Verification – Lecture 18 Symbolic Model Checking

Bernd Finkbeiner – Sven Schewe Rayna Dimitrova – Lars Kuhtz – Anne Proetzsch

Wintersemester 2007/2008

REVIEW

Summary of CTL model checking (1)

- CTL is a logic for formalizing properties over computation trees
- The expressiveness of LTL and CTL is incomparable
- Fairness constraints cannot be expressed in CTL
 - but are incorporated by adapting the CTL semantics such that quantification is over fair paths
- ullet CTL model checking is by a recursive descent over parse tree of Φ
 - $Sat(\exists (\Phi \cup \Psi))$ is determined using a least fixed point computation
 - $\mathit{Sat}(\exists \Box \Phi)$ is determined by a greatest fixed point computation

Summary of CTL model checking (2)

- Time complexity of CTL model-checking $S \models \Phi$ is:
 - is linear in |S| and $|\Phi|$ and linear in k for k fairness constraints
- Checking $S \models_{fair} \Phi$ is $S \models \Phi$ plus computing $Sat_{fair}(\exists \Box a)$
- CTL* is more expressive than both CTL and LTL
- The CTL* model-checking problem can be solved by an appropriate combination of the CTL and the LTL model-checking algorithm
- The CTL*-model checking problem is PSPACE-complete

Bernd Finkbeiner Verification – Lecture 18 2

REVIEW

Review: Transition Systems

- finite set of variables: V
- initial condition θ : assertion over V
- finite set of transitions \mathcal{T} each $\tau \in \mathcal{T}$ represented by transition relation ρ_{τ} over $V \cup V'$
 - V: values in present state
 - -V': values in next state
- Atomic propositions AP: assertions over V

Boolean Transition Systems

- finite set of boolean variables: V
- initial condition θ : boolean function over V
- transitions represented by transition relation: boolean function ρ over $V \cup V'$
 - -V: values in present state
 - V': values in next state
- Atomic propositions AP = V.

Bernd Finkbeiner Verification – Lecture 18 4

(Explicit) state graphs vs. (symbolic) transition systems

States:

state	bit-vector	boolean function
s_0	$ \begin{array}{c} \langle 0, 0 \rangle \\ \langle 0, 1 \rangle \\ \langle 1, 0 \rangle \\ \langle 1, 1 \rangle \end{array} $	$\neg x_1 \land \neg x_2$
s_1	$\langle 0, 1 \rangle$	$\neg x_1 \land x_2$
s_2	$\langle 1, 0 \rangle$	$x_1 \land \neg x_2$
s_3	$\langle 1, 1 \rangle$	$x_1 \wedge x_2$

Initial states:

$$\theta(x_1, x_2) = (\neg x_1 \land \neg x_2) \lor (x_1 \land \neg x_2)$$

explicit vs. symbolic (cont'd)

• Edge relation:

$\underline{\hspace{1cm}}E$	$\langle 0, 0 \rangle$	$\langle 0, 1 \rangle$	$\langle 1, 0 \rangle$	$\langle 1, 1 \rangle$
$\langle 0, 0 \rangle$	0	1	0	1
$\langle 0, 1 \rangle$	0	1	1	0
$\langle 1, 0 \rangle$	0	1	1	1
$\langle 1, 1 \rangle$	1	0	1	1

• Alternatively: $\rho(\underbrace{x_1,x_2}_q,\underbrace{x_1',x_2'}_{q'})=1$ if and only if $(q,q')\in E$

$$\rho(x_{1}, x_{2}, x_{1}', x_{2}') = (\neg x_{1} \land \neg x_{2} \land \neg x_{1}' \land x_{2}')$$

$$\lor (\neg x_{1} \land \neg x_{2} \land x_{1}' \land x_{2}')$$

$$\lor (\neg x_{1} \land x_{2} \land x_{1}' \land \neg x_{2}')$$

$$\lor \dots$$

$$\lor (x_{1} \land x_{2} \land x_{1}' \land x_{2}')$$

Bernd Finkbeiner

Verification - Lecture 18

6

Boolean functions

- Boolean functions $f: \mathbb{B}^n \to \mathbb{B}$ for $n \geqslant 0$ where $\mathbb{B} = \{0, 1\}$
 - examples: $f(x_1,x_2)=x_1\wedge(x_2\ \lor\ \lnot x_1),$ and $f(x_1,x_2)=x_1\leftrightarrow x_2$
- Finite sets are boolean functions
 - let |Q| = N and $2^{n-1} < N \leqslant 2^n$
 - each state $q \in Q$ is a boolean vector of length $n: [\![]\!]: Q \to \mathbb{B}^n$
 - $T\subseteq Q$ is represented by f_T such that:

$$f_T(\llbracket q \rrbracket) = 1$$
 iff $q \in T$

- this is the characteristic function of T
- Relations are boolean functions
 - $\mathcal{R} \subseteq Q \times Q$ is represented by $f_{\mathcal{R}}$ such that:

$$f_R(\llbracket s \rrbracket, \llbracket t \rrbracket) = 1$$
 iff $(s, t) \in \mathcal{R}$

Binary decision trees

- Let X be a set of boolean variables and < a total order on X
- Binary decision tree (BDT) is a complete binary tree over $\langle X, < \rangle$
 - each leaf v is labeled with a boolean value $\mathit{val}(v) \in \mathbb{B}$
 - non-leaf v is labeled by a boolean variable $Var(v) \in X$
 - such that for each non-leaf v and vertex w:

$$w \in \{ \textit{ left}(v), \textit{right}(v) \} \ \Rightarrow \ (\textit{Var}(v) < \textit{Var}(w) \ \lor \ w \text{ is a leaf})$$

⇒ On each path from root to leaf, variables occur in the same order

Bernd Finkbeiner

Verification - Lecture 18

8

Transition relation as a BDT

A BDT representing ho for our example using $x_1 < x_2 < x_1' < x_2'$

Shannon expansion

• Each boolean function $f: \mathbb{B}^n \longrightarrow \mathbb{B}$ can be written as:

$$f(x_1, ..., x_n) = (x_i \land f[x_i := 1]) \lor (\neg x_i \land f[x_i := 0])$$

- where $f[x_i := 1]$ stands for $f(x_1, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_n)$
- and $f[x_i := 0]$ is a shorthand for $f(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n)$
- The boolean function $f_B(v)$ represented by vertex v in BDT B is:
 - for v a leaf: $f_B(v) = val(v)$
 - otherwise:

$$f_{\mathsf{B}}(v) = (\mathit{Var}(v) \land f_{\mathsf{B}}(\mathit{right}(v))) \lor (\neg \mathit{Var}(v) \land f_{\mathsf{B}}(\mathit{left}(v)))$$

• $f_{B} = f_{B}(v)$ where v is the root of B

Bernd Finkbeiner

Verification - Lecture 18

10

Considerations on BDTs

- BDTs are not compact
 - a BDT for boolean function $f: \mathbb{B}^b \to \mathbb{B}$ has 2^n leafs
 - \Rightarrow they are as space inefficient as truth tables!
- ⇒ BDTs contain quite some redundancy
 - all leafs with value one (zero) could be collapsed into a single leaf
 - a similar scheme could be adopted for isomorphic subtrees
 - The size of a BDT does not change if the variable order changes

Ordered Binary Decision Diagram

share equivalent expressions [Akers 76, Lee 59]

- Binary decision diagram (OBDD) is a directed graph over $\langle X, < \rangle$ with:
 - each leaf v is labeled with a boolean value $val(v) \in \{0, 1\}$
 - non-leaf v is labeled by a boolean variable $Var(v) \in X$
 - such that for each non-leaf v and vertex w:

$$w \in \{ left(v), right(v) \} \Rightarrow (Var(v) < Var(w) \lor w \text{ is a leaf})$$

- ⇒ An OBDD is acyclic
 - $-\ f_{\rm B}$ for OBDD B is obtained as for BDTs

Bernd Finkbeiner Verification – Lecture 18 12

Transition relation as an OBDD

An example OBDD representing ho for our example using $x_1 < x_2 < x_1' < x_2'$

Isomorphism

- B and B' over $\langle X, < \rangle$ are *isomorphic* iff their roots are isomorphic
- Vertices v in B and w in B' are isomorphic, denoted $v \cong w$, iff there exists a bijection H between the vertices of B and B' such that:
 - 1. if v is a leaf, then H(v) = w is a leaf with val(v) = val(H(v))
 - 2. If v is a non-leaf, then H(v) = w is a non-leaf such that

```
Var(v) = Var(w) \land H(left(v)) = left(H(v)) \land H(right(v)) = right(H(v))
```

- Testing $B \cong B'$ can be done in linear time
 - due to the labels (0 and 1) of the edges.

Bernd Finkbeiner

Verification - Lecture 18

14

Reducing OBDDs

- Generate an OBDD (or BDT) for a boolean expression, then reduce
 - by means of a recursive descent over the OBDD
- Elimination of duplicate leafs
 - for a duplicate 0-leaf (or 1-leaf), redirect all incoming edges to just one of them
- Elimination of "don't care" (non-leaf) vertices
 - if left(v) = right(v) = w, eliminate v and redirect all its incoming edges to w
- Elimination of isomorphic subtrees
 - if $v \neq w$ are roots of isomorphic subtrees, remove w
 - and redirect all incoming edges to w to v

How to reduce an OBDD?

becomes

eliminating identical leafs

Bernd Finkbeiner Verification – Lecture 18 16

How to reduce an OBDD?

becomes

eliminating "don't care" vertices

How to reduce a BDD?

eliminating isomorphic subtrees

Bernd Finkbeiner Verification – Lecture 18 18

Reduced OBDDs

OBDD B over $\langle X, < \rangle$ is called *reduced* iff:

- 1. for each leaf v, w: $(val(v) = val(w)) \Rightarrow v = w$
 - ⇒ identical terminal vertices are forbidden
- 2. for each non-leaf v: $\textit{left}(v) \neq \textit{right}(v)$
 - \Rightarrow non-leafs may not have identical children
- 3. for each non-leaf v, w:

$$(\textit{Var}(v) = \textit{Var}(w) \ \land \ \textit{right}(v) \cong \textit{right}(w) \ \land \ \textit{left}(v) \cong \textit{left}(w)) \ \Rightarrow \ v = w$$

⇒ vertices may not have isomorphic sub-dags

this is what is mostly called BDD; in fact it is an ROBDD!

Dynamic generation of ROBDDs

Main idea:

- Construct directly an ROBDD from a boolean expression
- Create vertices in depth-first search order
- On-the-fly reduction by applying hashing
 - on encountering a new vertex v, check whether:
 - an equivalent vertex w has been created (same label and children)
 - left(v) = right(v), i.e., vertex v is a "don't care" vertex

Bernd Finkbeiner Verification – Lecture 18 20

ROBDDs are canonical

[Fortune, Hopcroft & Schmidt, 1978]

For ROBDDs B and B' over $\langle X, < \rangle$ we have: $(f_{\mathsf{B}} = f_{\mathsf{B}'})$ implies B and B' are isomorphic

⇒ for a fixed variable ordering, any boolean function can be uniquely represented by an ROBDD (up to isomorphism)

The importance of canonicity

- Absence of redundant vertices
 - if f_B does not depend on x_i , ROBDD B does not contain an x_i vertex
- Test for equivalence: $f(x_1, \ldots, x_n) \equiv g(x_1, \ldots, x_n)$?
 - generate ROBDDs B_f and B_g , and check isomorphism
- Test for validity: $f(x_1, \ldots, x_n) = 1$?
 - generate ROBDD B_f and check whether it only consists of a 1-leaf
- Test for implication: $f(x_1, \ldots, x_n) \to g(x_1, \ldots, x_n)$?
 - generate ROBDD $B_f \wedge \neg B_q$ and check if it just consist of a 0-leaf
- Test for satisfiability
 - f is satisfiable if and only if B_f is not just the 0-leaf

Bernd Finkbeiner

Verification - Lecture 18

22

Variable ordering

- The size of the ROBDD depends on the variable ordering
- For some functions, very compact ROBDDs may be obtained
 - e.g., the even parity function
- Some boolean functions have linear and exponential ROBDDs
 - e.g., the addition function, or the stable function
- Some boolean functions only have polynomial ROBDDs
 - this holds, e.g., for symmetric functions (see next)
 - examples $f(\ldots) = x_1 \oplus \ldots \oplus x_n$, or $f(\ldots) = 1$ iff $\geqslant k$ variables x_i are true
- Some boolean functions only have exponential ROBDDs
 - this holds, e.g., for the multiplication function, cf. (Bryant, 1986)

The even parity function

 $f_{even}(x_1,\ldots,x_n)=1$ iff the number of variables x_i with value 1 is even

truth table or propositional formula for $f_{\it even}$ has exponential size but an ROBDD of linear size is possible

Bernd Finkbeiner Verification – Lecture 18 24

The function stable with exponential ROBDD

The ROBDD of $f_{stab}(\overline{x},\overline{y})=(x_1\leftrightarrow y_1) \wedge \ldots \wedge (x_n\leftrightarrow y_n)$

has $3 \cdot 2^n - 1$ vertices under ordering $x_1 < \ldots < x_n < y_1 < \ldots < y_n$

The function stable with linear ROBDD

The ROBDD of $f_{stab}(\overline{x},\overline{y})=(x_1\leftrightarrow y_1) \ \land \ \ldots \ \land \ (x_n\leftrightarrow y_n)$

has $3 \cdot n + 2$ vertices under ordering $x_1 < y_1 < \ldots < x_n < y_n$

Bernd Finkbeiner Verification – Lecture 18 26

Symmetric functions

$$f[x_1:=b_1,\ldots x_n:=b_n]=f[x_1:=b_{i_1},\ldots,x_{i_n}:=b_{i_n}]$$
 for each permutation (i_1,\ldots,i_n) of $(1,\ldots,n)$

symmetric boolean functions have ROBDDs of size in $\mathcal{O}(n^2)$

The multiplication function

- Consider two *n*-bit integers
 - let $b_{n-1}b_{n-2}...b_0$ and $c_{n-1}c_{n-2}...c_0$
 - where b_{n-1} is the most significant bit, and b_0 the least significant bit
- Multiplication yields a 2n-bit integer
 - the ROBDD $\mathsf{B}_{f_{n-1}}$ has at least 1.09^n vertices
 - where f_{n-1} denotes the the (n-1)-st output bit of the multiplication

Bernd Finkbeiner Verification – Lecture 18 28

Optimal variable ordering

- The size of ROBDDs is dependent on the variable ordering
- Is it possible to determine < such that the ROBDD has minimal size?
 - the optimal variable ordering problem for ROBDDs is NP-complete
 - polynomial reduction from the 3SAT problem (Bollig & Wegener, 1996)
- There are many boolean functions with large ROBDDs
 - for almost all boolean functions the minimal size is in $\Omega(\frac{2^n}{n})$
- How to deal with this problem in practice?
 - guess a variable ordering in advance
 - rearrange the variable ordering during the manipulations of ROBDDs

Sifting algorithm

(Rudell, 1993)

Dynamic variable ordering using variable swapping:

- 1. Select a variable x_i
- 2. By successive swapping of x_i , determine |B| at any position for x_i
- 3. Shift x_i to its optimal position
- 4. Go back to the first step until no improvement is made
- Characteristics:
 - a variable may change position several times during a single sifting iteration
 - often yields a local optimum, but works well in practice

Bernd Finkbeiner Verification – Lecture 18 30

Transition relation as an ROBDD

(a) ordering $x_1 < x_2 < x_1' < x_2'$

(b) ordering $x_1 <' x_1' <' x_2 <' x_2'$

Interleaved variable ordering

- Which variable ordering to use for transition relations?
- The interleaved variable ordering:
 - for encodings x_1, \ldots, x_n and y_1, \ldots, y_n of state s and t respectively:

$$x_1 < y_1 < x_2 < y_2 < \ldots < x_n < y_n$$

• This variable ordering yields compact ROBDDs for binary relations

Bernd Finkbeiner Verification – Lecture 18 32

Operations on ROBDDs

Algorithm	Inputs	Output ROBDD
REDUCE	B (not reduced)	B' (reduced) with $f_B=f_{B'}$
Nот	B_f	$B_{\lnot f}$
APPLY	$B_f,B_g,binarylogicaloperator\mathit{op}$	B_f op g
RESTRICT	B_f , variable x , boolean value b	$B_{f[x:=b]}$
RENAME	B_f , variables x and y	$B_{f[x:=y]}$
Exists	B_f , variable x	$B_{\exists x.\ f}$

Negation

negation amounts to interchange the 0- and 1-leaf

Bernd Finkbeiner Verification – Lecture 18 34

APPLY

Shannon expansion for binary operations:

$$f \ \textit{op} \ \textit{g} = (x_1 \ \land \ (f[x_1 := 1] \ \textit{op} \ \textit{g}[x_1 := 1]))$$
 $\lor (\neg x_1 \ \land \ (f[x_1 := 0] \ \textit{op} \ \textit{g}[x_1 := 0]))$

- A top-down evaluation scheme using the Shannon's expansion:
 - let v be the variable highest in the ordering occurring in B_f or B_g
 - split the problem into subproblems for v:=0 and v:=1, and solve recursively
 - at the leaves, apply the boolean operator op directly
 - reduce afterwards to turn the resulting OBDD into an ROBDD
- Efficiency gain is obtained by dynamic programming
 - the time complexity of constructing the ROBDD of B_f op g is in $\mathcal{O}(|B_f| \cdot |B_g|)$

Algorithm APPLY(op, B_f , B_g)

```
B.root := APPLY(op, B_f.root, B_g.root);
if G(v_1, v_2) \neq empty then return G(v_1, v_2) fi;
                                                                                  (* lookup in hashtable *)
if (v_1 \text{ and } v_2 \text{ are terminals}) then res := val(v_1) op val(v_2) fi;
else if (v_1) is terminal and v_2 is nonterminal)
     then res := MakeNode(Var(v_2), APPLY(op, v_1, left(v_2)), APPLY(op, v_1, right(v_2)));
else if (v_1) is nonterminal and v_2 is terminal)
     then res := MakeNode(Var(v_1), APPLY(op, left(v_1), v_2), APPLY(op, right(v_1), v_2));
else if (Var(v_1) = Var(v_2))
     then res := MakeNode(Var(v_1), APPLY(op, left(v_1), left(v_2)), APPLY(op, right(v_1), right(v_2)));
else if (Var(v_1) < Var(v_2))
     then res := MakeNode(Var(v_1), APPLY(op, left(v_1), v_2), APPLY(op, right(v_1), v_2));
else
                                                                                  (* Var(v_1) > Var(v_2) *)
     res := MakeNode(Var(v_2), APPLY(op, v_1, left(v_2)), APPLY(op, v_1, right(v_2)));
                                                                                      (* memoize result *)
G(\mathbf{v_1}, \mathbf{v_2}) := res;
return res
```

Bernd Finkbeiner

Verification - Lecture 18

36

37

Algorithm RESTRICT(B, x, b)

- For each vertex v labeled with variable x:
 - if b = 1 then redirect incoming edges to right(v)
 - if b = 0 then redirect incoming edges to left(v)
 - remove vertex v, and (if necessary) reduce (only above v)

RESTRICT

performing RESTRICT(B, $x_2, 1$): replace x_2 by constant 1

Bernd Finkbeiner Verification – Lecture 18 38

EXISTS

• Existential quantification over x_i :

$$\exists x_i. f(x_1,...,x_n) = f[x_i := 1] \lor f[x_i := 0]$$

- Naive realization: $APPLY(\lor, RESTRICT(B_f, x_i, 1), RESTRICT(B_f, x_i, 0))$
- Efficiency gain:
 - observe that $\mathsf{RESTRICT}(\mathsf{B}_f,\,x_i,\,1)$ and $\mathsf{RESTRICT}(\mathsf{B}_f,\,x_i,\,0)$ are equal up to x_i
 - . . . the resulting ROBDD also has the same structure up to x_i
 - replace each node labeled with x_i by the result of applying \lor on its children
- ullet This can easily be generalized to $\exists x_1, \ldots \exists x_k, f(x_1, \ldots x_n)$

A more involved example

 $\mathsf{ROBBDs} \ \mathsf{B}_f \ (\mathsf{left\ up}), \ \mathsf{B}_{f[x_2:=0]} \ (\mathsf{right\ up}), \ \mathsf{B}_{f[x_2:=1]} \ (\mathsf{left\ down}), \ \mathsf{and} \ \mathsf{B}_{\exists x_2.\ f} \ (\mathsf{right\ down})$

Bernd Finkbeiner Verification – Lecture 18 40

Operations on ROBDDs

Algorithm	Output	Time complexity	Space complexity
REDUCE	B' (reduced) with $f_B = f_{B'}$	$\mathcal{O}(B_f \cdot \log B_f)$	$\mathcal{O}(B_f)$
Nот	$B_{\lnot f}$	$\mathcal{O}(B_f)$	$\mathcal{O}(B_f)$
APPLY	B_f op g	$\mathcal{O}(B_f \!\cdot\! B_g)$	$\mathcal{O}(B_f {\cdot} B_g)$
RESTRICT	$B_{f[x:=b]}$	$\mathcal{O}(B_f)$	$\mathcal{O}(B_f)$
RENAME	$B_{f[x:=y]}$	$\mathcal{O}(B_f)$	$\mathcal{O}(B_f)$
Exists	$B_{\exists x.f}$	$\mathcal{O}(B_f ^2)$	$\mathcal{O}(B_f ^2)$

operations are only efficient if f and g have compact ROBDD representations