\Phi_1 \cup \Phi_2$

the next state fulfills Φ

 Φ_1 holds until a Φ_2 -state is reached

- \Rightarrow note that \bigcirc and \bigcup alternate with \forall and \exists
 - $\forall\bigcirc\bigcirc\Phi$ and $\forall\exists\bigcirc\Phi\not\in\mathsf{CTL}$, but $\forall\bigcirc\forall\bigcirc\Phi$ and $\forall\bigcirc\exists\bigcirc\Phi\in\mathsf{CTL}$

Derived operators

potentially Φ : $\exists \Diamond \Phi = \exists (\mathsf{true} \, \mathsf{U} \, \Phi)$

potentially always Φ : $\exists \Box \Phi$:= $\neg \forall \Diamond \neg \Phi$

invariantly Φ : $\forall \Box \Phi = \neg \exists \Diamond \neg \Phi$

weak until: $\exists (\Phi \mathsf{W} \Psi) = \neg \forall ((\Phi \land \neg \Psi) \mathsf{U} (\neg \Phi \land \neg \Psi))$

 $\forall (\Phi \mathsf{W} \Psi) \quad = \quad \neg \exists \big((\Phi \land \neg \Psi) \mathsf{U} (\neg \Phi \land \neg \Psi) \big)$

the boolean connectives are derived as usual

Bernd Finkbeiner Verification – Lecture 15 10

Semantics of CTL state-formulas

Defined by a relation ⊨ such that

 $q \models \Phi$ if and only if formula Φ holds in state q

$$q \models a \qquad \quad \text{iff} \quad a \in L(q)$$

$$q \models \neg \Phi$$
 iff $\neg (q \models \Phi)$

$$q \models \Phi \wedge \Psi \quad \text{ iff } \ (q \models \Phi) \wedge (q \models \Psi)$$

$$q \models \exists \varphi$$
 iff $\pi \models \varphi$ for *some* path $\pi \in \textit{Paths}(q)$

$$q \models \forall \varphi$$
 iff $\pi \models \varphi$ for *all* paths $\pi \in \textit{Paths}(q)$

Notation: Paths(q): set of paths starting in q

Semantics of CTL path-formulas

Define a relation \models such that

 $\pi \models \varphi$ if and only if path π satisfies φ

$$\begin{split} \pi &\models \bigcirc \Phi & \quad \text{iff } \pi[1] \models \Phi \\ \pi &\models \Phi \ \mathsf{U} \ \Psi & \quad \text{iff } (\exists \ j \geqslant 0. \ \pi[j] \models \Psi \ \land \ (\forall \ 0 \leqslant k < j. \ \pi[k] \models \Phi)) \end{split}$$

where $\pi[i]$ denotes the state q_i in the path $\pi=q_0\,q_1\,q_2\ldots$

Bernd Finkbeiner Verification – Lecture 15 12

Transition system semantics

• For CTL-state-formula Φ , the *satisfaction set* $Sat(\Phi)$ is defined by:

$$Sat(\Phi) = \{ q \in Q \mid q \models \Phi \}$$

• State graph S satisfies CTL-formula Φ iff Φ holds in all its initial states:

$$\mathcal{S} \models \Phi$$
 if and only if $\forall q_0 \in Q_0. \ q_0 \models \Phi$

- this is equivalent to $Q_0 \subseteq \mathit{Sat}(\Phi)$
- Point of attention: $S \not\models \Phi$ and $S \not\models \neg \Phi$ is possible!
 - because of several initial states, e.g. $q_0 \models \exists \Box \Phi$ and $q_0' \not\models \exists \Box \Phi$

CTL equivalence

CTL-formulas Φ and Ψ (over AP) are *equivalent*, denoted $\Phi \equiv \Psi$ if and only if $Sat(\Phi) = Sat(\Psi)$ for all state graphs S over AP

$$\Phi \equiv \Psi \quad \text{iff} \quad (S \models \Phi \quad \text{if and only if} \quad S \models \Psi)$$

Bernd Finkbeiner Verification – Lecture 15 14

Duality laws

$$\forall \bigcirc \Phi \equiv \neg \exists \bigcirc \neg \Phi$$

$$\exists \bigcirc \Phi \equiv \neg \forall \bigcirc \neg \Phi$$

$$\forall \Diamond \Phi \equiv \neg \exists \Box \neg \Phi$$

$$\exists \Diamond \Phi \equiv \neg \forall \Box \neg \Phi$$

$$\forall (\Phi \cup \Psi) \equiv \neg \exists ((\Phi \land \neg \Psi) \lor (\neg \Phi \land \neg \Psi))$$

Expansion laws

Recall in LTL: $\varphi \cup \psi \equiv \psi \vee (\varphi \wedge \bigcirc (\varphi \cup \psi))$

In CTL:

$$\begin{array}{cccccc} \forall (\Phi \ \mathsf{U} \ \Psi) & \equiv & \Psi \ \lor \ (\Phi \ \land \ \forall \bigcirc \forall (\Phi \ \mathsf{U} \ \Psi)) \\ \\ \forall \diamondsuit \Phi & \equiv & \Phi \ \lor \ \forall \bigcirc \forall \diamondsuit \Phi \end{array}$$

$$\forall \Box \Phi \equiv \Phi \land \forall \bigcirc \forall \Box \Phi$$

$$\exists (\Phi \ \mathsf{U} \ \Psi) \quad \equiv \quad \Psi \ \lor \ (\Phi \ \land \ \exists \bigcirc \exists (\Phi \ \mathsf{U} \ \Psi))$$

$$\Phi \Diamond E \bigcirc E \lor \Phi = \Phi \Diamond E \Diamond \Phi$$

$$\exists \Box \Phi \equiv \Phi \land \exists \bigcirc \exists \Box \Phi$$

Bernd Finkbeiner Verification – Lecture 15 16

Distributive laws (1)

Recall in LTL:

$$\Box (\varphi \land \psi) \equiv \Box \varphi \land \Box \psi
\diamondsuit (\varphi \lor \psi) \equiv \diamondsuit \varphi \lor \diamondsuit \psi$$

In CTL:

$$\forall \Box (\Phi \wedge \Psi) \equiv \forall \Box \Phi \wedge \forall \Box \Psi$$

$$\exists \Diamond (\Phi \lor \Psi) \equiv \exists \Diamond \Phi \lor \exists \Diamond \Psi$$

note that
$$\exists \Box (\Phi \land \Psi) \not\equiv \exists \Box \Phi \land \exists \Box \Psi$$
 and $\forall \Diamond (\Phi \lor \Psi) \not\equiv \forall \Diamond \Phi \lor \forall \Diamond \Psi$

Bernd Finkbeiner Verification – Lecture 15

17

Distributive laws (2)

$$s \models \forall \diamondsuit \ (a \lor b) \text{ since for all } \pi \in \textit{Paths}(s). \ \pi \models \diamondsuit \ (a \lor b)$$

$$\text{But: } s \ (s'')^\omega \models \diamondsuit \ a \text{ but } s \ (s'')^\omega \not\models \diamondsuit \ b \text{ Thus: } s \not\models \forall \diamondsuit \ b$$

$$\text{A similar reasoning applied to path } s \ (s')^\omega \text{ yields } s \not\models \forall \diamondsuit \ a$$

Thus,
$$s \not\models \forall \diamondsuit a \lor \forall \diamondsuit b$$

Bernd Finkbeiner Verification – Lecture 15 18

Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is given by:

$$\Phi ::= \mathsf{true} \hspace{0.2cm} \middle| \hspace{0.2cm} a \hspace{0.2cm} \middle| \hspace{0.2cm} \Phi_1 \hspace{0.2cm} \wedge \hspace{0.2cm} \Phi_2 \hspace{0.2cm} \middle| \hspace{0.2cm} \neg \Phi \hspace{0.2cm} \middle| \hspace{0.2cm} \exists (\Phi_1 \, \mathsf{U} \, \Phi_2) \hspace{0.2cm} \middle| \hspace{0.2cm} \exists \Box \hspace{0.2cm} \Phi$$

For each CTL formula, there exists an equivalent CTL formula in ENF

$$\begin{array}{lll} \forall \bigcirc \Phi & \equiv & \neg \exists \bigcirc \neg \Phi \\ \\ \forall (\Phi \ U \ \Psi) & \equiv & \neg \exists (\neg \Psi \ U \ (\neg \Phi \ \wedge \neg \Psi)) \ \ \wedge \ \ \neg \exists \Box \ \neg \Psi \end{array}$$

Model checking CTL

- How to check whether state graph S satisfies CTL formula $\widehat{\Phi}$?
 - convert the formula $\widehat{\Phi}$ into the equivalent Φ in ENF
 - compute *recursively* the set $Sat(\Phi) = \{ q \in S \mid q \models \Phi \}$
 - $-S \models \Phi$ if and only if each initial state of S belongs to $Sat(\Phi)$
- Recursive bottom-up computation of Sat(Φ):
 - consider the parse-tree of Φ
 - start to compute $Sat(a_i)$, for all leafs in the tree
 - then go one level up in the tree and determine $Sat(\cdot)$ for these nodes

e.g.,:
$$Sat(\underbrace{\Psi_1 \ \land \ \Psi_2}_{\text{node at level } i}) = \underbrace{Sat(\underbrace{\Psi_1}_{\text{node at level } i})}_{\text{node at level } i-1} \cap \underbrace{Sat(\underbrace{\Psi_2}_{\text{node at level } i-1})}_{\text{node at level } i-1}$$

- then go one level up and determine $Sat(\cdot)$ of these nodes
- and so on...... until the root is treated, i.e., $Sat(\Phi)$ is computed

Bernd Finkbeiner Verification – Lecture 15 20

Example

Bernd Finkbeiner Verification – Lecture 15 21

Basic algorithm

Input: finite state graph S and CTL formula Φ (both over AP) $Output: S \models \Phi$

```
 (\text{* compute the sets } \textit{Sat}(\Phi) \ = \ \{\ q \in Q \mid q \models \Phi\ \}\ \text{*)}  for all i \leqslant |\Phi| do  \text{for all } \Psi \in \textit{Sub}(\Phi) \text{ with } |\Psi| = i \text{ do}   \text{compute } \textit{Sat}(\Psi) \text{ from } \textit{Sat}(\Psi')  (* for maximal proper \Psi' \in \textit{Sub}(\Psi) *) od od  \text{return } Q_0 \subseteq \textit{Sat}(\Phi)
```

Bernd Finkbeiner

Verification - Lecture 15

22

Characterization of Sat (1)

For all CTL formulas Φ , Ψ over AP it holds:

```
\begin{array}{lll} \textit{Sat}(\mathsf{true}) & = & Q \\ & \textit{Sat}(a) & = & \{ \ q \in Q \mid a \in L(q) \ \}, \ \text{for any} \ a \in \textit{AP} \\ & \textit{Sat}(\Phi \wedge \Psi) & = & \textit{Sat}(\Phi) \cap \textit{Sat}(\Psi) \\ & \textit{Sat}(\neg \Phi) & = & Q \setminus \textit{Sat}(\Phi) \\ & \textit{Sat}(\exists \bigcirc \Phi) & = & \{ \ q \in Q \mid \textit{Successors}(q) \cap \textit{Sat}(\Phi) \neq \varnothing \ \} \end{array}
```

where $S = (Q, Q_0, E, L)$ is a finite state graph without terminal states

Characterization of Sat **(2)**

• $Sat(\exists (\Phi \cup \Psi))$ is the <u>smallest</u> subset T of Q, such that:

```
(1) Sat(\Psi) \subseteq T and (2) (q \in Sat(\Phi)) and Successors(q) \cap T \neq \emptyset) \Rightarrow q \in T
```

• $Sat(\exists \Box \Phi)$ is the largest subset T of Q, such that:

(3)
$$T \subseteq Sat(\Phi)$$
 and (4) $q \in T$ implies $Successors(q) \cap T \neq \emptyset$

where $S = (Q, Q_0, E, L)$ is a state graph without terminal states

Bernd Finkbeiner

Verification - Lecture 15

24

Computing $Sat(\exists (\Phi \cup \Psi))$ (1)

• $Sat(\exists (\Phi \cup \Psi))$ is the smallest set $T \subseteq Q$ such that:

```
(1) Sat(\Psi) \subseteq T and (2) (q \in Sat(\Phi)) and Successors(q) \cap T \neq \emptyset) \Rightarrow q \in T
```

This suggests to compute Sat(∃(Φ U Ψ)) iteratively:

```
T_0 = \mathit{Sat}(\Psi) \quad \text{and} \quad T_{i+1} = T_i \cup \{ \ q \in \mathit{Sat}(\Phi) \mid \mathit{Successors}(q) \cap T_i \neq \varnothing \}
```

- T_i = states that can reach a Ψ -state in at most i steps via a Φ -path
- By induction on *j* it follows:

$$T_0 \subseteq T_1 \subseteq \ldots \subseteq T_j \subseteq T_{j+1} \subseteq \ldots \subseteq Sat(\exists (\Phi \cup \Psi))$$

Bernd Finkbeiner

Computing $Sat(\exists (\Phi \cup \Psi))$ (2)

- S is finite, so for some $j \geqslant 0$ we have: $T_j = T_{j+1} = T_{j+2} = \dots$
- Therefore: $T_j = T_j \cup \{ q \in Sat(\Phi) \mid Successors(q) \cap T_j \neq \emptyset \}$
- Hence: $\{q \in \textit{Sat}(\Phi) \mid \textit{Successors}(q) \cap T_j \neq \emptyset \} \subseteq T_j$ - hence, T_j satisfies (2), i.e., $(q \in \textit{Sat}(\Phi) \text{ and } \textit{Successors}(q) \cap T_j \neq \emptyset) \Rightarrow q \in T_j$
 - further, $Sat(\Psi) = T_0 \subseteq T_j$ so, T_j satisfies (1), i.e. $Sat(\Psi) \subseteq T_j$
- As $Sat(\exists (\Phi \cup \Psi))$ is the *smallest* set satisfying (1) and (2):
 - $Sat(\exists (\Phi \cup \Psi)) \subseteq T_j \text{ and thus } Sat(\exists (\Phi \cup \Psi)) = T_j$
- Hence: $T_0 \subsetneq T_1 \subsetneq T_2 \subsetneq \ldots \subsetneq T_j = T_{j+1} = \ldots = \mathit{Sat}(\exists (\Phi \cup \Psi))$

Bernd Finkbeiner Verification – Lecture 15

Computing $Sat(\exists (\Phi \cup \Psi))$ (3)

Input: finite state graph S with state-set Q and CTL-formula $\exists (\Phi \cup \Psi)$ Output: $Sat(\exists (\Phi \cup \Psi)) = \{ q \in Q \mid q \models \exists (\Phi \cup \Psi) \}$

```
\begin{array}{ll} V:=\mathit{Sat}(\Psi); & (\ ^*\mathit{V} \ \text{administers states} \ q \ \text{with} \ q \models \exists (\Phi \cup \Psi)\ ^*) \\ T:=\mathit{V}; & (\ ^*\mathit{T} \ \text{contains the already visited states} \ q \ \text{with} \ q \models \exists (\Phi \cup \Psi)\ ^*) \\ \text{while} \ \mathit{V} \neq \varnothing \ \text{do} & \text{let} \ \ \mathit{q'} \in \mathit{V}; \\ V:=\mathit{V} \setminus \{\ \mathit{q'}\ \}; & \text{for all} \ \ \mathit{q} \in \mathit{Pre}(\mathit{q'}) \ \text{do} & \text{if} \ \ \mathit{q} \in \mathit{Sat}(\Phi) \setminus \mathit{T} \ \text{then} \ \mathit{V} := \mathit{V} \cup \{\ \mathit{q}\ \}; \ \mathit{T} := \mathit{T} \cup \{\ \mathit{q}\ \}; \ \text{endif} \\ \text{od} & \text{od} & \text{return} \ \mathit{T} & \end{array}
```

Bernd Finkbeiner

26