Verification — Lecture 17
CTL*

Bernd Finkbeiner — Sven Schewe
Rayna Dimitrova — Lars Kuhtz — Anne Proetzsch

Wintersemester 2007/2008

LTL Fairness constraints
Let ® and W be propositional logic formulas over AP.

1. An unconditional LTL fairness constraint is of the form:

ufair = OOW

2. A strong LTL fairness condition (compassion) is of the form:

sfarr = O00P — OOY

3. A weak LTL fairness constraint (justice) is of the form:

wfair = S0P — OOW

A LTL fairness assumption fair is a conjunction of LTL fairness constraints.

Bernd Finkbeiner Verification — Lecture 17

REVIEW

REVIEW

Fair satisfaction

For state ¢ in state graph S (over AP) without terminal states, let

FairPaths;(q) = {7T € Paths(q) | 7 = fair }
FairTracesy,;,(q) = {trace(r) | w € FairPathsy,(q) }

For LTL-formula ¢, and fairness assumption fair:

q ‘:faz’r 2 if and Only if Vmre FairPathsfair(q). T ‘: © and
SkE=pir e ifandonlyif Vgo € Qo. o Fjuir ¢

=1.ir is the fair satisfaction relation for LTL; = the standard one for LTL

Bernd Finkbeiner Verification — Lecture 17 2

REVIEW

Reducing =/, to =

For:

e state graph S without terminal states
e LTL formula ¢, and
e LTL fairness assumption fair

it holds:

S Epur ¢ if and only if S = (fair — @)

verifying an LTL-formula under a fairness assumption can be done
using standard LTL model-checking algorithms

Bernd Finkbeiner Verification — Lecture 17 3

REVIEW

Fairness constraints in CTL
e For LTL it holds: S = ¢ if and only if S E (fair — ¢)

e An analogous approach for CTL is not possible!
e Formulas of form V(fair — ¢) and 3(fair A) needed
e But: boolean combinations of path formulae are not allowed in CTL
e and: strong fairness constraints
OCb—-00c=00"b VvV &OOc
cannot be expressed, since persistence properties are not in CTL

e Solution: change the semantics of CTL by ignoring unfair paths

Bernd Finkbeiner Verification — Lecture 17 4

REVIEW

CTL fairness constraints

e A strong CTL fairness constraint is a formula of the form:

sfair = /\ OCe—-00Y9;)

0<<k

— where ®; and ¥; (for 0 < ¢ < k) are CTL-formulas over AP
— weak and unconditional CTL fairness constraints are defined analogously, e.g.

ufair = /\ OO Y, and wfair = /\(<>|:|<I>i—>[|<>\11¢)

0<i<k 0<i<k

— a CTL fairness assumption fair is a conjunction of CTL fairness constraints.

= a CTL fairness constraint is an LTL formula over CTL state formulas!

Bernd Finkbeiner Verification — Lecture 17 5

REVIEW

Semantics of fair CTL

For CTL fairness assumption fair, relation |=y;, is defined by:

S Fpur a iff a € Label(s)

S Fpuir 7P iff = (s Fpur D)

S Fpr ® VUit (s Fpir) V(S Fpr)

s Ffair o iff 7 [=pir for some fair path = that starts in s
S Fuir Yo iff 7 |=sir o for all fair paths 7 that start in s

T |:fair OQ) iff 7'('[1] |:fair o
T Efr ®UY iff (35 2 0.7[j] Epr ¥ A (VO < k < j. 7[k] Efur P))

m is a fair path iff = |= fair for CTL fairness assumption fair

Bernd Finkbeiner Verification — Lecture 17 6

REVIEW

Transition system semantics

e For CTL-state-formula ®, and fairness assumption fair, the
satisfaction set Saty,;,(®) is defined by:

Satyir(®) = {q€ Q| qFir P}

e S satisfies CTL-formula @ iff ® holds in all its initial states:
Sk @ ifandonlyif Voo € Qo. 90 Ffuir ©

— this is equivalentto Qo C Saty,(P)

Bernd Finkbeiner Verification — Lecture 17

REVIEW

Fair CTL model-checking problem

For:

e finite state graph S without terminal states
e CTL formula ® in ENF, and
e CTL fairness assumption fair

establish whether or not:

S ‘: fair d

use bottom-up procedure a la CTL to determine Saty,;-(P)
using as much as possible standard CTL model-checking algorithms

Bernd Finkbeiner Verification — Lecture 17 8

REVIEW

CTL fairness constraints

e A strong CTL fairness constraint: sfair = A\ (O ¢, — OO V)
0<i<k
— where ®; and ¥; (for 0 < ¢ < k) are CTL-formulas over AP

e Replace the CTL state-formulas in sfair by fresh atomic propositions:

sfair := /\ OCa —-00b)

0<i<k
— where a; € L(s)ifandonlyif s € Sat(®;) (not Saty,;, (P;)!)
— ...b; € L(s)ifandonly if s € Sat(\¥,) (not Satyr (¥;)!)

— (for unconditional and weak fairness this goes similarly)

e Note: 7 |= fair iff w[j..] |= fair forsome 5 > 0 iff n[j..] |= fair forall j > 0

Bernd Finkbeiner Verification — Lecture 17 9

REVIEW

Results for =;,;, (1)

s FErir 30aif and only if 3s” € Successors(s) with s’ = a and FairPaths(s') # @

s Fir 3(aUa’) if and only if there exists a finite path fragment
$05152...5n—15n € Pathsg,(s) withn >0

such that s; = a for 0 < i < mn, s, = ad/, and FairPaths(s,,) # @

Bernd Finkbeiner Verification — Lecture 17 10

REVIEW

Results for =, (2)

s F=rir 30aif and only if 3s” € Successors(s) with s’ |= a and FairPaths(s') # &
s |:fai,«vam true

s =i 3(aUa’) if and only if there exists a finite path fragment
S0 5152 ..5n—18n € Pathss,(s) withn >0

such that s; = a for 0 <i <n, s, @, and FairPaths(s,) # &

Sn |:f(”,- E'D tl’ue

Bernd Finkbeiner Verification — Lecture 17 11

REVIEW

Core model-checking algorithm

(* states are assumed to be labeled with a; and b; *)
compute Saty,;.(300true) = {q € Q | FairPaths(q) # @ }
forall ¢ € Saty,;,(30true) do L(q) := L(q) U { ay,, } od
(* compute Saty,;,-(®) *)
forall0 < i< |®|do
forall ' € Sub(®) with | ¥ | =i do

switch():
true D Satpi (V) = Q;
a L Salp (V) :={q € Qla€ L(s) };
a A d o Saty (V) :={q€Q]a, a € L(s)};
—a . Saty; (V) ={q€Q|agLs)}
30a o Satp (V) = Sat(30(a A agr));
d(aUd) Satyyi (V) := Sat(3(a U (a' A afair)))s
dda : compute Saty,;,(30 a)

end switch

replace all occurrences of ¥ (in ®) by the fresh atomic proposition ay,
forall ¢ € Saty,;,(V) do L(q) := L(q) U{ay } od
od
od
return Qg C Saty,;,(P)

Bernd Finkbeiner Verification — Lecture 17 12

REVIEW

Characterization of Saty,;, (30 a)

¢ Egur 300 where sfair = N\ (OCa; —» OO b)

0<i<k

iff there exists a finite path fragment ¢y . . . g, and a cycle ¢, . . . ¢, with:
1.9o=q and ¢, =q,=gq,
2. giFa,forany 0 <i<n,and g; = a,forany 0 <j <r,and

3. Sat(a;)N{qy,...,q.} =2orSatb;) N{q,...,q.} #for0 < i<k

Bernd Finkbeiner Verification — Lecture 17 13

Computing Saty,;. (30 a)

e Consider only state ¢ if ¢ = a, otherwise eliminate q

— change Sinto S[a] = (Q’', Qp, E', L") with Q" = Sat(a),
- E = En(QxQ).Qy=Q N Q.and L'(q) = L(q) forg € Q'
= each infinite path fragment in S[a] satisfies O a

® ¢ =/ d0 a iff there is a non-trivial SCC D in S[a] reachable from g¢:

D n Sat(a;) = @ or D N Sat(b;) #2 for 0< i<k *)

o Saty,,(30a) = {qe S| Reachg,(s) N T # @}

— T is the union of all non-trivial SCCs C that contain D satisfying (*)

how to compute the set T' of SCCs?

Bernd Finkbeiner Verification — Lecture 17 14

Unconditional fairness

ufair = /\ O b;

0<i<k
Let 7" be the set union of all non-trivial SCCs C of S|a] satisfying

C N Satb;)) # o forall0<i<k
It now follows:

¢ Fueir I0a ifandonly if Reachsi,(q) N T # @

= T can be determined by a simple graph analysis (DFS)

Bernd Finkbeiner Verification — Lecture 17 15

—

Sla] Fupir 30 a but S[a] e 30 a with ufair = OO by A OO be

Bernd Finkbeiner Verification — Lecture 17 16

Strong fairness

o sfair = OOay — OOy, e, k=1

® ¢ =spir 30a iff C'is a non-trivial SCC in S[a] reachable from ¢ with:
(1) C n Sat(by) # @, or

(2) D n Sat(a;) = @, for some non-trivial SCC D in C
e D is a non-trivial SCC in the graph that is obtained from C[-a;]
e For T the union of non-trivial SCCs in satisfying (1) and (2):
q Fsfair 30a ifand only if Reachgp, (q) N T # @

for several strong fairness constraints (k > 1), this is applied recursively
T is determined by standard graph analysis (DFS)

Bernd Finkbeiner Verification — Lecture 17 17

Time complexity

For state graph S with IV states and M edges,
CTL formula ®, and CTL fairness constraint fair with k conjuncts,
the CTL model-checking problem S =, ®
can be determined in time O(| ® |- (N + M)-k)

Bernd Finkbeiner Verification — Lecture 17 18

Syntax of CTL*

CTL" state-formulas are formed according to:
® ::=true ‘ a ‘ P, NPy ‘ -P ‘ dp

where a € AP and ¢ is a path-formula

CTL™ path-formulas are formed according to the grammar:
pu=2 ‘ 1A P2 ‘ —p ‘ Op ‘ 1 U2

where & is a state-formula, and ¢, 1 and ¢, are path-formulas

in CTL": VYo = —d-e.

Bernd Finkbeiner Verification — Lecture 17 19

skE=a

CTL* semantics

iff

skE -® ff
sEPAT ff

s = Fe
=P iff
T = o1 A po ff
™= e iff
T™EOd iff

rE®UT

Bernd Finkbeiner

a € L(s)
nots = @
(s =®)and (s = V)

iff 7 |= ¢ forsome m € Paths(s)
7[0] = @
T prand = @2
T e
w[l..] = ®
3520. (n[j..] FY AN (VOLSEk<jnk.]EP))

Verification — Lecture 17 20

Transition system semantics

e For CTL*-state-formula ®, the satisfaction set Sat(®) is defined by:

Sat(P)

= {qeQ|qF2}

e S satisfies CTL*-formula @ iff ® holds in all its initial states:

SE @

Bernd Finkbeiner

ifandonly if Vg € Qo.q0 = @

this is exactly as for CTL

Verification — Lecture 17 21

Embedding of LTL in CTL"

For LTL formula ¢ and S without terminal states (both over AP) and for
each q € Q):

— if and only if =V
q | 2 y q = Vo
LTL semantics CTL* semantics
In particular:
SErrLe ifandonlyif SEerp. Vo
Bernd Finkbeiner Verification — Lecture 17 22

CTL" is more expressive than LTL and CTL

For the CTL"-formula over AP = {a,b}:
d = (VOOa) vV (VOISO b)

there does not exist any equivalent LTL- or CTL formula

Bernd Finkbeiner Verification — Lecture 17 23

This logic is as expressive as CTL

CTL™" state-formulas are formed according to:

d :=true | a

B, A Dy ‘ - ‘ = ‘ Vo
where a € AP and ¢ is a path-formula

CTL™ path-formulas are formed according to the grammar:
Y =1\ P2 ‘ 1 ‘ O ‘ P U Py

where ¢, ¢, &, are state-formulas, and ¢, ¢; and ¢, are path-formulas

Bernd Finkbeiner Verification — Lecture 17 24

CTL™ is as expressive as CTL

For example: I(Ca A Ob) = 3O(a AIOb) A FO(bAIOa)
CTL"pf;rmuIa CTL?()?muIa

Some rules for transforming CTL™ formulae into equivalent CTL ones:

3 (ﬁ(cp1 u q>2)> = 3((D1 A =D2) U (= D1 A ~y)) vV 304,
3 (ocpl A oq>2) = 30(0; A)
3 (o<1> A (01U @2)) = (q>2 A EIOCI)) v (@1 A JO(® A I(B, U @2)))
3((@1U<1>2) A (\111U\I/2)) = 3((@1 /\\Ifl)U(<I>2/\EI(\I!1U\112))) v

3 ((@1 AW U (Ty A3(S, U %)))

adding boolean combinations of path formulae to CTL does not change its expressiveness
but CTL™ formulae can be much shorter than shortest equivalent CTL formulae

Bernd Finkbeiner Verification — Lecture 17 25

Relationship between LTL, CTL and CTL*

Q O (aNOa)
- v
— | > VO3 a

(@A Ga) 0 a Y035 a

Bernd Finkbeiner Verification — Lecture 17 26

CTL* model checking

Adopt the same bottom-up procedure as for (fair) CTL

Replace each maximal proper sub-formula ¥ by new proposition ay

— ay € L(s)ifandonly if s € Sat(\¥)

Most interesting case: formulas of the form J¢

— by replacing all maximal state sub-formulas in ¢, an LTL-formula results!

e g E dp iff g £ Vo iff ¢ o
CTL" semantics LTL semantics
- Sater« () = Q \ Satrr(—e)

Bernd Finkbeiner Verification — Lecture 17 27

CTL* model-checking algorithm

forall: < |® | do
forall ¥ € Sub(®) with | ¥ | = i do

switch(J):
true o Sat(v) = Q;
a . Sat(V):={q€eQ|acL(q)};
a1 Nag Sat(¥) := Sat(a;) N Sat(asz);
-a : Saf(V) := S\ Sat(a);
Jp : determine Sat; ;. (—¢) by means of an LTL model-checker;
. Sat(‘lf) = Q \ SatLTL(—mp)
end switch
AP := AP U {ay }; (* introduce fresh atomic proposition *)

replace ¥ with ay
forall g € Sat(¥)do L(q) := L(q) U {ay }; od
od
od
return Qo C Sat(®)

Bernd Finkbeiner Verification — Lecture 17 28

Time complexity

For transition system S with N states and M transitions,
CTL* formula ®, the CTL* model-checking problem S |= &
can be determined in time O ((N +M)-2/?1).

the CTL* model-checking problem is PSPACE-complete

Bernd Finkbeiner Verification — Lecture 17 29

