Verification — Lecture 18
Symbolic Model Checking

Bernd Finkbeiner — Sven Schewe
Rayna Dimitrova — Lars Kuhtz — Anne Proetzsch

Wintersemester 2007/2008

REVIEW

Summary of CTL model checking (1)

CTL is a logic for formalizing properties over computation trees

The expressiveness of LTL and CTL is incomparable

Fairness constraints cannot be expressed in CTL

— but are incorporated by adapting the CTL semantics such that quantification is
over fair paths

CTL model checking is by a recursive descent over parse tree of ®

— Sat(3(P U ¥)) is determined using a least fixed point computation
— Sat(30) is determined by a greatest fixed point computation

Bernd Finkbeiner Verification — Lecture 18 1

REVIEW

Summary of CTL model checking (2)

Time complexity of CTL model-checking S |= & is:

— islinearin |S| and |®| and linear in k for k fairness constraints

Checking S =, ® is S = @ plus computing Sat;,;,(30a)

CTL* is more expressive than both CTL and LTL

The CTL* model-checking problem can be solved by an appropriate
combination of the CTL and the LTL model-checking algorithm

The CTL"-model checking problem is PSPACE-complete

Bernd Finkbeiner Verification — Lecture 18 2

REVIEW

Review: Transition Systems

finite set of variables: V'

initial condition #: assertion over V

finite set of transitions 7
each 7 € T represented by transition relation p, over VU V'

— V: values in present state
— V': values in next state

Atomic propositions AP: assertions over V

Bernd Finkbeiner Verification — Lecture 18 3

Boolean Transition Systems

finite set of boolean variables: V'

initial condition 6: boolean function over V'

transitions represented by transition relation:
boolean function p over V.U V'

— V: values in present state
— V': values in next state

Atomic propositions AP = V.

Bernd Finkbeiner Verification — Lecture 18 4

(Explicit) state graphs vs.
(symbolic) transition systems

o @Q

-

{a,b} b
state | bit-vector boolean function
S0 <0,0> —x1 A\ T xo
e States: 51 (0, 1) - 21 Ay
So <1, 0> 1 N\ T x2
S3 <1, 1> X1 N o
[] |n|t|a| StateS 9(%1, .’132) = (—x1 N\~ 31'2) V (3131 A 3122)

Bernd Finkbeiner Verification — Lecture 18 5

explicit vs. symbolic (cont’d)

E | (0,0) (0,1) (L,0) (1,1)
0,00 | 0 1 0 1
e Edge relation: (0,1) 0 1 1 0
(1, 0) 0 1 1 1
(1,1) 1 0 1 1
e Alternatively: p(z1, xg,a'l, x,) = lifandonly if (¢,q’) € E
p(x1, T2, T,) = (mx1 A —xa A —x] A)
\% (mnx1 A -y A :13/1 N 33'2)
V (- T AN D) N 33’1 VAN $I2)
\Y Ca
V (ml AN xo A :L'Il AN m;)
Bernd Finkbeiner Verification — Lecture 18

Boolean functions
e Boolean functions f : B* — B forn > 0where B ={0,1}
— examples: f(x1,x2) = x1 A (22 V —x1), and f(x1, x2) = 1 <> @9
e Finite sets are boolean functions

— let|Q|=Nand2" ' < N 2"
— each state ¢ € Q is aboolean vectoroflengthn: [] : Q@ — B"
— T C Q isrepresented by fr such that:

fr(lql) =1 iff ge€T
— this is the characteristic function of T

e Relations are boolean functions
- R C Q x Q isrepresented by fr such that:

fr([sD, Tt =1 it (s,t) € R

Bernd Finkbeiner Verification — Lecture 18

Binary decision trees

e Let X be a set of boolean variables and < a total order on X

e Binary decision tree (BDT) is a complete binary tree over (X, <)

— each leaf v is labeled with a boolean value val(v) € B
— non-leaf v is labeled by a boolean variable Var(v) € X
— such that for each non-leaf v and vertex w:

w € { left(v), right(v) } = (Var(v) < Var(w) V wis aleaf)

= On each path from root to leaf, variables occur in the same order

Bernd Finkbeiner Verification — Lecture 18

Transition relation as a BDT

@\\\\

\.' \.r' |
1001 1][o] [1][1

o

@I @

A BDT representing p for our example using =1 < z2 < x| < x4

Bernd Finkbeiner Verification — Lecture 18

Shannon expansion

e Each boolean function f : B® — B can be written as:

flxy,....xn) = (x; A flr;:=1]) V (mx; A flz; :=0])

— where f[z; := 1] stands for f(x1, ..., xi—1, 1, Zit1,. .., Tpn)
— and f[z; := 0] is a shorthand for f(z1,...,zi—1,0, Zit1,...,Tyn)

e The boolean function fg(v) represented by vertex v in BDT B is:

— for v aleaf: fg(v) = val(v)
— otherwise:

fe(v) = (Var(v) A fe(right(v))) Vv (- Var(v) A fg(left(v)))

e fz = fg(v) where v is the root of B

Bernd Finkbeiner Verification — Lecture 18 10

Considerations on BDTs

e BDTs are not compact

— a BDT for boolean function f : B — B has 2" leafs
= they are as space inefficient as truth tables!

= BDTs contain quite some redundancy

— all leafs with value one (zero) could be collapsed into a single leaf
— a similar scheme could be adopted for isomorphic subtrees

e The size of a BDT does not change if the variable order changes

Bernd Finkbeiner Verification — Lecture 18 11

Ordered Binary Decision Diagram

share equivalent expressions [Akers 76, Lee 59]

e Binary decision diagram (OBDD) is a directed graph over (X, <) with:
— each leaf v is labeled with a boolean value val(v) € {0,1 }
— non-leaf v is labeled by a boolean variable Var(v) € X
— such that for each non-leaf v and vertex w:
w € { left(v), right(v) } = (Var(v) < Var(w) Vv wis a leaf)
= An OBDD is acyclic
— fg for OBDD B is obtained as for BDTs

Bernd Finkbeiner Verification — Lecture 18 12

Transition relation as an OBDD

[0][1

An example OBDD representing p for our example using z1 < z2 <] < x4

Bernd Finkbeiner Verification — Lecture 18 13

Isomorphism

e B and B’ over (X, <) are isomorphic iff their roots are isomorphic

e Vertices v in B and w in B’ are isomorphic, denoted v = w, iff
there exists a bijection H between the vertices of B and B’ such that:

1. if v is aleaf, then H(v) = w is a leaf with val(v) = val(H (v))
2. if v is a non-leaf, then H(v) = w is a non-leaf such that

Var(v) = Var(w) AN H(left(v)) = left(H(v)) A H(right(v)) = right(H (v))

e Testing B = B’ can be done in linear time

— due to the labels (0 and 1) of the edges.

Bernd Finkbeiner Verification — Lecture 18 14

Reducing OBDDs

Generate an OBDD (or BDT) for a boolean expression, then reduce

— by means of a recursive descent over the OBDD

Elimination of duplicate leafs

— for a duplicate 0-leaf (or 1-leaf), redirect all incoming edges to just one of them

Elimination of “don’t care” (non-leaf) vertices

— if left(v) = right(v) = w, eliminate v and redirect all its incoming edges to w

Elimination of isomorphic subtrees

— if v # w are roots of isomorphic subtrees, remove w
— and redirect all incoming edges to w to v

Bernd Finkbeiner Verification — Lecture 18 15

How to reduce an OBDD?

Q O becomes

eliminating identical leafs

Bernd Finkbeiner Verification — Lecture 18 16

How to reduce an OBDD?

O O

becomes

eliminating “don’t care” vertices

Bernd Finkbeiner Verification — Lecture 18 17

How to reduce a BDD?

Q Qe

v X

O Q Q Q becomes
0 11

eliminating isomorphic subtrees

Bernd Finkbeiner Verification — Lecture 18 18

Reduced OBDDs
OBDD B over (X, <) is called reduced fiff:

1. for each leaf v, w: (val(v) = vallw)) = v=w

= identical terminal vertices are forbidden

2. for each non-leaf v: left(v) # right(v)

= non-leafs may not have identical children

3. for each non-leaf v, w:
(Var(v) = Var(w) A right(v) = right(w) A left(v) = lefllw)) = v=w

= vertices may not have isomorphic sub-dags

this is what is mostly called BDD; in fact it is an ROBDD!

Bernd Finkbeiner Verification — Lecture 18 19

Dynamic generation of ROBDDs

Main idea:
e Construct directly an ROBDD from a boolean expression

e Create vertices in depth-first search order

e On-the-fly reduction by applying hashing

— on encountering a new vertex v, check whether:
— an equivalent vertex w has been created (same label and children)
— left(v) = right(v), i.e., vertex v is a “don’t care” vertex

Bernd Finkbeiner Verification — Lecture 18 20

ROBDDs are canonical

[Fortune, Hopcroft & Schmidt, 1978]

For ROBDDs B and B’ over (X, <) we have:

(fs = fa) implies B and B’ are isomorphic

= for a fixed variable ordering, any boolean function
can be uniquely represented by an ROBDD (up to isomorphism)

Bernd Finkbeiner Verification — Lecture 18 21

The importance of canonicity

Absence of redundant vertices

— if fg does not depend on z;, ROBDD B does not contain an z; vertex

Test for equivalence: f(x1,...,z,) = g(z1, ..., 2,)?

— generate ROBDDs By and B, and check isomorphism

Test for validity: f(x1,...,2,) =17

— generate ROBDD By and check whether it only consists of a 1-leaf

Test for implication: f(z1,...,2,) = g(x1,...,2,)?

— generate ROBDD B A =B, and check if it just consist of a 0-leaf

Test for satisfiability

— f is satisfiable if and only if B is not just the 0-leaf

Bernd Finkbeiner Verification — Lecture 18 22

Variable ordering
The size of the ROBDD depends on the variable ordering

For some functions, very compact ROBDDs may be obtained

— e.g., the even parity function

Some boolean functions have linear and exponential ROBDDs

— e.g., the addition function, or the stable function

Some boolean functions only have polynomial ROBDDs

— this holds, e.g., for symmetric functions (see next)
— examples f(...) =xz1 B ... B x,, 0r f(...) = 1iff > k variables x; are true

Some boolean functions only have exponential ROBDDs
— this holds, e.g., for the multiplication function, cf. (Bryant, 1986)

Bernd Finkbeiner Verification — Lecture 18 23

The even parity function

feven(x1, - .., xy,) = 1 iff the number of variables z; with value 1 is even

truth table or propositional formula for f...., has exponential size

but an ROBDD of linear size is possible

Bernd Finkbeiner Verification — Lecture 18 24

The function stable with exponential ROBDD

The ROBDD of fyu (T, 7)) = (z1 <> y1) A ... A (Zn < Yn)

has 3-2" — 1 verticesunderorderingz; < ... < x, < y1 < ... < Yn

Bernd Finkbeiner Verification — Lecture 18 25

The function stable with linear ROBDD

The ROBDD of fyu(Z,y) = (z1 < y1) A ... A (Zn < Yn)

has 3-n + 2 vertices underordering z; < y1 < ... < z, < Yp

Bernd Finkbeiner Verification — Lecture 18 26

Symmetric functions

flz1:="0b1,...xn :=by) = flr1:=biy, ..., x4, = b;,]
for each permutation (i4,...,4,) of (1,...,n)

symmetric boolean functions have ROBDDs of size in O (n?)

Bernd Finkbeiner Verification — Lecture 18 27

The multiplication function

e Consider two n-bit integers

— let by—1bp—a ... b() and Cn—1Cp—2...Co

— where b,,_; is the most significant bit, and b, the least significant bit
e Multiplication yields a 2n-bit integer

— the ROBDD By, has at least 1.09" vertices
— where f,,_1 denotes the the (n—1)-st output bit of the multiplication

Bernd Finkbeiner Verification — Lecture 18 28

Optimal variable ordering

The size of ROBDDs is dependent on the variable ordering

Is it possible to determine < such that the ROBDD has minimal size?

— the optimal variable ordering problem for ROBDDs is NP-complete
— polynomial reduction from the 3SAT problem (Bollig & Wegener, 1996)

There are many boolean functions with large ROBDDs

— for almost all boolean functions the minimal size is in £2(2-)

e How to deal with this problem in practice?

— guess a variable ordering in advance
— rearrange the variable ordering during the manipulations of ROBDDs

Bernd Finkbeiner Verification — Lecture 18 29

Sifting algorithm
(Rudell, 1993)

Dynamic variable ordering using variable swapping:

1. Select a variable x;

2. By successive swapping of z;, determine |B| at any position for z;
3. Shift z; to its optimal position

4. Go back to the first step until no improvement is made

o Characteristics:

e a variable may change position several times during a single sifting iteration
e often yields a local optimum, but works well in practice

Bernd Finkbeiner Verification — Lecture 18 30

Transition relation as an ROBDD

(a) ordering z; < x» < =) < =, (b) ordering z; <’ =} <’ zy <’ 2

Bernd Finkbeiner Verification — Lecture 18 31

Interleaved variable ordering

e Which variable ordering to use for transition relations?

e The interleaved variable ordering:
— for encodings xi,...,x, and yy, ..., y, of state s and ¢ respectively:

T <Y1 <2< yYy<...<z,<Yn

e This variable ordering yields compact ROBDDs for binary relations

Bernd Finkbeiner Verification — Lecture 18 32

Operations on ROBDDs

Algorithm Inputs Output ROBDD

REDUCE B (not reduced) B’ (reduced) with fg = fg/
NoOT By B-s

APPLY By, By, binary logical operatorop By gp 4

RESTRICT By, variable z, boolean value b B fla:=b]

RENAME By, variables = and y B flz:=y]

EXISTS By, variable x Bax. ¢

Bernd Finkbeiner Verification — Lecture 18 33

Negation

negation amounts to interchange the 0- and 1-leaf

Bernd Finkbeiner Verification — Lecture 18 34

APPLY

e Shannon expansion for binary operations:

fopg = (@1 A (flz1 == 1] op g[z1 := 1]))
V (—z1 A (f[x1:=0] op g[xz1 :=0]))

e A top-down evaluation scheme using the Shannon’s expansion:

— let v be the variable highest in the ordering occurring in B orB,

split the problem into subproblems for v := 0 and v := 1, and solve recursively
— at the leaves, apply the boolean operator op directly

reduce afterwards to turn the resulting OBDD into an ROBDD

e Efficiency gain is obtained by dynamic programming
— the time complexity of constructing the ROBDD of By gp ,isin O (| By [-| By)

Bernd Finkbeiner Verification — Lecture 18 35

Algorithm ApPpPLY(0p, B, B,)

B.root := APPLY(0p, B.root, By.root);

if G(vy,v9) # empty then return G (v, v9) fi; (* lookup in hashtable *)
if (v; and vg are terminals) then res := val(vy) op val(v2) fi;
else if (v is terminal and v is nonterminal)

then res := MakeNode(Var(vs), APPLY(0p, vy, leff(va)), APPLY(0p, v1, right(va)));
else if (vq is nonterminal and vs is terminal)

then res := MakeNode(Var(vy), APPLY(op, leftf(vy), va), APPLY(0p, right(vi), v2));
else if (Var(vy) = Var(va))

then res := MakeNode(Var(vy), APPLY (0p, left(vy), left(va)), APPLY(0p, right(vy), right(vs)));
elseif (Var(vy) < Var(va))

then res := MakeNode(Var(vy), APPLY(0p, left(v1), va), APPLY(0p, right(vy), v2));

else (* Var(vy) > Var(va) *)
res := MakeNode(Var(va), APPLY(0p, v1, left(vs)), APPLY(0p, v1, right(v2)));
G(v1,v2) = res; (* memoize result *)
return res
Bernd Finkbeiner Verification — Lecture 18 36

Algorithm RESTRICT(B, z, b)

e For each vertex v labeled with variable z:

— if b = 1 then redirect incoming edges to right(v)
— if b = 0 then redirect incoming edges to /left(v)
— remove vertex v, and (if necessary) reduce (only above v)

Bernd Finkbeiner Verification — Lecture 18 37

RESTRICT

performing RESTRICT(B, z2, 1): replace x2 by constant 1

Bernd Finkbeiner Verification — Lecture 18 38
EXISTS
e Existential quantification over z;:

Jzi. f(@1,.. ., 20) = flwi:=1] V flz; =0

Naive realization: APPLY(V, RESTRICT(By,z;,1), RESTRICT(By, z;,0))

Efficiency gain:

— observe that RESTRICT(By, x;, 1) and RESTRICT(By, x;, 0) are equal up to z;
— ... the resulting ROBDD also has the same structure up to z;
— replace each node labeled with x; by the result of applying V on its children

This can easily be generalized to Jx;. ... dzk. f(x1,...2,)

Bernd Finkbeiner Verification — Lecture 18 39

A more involved example

ROBBDs B (left up), Bf[mz:o] (right up), Bf[a:z:ZI] (left down), and B3z, £ (right down)

Bernd Finkbeiner Verification — Lecture 18 40

Operations on ROBDDs

Algorithm Output Time complexity Space complexity

REDUCE B’ (reduced) with fs = fzr O(|By|-log |Bf|) O(|B¢])

NoT B/ O(|By|) O(IBy|)
APPLY Bsopg O(IBy|-|Bgl) O(IBsl-1Bg)
RESTRICT Bpp—y O(|Bsl) O(IBsl)
RENAME Bjp—y O(|Bsl) O(IBsl)
EXISTS B3, O(|BsI*) O(IBf|?)

operations are only efficient if f and g have compact ROBDD representations

Bernd Finkbeiner Verification — Lecture 18 41

